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Abstract: Nickel- and zinc-doped TiO2(B) nanobelts were synthesized using a hydrothermal tech-
nique. It was found that the incorporation of 5 at.% Ni into bronze TiO2 expanded the unit cell by
4%. Furthermore, Ni dopant induced the 3d energy levels within TiO2(B) band structure and oxygen
defects, narrowing the band gap from 3.28 eV (undoped) to 2.70 eV. Oppositely, Zn entered restrict-
edly into TiO2(B), but nonetheless, improves its electronic properties (Eg is narrowed to 3.21 eV).
The conductivity of nickel- (2.24 × 10−8 S·cm−1) and zinc-containing (3.29 × 10−9 S·cm−1) TiO2(B)
exceeds that of unmodified TiO2(B) (1.05 × 10−10 S·cm−1). When tested for electrochemical storage,
nickel-doped mesoporous TiO2(B) nanobelts exhibited improved electrochemical performance. For
lithium batteries, a reversible capacity of 173 mAh·g−1 was reached after 100 cycles at the current
load of 50 mA·g−1, whereas, for unmodified and Zn-doped samples, around 140 and 151 mAh·g−1

was obtained. Moreover, Ni doping enhanced the rate capability of TiO2(B) nanobelts (104 mAh·g−1

at a current density of 1.8 A·g−1). In terms of sodium storage, nickel-doped TiO2(B) nanobelts
exhibited improved cycling with a stabilized reversible capacity of 97 mAh·g−1 over 50 cycles at the
current load of 35 mA·g−1.

Keywords: TiO2(B); doping; nanobelts; mesoporosity; lithium-ion battery; sodium storage; anode;
safety; electrochemical performance

1. Introduction

Up until recently, electrochemical energy storage devices, among which lithium-ion
batteries (LIBs) are dominant, were mainly used for areas that demanded moderate char-
acteristics and soft operating standards (e.g., portable electronics, medical equipment,
and power tools). At present, they are closely considered for usage in hybrid and electric
vehicles, renewable energy, robotics, and standby backup power applications. However,
due to the fundamental physicochemical properties of carbonaceous anode-active material
(the voltage of Li+ insertion is close to that of Li metal formation, thereby causing its
dendritic deposition; this is critical for charge in high-rate or low-temperature conditions),
LIBs suffers restricted performance for such aims, especially in terms of charging rate, op-
erating temperature range, and safety [1–3]. To avoid these problems, a negative electrode
based on lithium pentatitanate with an operating potential of 1.55 V vs. Li/Li+ [4] was
recently proposed and successfully commercialized (for example, in Mitsubishi i-MiEV
and Honda Fit EV electric cars). Another important advantage of Li4Ti5O12 is cycle life
upon lithiation/delithiation due to its so-called “zero-strain” property. At the same time,
the specific capacity of Li4Ti5O12 is limited to 175 mAh·g−1 [5]; hence, designing other
materials, in which more Li can be accumulated, is needed to achieve further progress in
terms of the charge rate and temperature range of LIBs. One such material can be titanium

Nanomaterials 2021, 11, 1703. https://doi.org/10.3390/nano11071703 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-1576-8680
https://orcid.org/0000-0002-0963-0557
https://doi.org/10.3390/nano11071703
https://doi.org/10.3390/nano11071703
https://doi.org/10.3390/nano11071703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11071703
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11071703?type=check_update&version=3


Nanomaterials 2021, 11, 1703 2 of 18

dioxide, which possesses an Li-storage capacity of up to 335 mAh·g−1 [6] at a similar
Li+ insertion voltage of 1.5–1.8 V vs. Li/Li+ (depending on the crystal structure). In this
way, layered structural monoclinic (space group C2/m) bronze titanium dioxide (TiO2(B))
showed the most favorable performance as an LIB anode in comparison with other natural
polymorphs [7,8]. The TiO2(B) framework belongs to ReO3-type structure [9,10], which is
presented by packings of ReO3 blocks composed of distorted TiO6 octahedra sharing the
corners. The linking of blocks in the [001] direction is achieved through common edges.
The packing of ReO3 blocks in the [010] direction is displaced to a neighboring one by
a/2 (a is unit cell parameter) along the [100] direction. Therefore, TiO2(B) has an open
structure with infinite channels running parallel to the b-axis. Such structural features
govern the lithium insertion into bronze TiO2 as a pseudocapacitive faradaic process [11],
which is not hampered by sluggish solid-state diffusion unlike anatase, rutile, or brookite.
Moreover, TiO2(B) has a lower Li+ insertion potential (near 1.5 V) compared to other natural
polymorphs, resulting in higher energy density of the battery.

On the other hand, lithium reserves in the Earth’s crust are limited, and the cost
of lithium-containing raw materials is growing steadily. In this way, a change to other
electrochemical energy storage technologies based on abundant materials, such as sodium-
ion batteries (SIBs), is expected in the near future, at least for renewable energy and
uninterruptible power supply fields [12,13]. At the same time, due to the unsuitability
of graphite, other materials are being studied intensively as an anode for SIBs [14,15]. In
view of the background and progress regarding LIBs over the past three decades, it may
be postulated that intercalation-type materials are the most valuable for these purposes.
However, as known, one of the main differences between SIBs and LIBs is the radius of
charge carrier (1.02 Å for Na+ and 0.76 Å for Li+), which ensure an electrochemical process.
Therefore, the search for materials with acceptable stability of structure (preferably with
layered or tunnel crystal frameworks) under cyclic Na+ insertion and extraction is an urgent
task. Furthermore, the near-zero potential vs. Na/Na+ of a hypothetical anode material
may result in metallic sodium deposition on its surface, which limits battery operation and
causes safety problems. Due to these reasons, titanium compounds based on the Ti3+/Ti4+

redox couple, including NaTiO2, Na2Ti3O7, TiO2, Na2Ti6O13, Na2Ti4O9, NaTi2(PO4)3, and
ATiOPO4 (A = NH4, K, Na), have attracted attention [16,17]. Regarding four common TiO2
polymorphs, it was found that bronze titanium dioxide possesses the best sodium storage
properties [18,19]. The potential of TiO2(B) vs. Na/Na+ is 0.6–0.9 V [20], making it suitable
as an SIB anode in terms of both energy density and safety concerns.

Unfortunately, TiO2(B) is a wide-band gap semiconductor (its calculated band gap energy
ranges between 3.09 and 3.22 eV [11,21]) with low electrical conductivity (~10−12 S·cm−1).
In addition, the cyclic performance of TiO2(B), depending on its volume variations upon
the insertion and extraction of guest ions, especially in the case of accommodating large
Na+, needs to be improved.

Up to date, a number of strategies have been proposed to address these issues, such
as morphology tailoring, fabrication of composites, and metal and/or nonmetal doping.
It has been revealed that success necessitates a combination of approaches involving
microstructure tuning and doping routes. Indeed, when TiO2(B) is reduced to nanoscale,
e.g., nanotubes [22,23], nanorods [24], nanofibers [25], nanoribbons [26], nanowires [27,28],
or nanoplates [29], it usually shows enhancing rate properties as an anode. Moreover,
special attention should be paid to the mesoporosity of nanomaterials, which effectively
ensures electrolyte penetration and charge carrier transport. On the other hand, doping
titanium dioxide with metals/nonmetals [30–33] further increases its electrical conductivity
due to the formation of local energy states inside the band structure and/or the generation
of lattice defects (oxygen vacancies, Ti3+ species). Furthermore, controlling the variation in
the radius of host and doped ions [34,35], as well as supporting the oxygen deficiency [36],
may provide an increased stability and activity of TiO2(B) during cycling in SIBs.

Herein, we successfully synthesized mesoporous TiO2(B) nanobelts doped with nickel
and zinc through a hydrothermal reaction. It is expected that, in terms of lithium and
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sodium battery performance, Ni and Zn may be suitable dopants for TiO2(B), providing
both enhanced cyclability and rate capability. As suggested, the main factors determining
such improved electrochemical behavior of doped TiO2(B) are (i) increased conductivity
of the material, (ii) improved stability of its structure during insertion/extraction of guest
ions, and (iii) facilitated diffusion of charge carriers.

2. Materials and Methods
2.1. Synthetic Procedure

For preparing mesoporous nanobelts of doped TiO2(B), anatase with an average parti-
cle size of ~100 nm (Alfa Aesar, Ward Hill, MA, USA), nickel and zinc nitrate hexahydrates
(Merck, Darmstadt, Germany) and aqueous solutions of sodium hydroxide (14 M) and
hydrochloric acid (0.05 M) were used as precursors. In brief, 0.1 g of anatase was dispersed
in 15 mL of 14 M NaOH under vigorous stirring on a magnetic stirrer for 20 min. Then, a
weighed portion of Ni(NO3)2·6H2O or Zn(NO3)2·6H2O was added in the solution in order
to obtain the following atomic ratios of doped metal to titanium: 0.02, 0.05, and 0.08. The
resultant solution was transferred to a 20 mL Teflon-lined stainless-steel autoclave and
heated at 170 ◦C for 72 h. After the reaction, the product was cooled naturally to room
temperature, separated on a 5804R centrifuge (Eppendorf, Hamburg, Germany), rinsed in
0.05 M HCl (three times, 75 mL each) for Na+/H+ exchange, washed in deionized water
until the pH became neutral, and dried in air at 80 ◦C. Finally, the sample was treated
thermally under vacuum (1 Pa) at 450 ◦C for 3 h to crystallize the bronze phase. The
obtained series of materials were designated as TO-Ni-z and TO-Zn-z, where z represents
the content of doped metal. The undoped TiO2(B) (hereinafter TO) was fabricated using a
similar procedure, but without Ni(NO3)2·6H2O and Zn(NO3)2·6H2O.

2.2. Characterization

Powder X-ray diffraction data (XRD) for samples were collected on a SmartLab from
(Rigaku, Tokyo, Japan) and D8Advance (Bruker, Billerica, MA, USA) diffractometers using
CuKα-radiation (8048.0 eV). The crystalline phases were identified via a comparison of
obtained patterns with PDF-2 (2015) cards. The lattice parameters were refined through Ri-
etveld analysis using the JANA2006 program (ver. 25 June 2021) developed in the Institute
of Physics of Academy of Sciences of the Czechia (Praha, Czechia). The morphology was
studied by scanning (SEM) and scanning transmission (STEM) electron microscopy on a
S5500 microscope from the Hitachi (Tokyo, Japan) equipped with a Duo-STEM detector.
The elemental composition was investigated using an electron probe X-ray microanalyzer
coupled to a S5500. The element distribution maps were obtained on a TM3000 microscope
(Hitachi, Tokyo, Japan) with a Quantax 70 energy-dispersive X-ray spectrometer (EDX).
Nitrogen adsorption/desorption isotherms were registered on an ASAP 2020 instrument
(Micrometrics, Norcross, GA, USA) at 77 K. The specific surface area and pore size distribu-
tion were calculated using Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda
(BJH) theories. The chemical state of elements was determined using X-ray photoelectron
spectroscopy (XPS) on a SPECS system (SPECS, Berlin, Germany) equipped with a Phoibos-
150 hemispherical energy analyzer using an MgKα-source (1253.6 eV). The XPS binding
energy scale was calibrated against the position of C 1s hydrocarbons (285.0 eV). The
conductivity of samples was tested using the electrochemical impedance spectroscopy (EIS)
technique at room temperature with a two-electrode cell on a SI1260 instrument from the
Solartron Analytical (Farnborough, Hampshire, UK) over the frequency range 10−2–106 Hz.
For deeper insight into the electronic properties of materials, electronic paramagnetic res-
onance (EPR) and ultraviolet–visible spectroscopy (UV–Vis) analyses were performed.
EPR spectra were recorded on an EMX6/1 spectrometer from the Bruker (Billerica, MA,
USA) operating at X-band frequency with 100 kHz field modulation and a microwave
power of 2.046 mW. UV–Vis spectra were obtained with a UV-2600 spectrophotometer
(Shimadzu, Kyoto, Japan) equipped with an ISR-2600Plus integrating sphere. Barium
sulfate was applied as a white reference. The magnetic properties were investigated on a
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SQUID magnetometer MPMS (XL) from the Quantum Design (San Diego, CA, USA) in
the temperature range of 2–300 K. The applied field dependence of magnetization was
measured with steps of 100 and 500 Oe in the ranges from −2000 to 2000 Oe and from
±2000 to ±10,000 Oe, respectively. The temperature dependence of magnetization was
obtained under a magnetic field of 1000 Oe with a step of 2 K.

2.3. Electrochemical Measurements

The electrochemical parameters of TiO2(B) nanobelts doped with nickel and zinc were
tested using two-electrode ECC-STD cells from the El-Cell GmbH (Hamburg, Germany).
The working electrodes were fabricated according to the standard doctor blade technique.
In brief, active material, Timcal Super P carbon black, and polyvinylidene fluoride at a
weight ratio of 80:13:7 (for LIBs) or 75:18:7 (for SIBs) were dispersed in N-methylpyrrolidone
under protracted stirring to form a slurry. The binder was placed first, whereas active
material and electroconductive additive were preliminary mixed using a Pulverisette 7
planetary mill (Fritch, Idar-Oberstein, Germany). Applying a MSK-AFA-I machine (MTI
Corporation, Richmond, CA, USA), the slurry was casted uniformly on a copper foil current
collector pretreated with diluted hydrochloric acid. After drying at 60 ◦C to constant
weight, working electrodes were punched, pressed on a hydraulic press at 1000 kg·cm−2,
and heated under vacuum at 120 ◦C during 10 h. The active mass loading for individual
electrodes was about 2 mg·cm−2. Assembling electrochemical cells was carried out in an
argon-filled glove box with moisture and oxygen below 5 ppm. A lithium or sodium metal
foil was employed as the counter or reference electrode. The electrolyte for LIBs was 1 M
LiPF6 solution in a mixture of ethylene carbonate and diethyl carbonate at a volume ratio
of 1:1 (Sigma-Aldrich, St. Louis, MO, USA). For SIBs, it was a 1 M solution of NaClO4 in
propylene carbonate with fluoroethylene carbonate additive (5 vol.%). A 2400 membrane
from the Celgard (Charlotte, NC, USA) or GF/C glass fiber from the Whattman (Little
Chalfont, Buckinghamshire, UK) was used as a separator for LIBs or SIBs, respectively. The
cells were tested on a Celltest System (Solartron Analytical, Farnborough, Hampshire, UK))
at room temperature in the potential range of 1–3 V (vs. Li/Li+) or 0.005–3 V (vs. Na/Na+).
The performance parameters were measured by galvanostatic charge/discharge at various
current densities from 30 to 1800 mA·g−1. Cyclic voltammetry (CV) data were collected at a
sweep rate of 0.1 mV·s−1. The electrode impedance was measured from 106 to 10−1 Hz after
five initial CV cycles (fully desodiated) following 6 h of rest to obtain the steady-state potential.

3. Results and Discussion
3.1. Structure, Morphology, and Electronic Properties of Ni- and Zn-Doped TiO2(B) Nanobelts

XRD patterns of prepared materials are depicted in Figure 1. Their analysis revealed
that monoclinic bronze of TiO2 (PDF #46-1238, space group C2/m) was a dominant phase
and tetragonal anatase (PDF #21-1272, space group I41/amd) was an impurity for all
samples confirming the correct synthesis [37]. Furthermore, XRD data indicated traces
of monoclinic anasovit (PDF #23-0606, space group C2/m) in the products obtained due
to temperature-induced TiO2(B)→Ti3O5 transitions [37]. No peaks of other phases were
detected for TO-Ni-02, TO-Ni-05, and TO-Zn-02 samples. At the same time, NiO and
ZnO were found in the compositions of TO-Ni-08 and TO-Zn-05, respectively, which were
synthesized using high amounts of Ni(NO3)2·6H2O and Zn(NO3)2·6H2O precursors. Note
that nickel oxide was formed only at the Ni/Ti ratio of 0.08, whereas zinc oxide was
obtained already at Zn/Ti = 0.05. These data indicate that the solubility limit of dopant
through the substitutional mechanism within titanium dioxide was reached. Hence, a
further increase in dopant concentration would not be rational.
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Figure 1. XRD patterns for as-synthesized samples doped with nickel and zinc TiO2(B).

Through Rietveld refinement (Figure S1 and Table S1, Supplementary Materials),
the lattice parameters for unmodified titanium dioxide were calculated as a = 12.393(2) Å,
b = 3.6863(9) Å, c = 6.505(1) Å, and β = 108.85(2)◦. Doping with nickel changed these
parameters, increasing the unit cell volume by 3–4%: from 281.23(9) Å3 for undoped
TiO2(B) to 289.0(1) and 291.8(1) Å3 for TO-Ni-02 and TO-Ni-05 samples, respectively. This
was seemingly due to the larger radius of Ni2+ ions (0.69 Å; here and below, these values
are given according to R.D. Shannon [38] for the coordination number of 6) occupying
the Ti4+ sites (0.605 Å). Upon a further increase in nickel content (TO-Ni-08), the volume
of the unit cell decreased to 289.7(2) Å3, indicating a limitation in its incorporation into
bronze TiO2 crystal structure. From refined data, the lattice parameters of TO-Ni-05 were
measured as a = 12.269(4) Å, b = 3.795(1) Å, c = 6.601(2) Å, and β = 108.33(3)◦. Similar to
nickel, upon Zn doping, the lattice constants of TiO2(B) were changed. Interestingly, the
unit cell expanded by about 2% for the TO-Zn-02 product (286.31(5) Å3). The large ionic
radius of Zn2+ (0.74 Å) probably hindered the accentuated occupation of Ti4+ positions.
Analogous results were previously reported for Zn-doped anatase [39]. In this way, the
absence of expected ZnO reflections in the XRD pattern of TO-Zn-02 could be explained by
its low content.

The SEM images unveiled in Figure 2 demonstrate that synthesized materials had the
same morphology and consisted of belt-like nanostructures. The dimensions of nanobelts
were 40–160 nm in width, 3–7 nm in thickness and up to a few micrometers in length. It
can be seen that Ni-doped TiO2(B), i.e., the TO-Ni-05 sample, showed a better dispersion
and uniformity of belts as compared to others.

According to the STEM study of the TO-Ni-05 product (Figure 3a), the surface of
Ni-modified bronze TiO2 nanobelts was rough and porous. It is believed that these features
may be valuable in terms of the electrochemical performance of the material as an anode
for metal-ion batteries.
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77 K, and (inset) cumulative pore volume and pore size distribution curves for TO-Ni-05 material.

EDX microanalysis (Figure S2a, Supplementary Materials) confirmed that, along with
Ti and O elements, the TO-Ni-05 product contained Ni. The Ti, O, and Ni distribution maps
are depicted in Figure S2b (Supplementary Materials). The N2 adsorption/desorption
data (Figure 3b) show that the TO-Ni-05 material possessed a BET specific surface area
of 114 m2·g−1 and a BJH pore volume of 0.48 cm3·g−1. The pore size distribution curve
(Figure 3b, inset) of nickel-doped titanium dioxide with a maximum at ∼4.2 nm shows that
at least 70% of the pore volume was formed by mesopores. For the unmodified sample
(Figure S3, Supplementary Materials) the BET surface area and BJH pore volume were
lower: 40 m2·g−1 and 0.27 cm3·g−1. This means that doping had an effect on the texture of
bronze TiO2 nanobelts. According to the literature [40], the observed effect can be explained
by the inhibition the growth of TiO2(B) crystallites due to nickel staying at grain boundaries
and the formation Ni–O–Ti bonds.

The chemical state of elements in Ni-doped TiO2(B) nanobelts was investigated using
the XPS method, as shown in Figure 4. According to analysis of the survey spectrum
(Figure 4a), titanium, oxygen, and nickel elements existed in the TO-Ni-05 material. Fur-
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thermore, carbon is detected in the sample due to adventitious contamination. The Ti 2p
region in Figure 4b shows a doublet at 458.4 eV (Ti 2p3/2) and 464.1 eV (Ti 2p1/2). The
splitting for Ti 2p was equal to 5.7 eV, meaning that titanium was in a +4 oxidation state [41].
The O 1s spectrum could be deconvoluted into two peaks, as shown in Figure 4c. The
signal at 529.4 eV could be ascribed to oxygen chemically bound to titanium, while the
peak at 530.7 eV was related to adsorbed water or organics [42]. Figure 4d illustrates the
spectrum of Ni 2p3/2 centered at 854.0 eV, indicating that nickel was in the +2 state [43].
Through a quantitative XPS analysis of the surface composition for the TO-Ni-05 sample,
the O/(Ti+Ni) atomic ratio was calculated to be close to 1.85 (Figure 4a, inset; excluding
carbon contaminations). The oxygen deficiency in nickel-doped TiO2(B) was probably
due to neutralizing Ni2+ ions by oxygen vacancies in order to maintain the electrostatic
balance [44], as defined in Equation (1).

NiO
TiO2→ Ni′Ti + V••o +Oo. (1)
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In this way, it should be noted that recently reported density functional theory calcula-
tions [36] predicted lower sodiated energy barriers for oxygen-deficient bronze titanium
dioxide, presuming greater activity of Na+ ions during insertion and extraction into/from
the framework.

In order to study the effect of doping on TiO2(B) electronic properties, EIS measure-
ments were carried out for all samples. The representation of impedance spectra in Nyquist
diagrams (Z” vs. Z′) reveals depressed semicircle, reflecting the conductivity of the mate-
rial and arc characterizing the interfacial phenomena, as shown in the enlarged view in
Figure 5a (full-scale range EIS spectra are given in Figure S4, Supplementary Materials).
The analysis of impedance plots was performed in ZView 3.3c software using the elec-
trical equivalent circuit (Figure 5a, inset), comprising the electrode resistance (Rel), bulk
resistance of the sample (Rb) and its geometric capacitance (Cg), double-layer capacitance
(Cdl), and charge transfer resistance (Rct). According to impedance data fitting, the con-
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ductivity of nickel-containing materials was calculated as 9.78 × 10−10 S·cm−1 (TO-Ni-02),
2.24 × 10−8 S·cm−1 (TO-Ni-05), and 5.48 × 10−9 S·cm−1 (TO-Ni-08), whereas, for the TO
sample, it was 1.05 × 10−10 S·cm−1. Hence, the conductivity of titanium dioxide increased
by approximately 100-fold after the incorporation of nickel dopant. In accordance with [45],
this can be explained by the generation of a localized Ni 3d energy state within the TiO2(B)
band structure. It is important to note that the electronic properties of titanium dioxide were im-
proved steadily up to Ni/Ti = 0.05, while a subsequent extension in nickel content (Ni/Ti = 0.08)
was accompanied by a decrease in conductivity. This was seemingly due to low-to-moderate
amounts of Ni2+ ions being successfully incorporated into the TiO2(B) crystal lattice, while an
excess of dopant led to the formation of an NiO phase with pronounced dielectric properties
(conductivity equal to 10−13 S·cm−1 [46]). Regarding the TO-Zn-02 and TO-Zn-05 samples, it
can be concluded that Zn doping also had an influence on the electroconductive properties of
bronze TiO2. In particular, the conductivity of TO-Zn-02 and TO-Zn-05 materials was measured
as 3.29× 10−9 and 2.09× 10−9 S·cm−1, respectively.
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To gain insight into the electronic structure of nickel- and zinc-containing TiO2(B),
UV–Vis experiments were performed for TO, TO-Ni-05, and TO-Zn-02 materials in the
wavelength range of 200–800 nm, as shown in Figure 5b. The data obviously reveal changes
in the absorbance curve, with a shift in the absorption edge to the visible-light region for
nickel-containing TiO2(B) nanobelts. According to previous reports [45,47], this red shift
may be related to the appearance of Ni 3d energy levels in the middle of the TiO2 band
gap. Furthermore, the spectrum of the TO-Ni-05 sample showed an absorption peak
with a maximum at approximately 725 nm, the intensity of which strongly depended on
nickel concentration (Figure S5, Supplementary Materials). This peak has previously been
reported in the literature and was attributed to Ni2+ ions in the octahedral coordination [48].
With regard to Zn-doped TiO2(B), its absorption edge also moved slightly toward longer
wavelengths (i.e., red-shifted) as compared to the undoped sample. According to the
literature [47], this may be due to the introduction of impure Zn 3d electronic levels mixed
with the O 2p states. The band gap energy, Eg, of materials was estimated using the
Tauc method (Equation (2)) for indirect (γ = 2) electron transition via the Kubelka–Munk
function F(R∞).

(F(R∞)·hν)1/γ = B
(
hν− Eg

)
, (2)

where F(R∞) = (1− R∞)2/2R∞ was used instead of the absorption coefficient α, R∞ = 10−A,
A is the absorbance, h is the Planck constant, ν is the photon frequency, and B is a constant.
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As revealed from measurements (Figure 5b, inset), doping with metals reduced the
band gap of bronze titanium dioxide from 3.28 eV (TO) to 3.21 eV (TO-Zn-02) and 2.70 eV
(TO-Ni-05).

Since EPR is an excellent technique for identifying the paramagnetic centers in materi-
als, it was applied to study the Ni-doped TiO2(B) nanobelts (Figure 6a). The EPR spectrum
of TO-Ni-02 powder contained a high-intensity broad signal, a narrow component on its
high-field shoulder, and a low-intensity asymmetric line with the g-factor equal to 4.35. The
g-factor value is a characteristic of the ions in 3d5 electron configuration in the crystal fields
with a strong rhombic component [49]. It was registered for all studied samples, including
TO (Figure S6, Supplementary Materials), belonging to Fe3+ ions present in the precursor
in trace amounts. Deconvolution of the TO-Ni-02 spectrum into components (designated
as TO-Ni-02* in Figure 6a), excluding the contribution of the low-intensity signal of Fe3+,
showed that the broad signal (N1) was characterized by g = 2.19, and the narrow one (N2)
was characterized by g = 2.003. The g-factor value for component N1 is typical of Ni2+ ions
in the octahedral crystal field [50,51]. Hence, it can be suggested that Ni2+ ions substituted
the Ti4+ species in some octahedra within the TiO2(B) lattice. Due to this Ni2+/Ti4+ replace-
ment, the appearance of oxygen vacancies was required to maintain charge neutrality in
the crystal structure [36,52]. The value of g-factor for component N2 is typical of so-called
F-centers, i.e., electrons “trapped” by the structural defects. Accordingly, they may be the
conduction band electrons “trapped” with the oxygen vacancies. The EPR spectrum of TO-
Ni-05, without taking into account the contributions of low-intensity signals from Fe3+ and
F-centers, can be represented as a superposition of two broad signals: the N1′ component
with g = 2.20 and the N3 contribution with g = 2.33 (TO-Ni-05* deconvolution in Figure 6a).
As in the spectrum of the TO-Ni-02 material, the N1′ component corresponded to Ni2+

ions embedded in the TiO2(B) lattice at the Ti4+ positions. The N3 component, the g-factor
value of which significantly exceeded that of isolated Ni2+ ions, possibly belonged to the
ferromagnetically ordered structures of nickel, perhaps magnetic nickel clusters, formed
from the excess dopant on its surface and/or in the pores [53]. In addition, the carrier of
ferromagnetism in TO-Ni-05 can be an F-center-bound magnetic polaron [54,55]. In such a
polaron, an electron trapped by an oxygen vacancy effectively binds the d-electrons of the
surrounding magnetic ions. It is worth noting that, in the interpretation of the magnetic
polaron model, the smaller intensity of the signal from F-centers in the sample synthesized
with using a greater amount of nickel-containing precursor can be explained by the presence
of the larger number of F-center-bound magnetic polarons in it.

Figure 6b represents the magnetic field dependence of magnetization under ambient
conditions for the TO-Ni-05 product. The hysteresis loop for Ni-doped TiO2(B) nanobelts
was observed, showing ferromagnetism at room temperature. At the same time, it is known
that pure titanium dioxide is diamagnetic. There is currently no unified explanation for
the ferromagnetic properties arising in diamagnetic materials. Many researchers have
explained this fact through the model of bound polarons [54,55]. However, there are an
increasing number of studies suggesting that structural defects (oxygen vacancies) have
a strong effect on the magnetic behavior of TiO2 [55,56]. Accordingly, it seems that both
mechanisms contributed to the ferromagnetism of Ni-containing TiO2(B). Notably, the
obtained hysteresis loop was asymmetric to the origin coordinates (Figure 6b, enlarged view
of the M(H) curve), indicating the existence of antiferromagnetic/ferromagnetic interactions
in the analyzed sample. The presence of an antiferromagnet phase was confirmed by the
temperature dependence of magnetization (Figure 6b, inset of M(T) curve), in which the
peak at a temperature of 68 K inherent to transition from an antiferromagnetic state was
clearly observed. Nevertheless, we were unable to refer this temperature to the Néel
temperatures of known antiferromagnets containing nickel and titanium. Moreover, it
should be noted that defect regions with different spin orders can form on the surface of
TiO2 nanobelts, leading to strong exchange interactions of the antiferromagnet/ferromagnet
type. Thus, to reveal the origin of shifting the hysteresis loop at a temperature of 300 K
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and to identify the nature of antiferromagnetic phase in Ni-doped TiO2(B) sample, an
additional study is required.
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Thus, XRD, XPS, EIS, UV–Vis, EPR, and magnetization measurements confirmed the
successful substitution of Ti atoms for Ni species in the TiO2(B) structure, accompanied by
the formation of solid solutions with general formula Ti1−xNixO2−δ(B). The results are in
a good accordance with the material morphology (Figure S7, Supplementary Materials).
Indeed, the white color of unmodified bronze titanium dioxide became yellow after Ni
doping. On the other hand, it was found that the zinc hardly entered into bronze TiO2
lattice to substitute titanium, nevertheless enhancing its electronic properties. The color of
the Zn-modified sample did not change after doping.

3.2. Electrochemical Performance of Ni- and Zn-Doped TiO2(B) Nanobelts in Lithium and
Sodium Batteries

Figure 7a represents the initial galvanostatic charge–discharge curves of the first
cycle for TO-Ni-05, TO-Zn-02, and TiO electrodes registered in electrochemical half-cells
against Li metal within the potential range of 1–3 V at the current density of 50 mA·g−1.
The profiles look similar for tested materials, showing an identical reaction mechanism
associated with lithium ion intercalation/deintercalation into/from the titanium dioxide
structure according to Equation (3).

TiO2 + xLi+ + xe− ↔ LixTiO2 (x ≤ 1). (3)

The initial specific capacities of unmodified TiO2(B) nanobelts were around 223 mAh·g−1

(charge) and 165 mAh·g−1 (discharge), showing a Coulombic efficiency of about 74%.
The observed irreversibility during the first cycle (58 mAh·g−1) may be explained by the
presence of residuals on the surface (a further discussion is provided later) and the trapping
of lithium ions into irreversible TiO2 sites [57,58]. Furthermore, due to the presence of
surface H2O or O–H groups, nano-TiO2-based anodes (as well as Li4Ti5O12 [59]) may
demonstrate certain reactivity toward the electrolyte, causing its decomposition during
the first cycle through the formation of a solid electrolyte interphase layer (SEI) [60,61].
Doping with zinc decreased the initial losses to 49 mAh·g−1. Indeed, during the first
cycle, the TO-Zn-02 electrode gave 219 and 170 mAh·g−1 upon lithiation and delithiation,
respectively, revealing that over 77% of initial storage was maintained. This may have
been due to ZnO decreasing the surface reactivity, thereby mitigating the electrolyte
decomposition upon first lithium insertion [62]. Regarding the TO-Ni-05 sample, charging
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and discharging capacities of 254 and 189 mAh·g−1 were registered. Thus, it can be
suggested that Ni-doped bronze titanium dioxide revealed better lithium storage than
unmodified and Zn-containing TiO2(B). At the same time, the TO-Ni-05 electrode possessed
the greatest irreversible losses during the first cycle (65 mAh·g−1). This was seemingly due
to its large specific surface area and high porosity.
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The detected positive effect from nickel doping become more evident during continu-
ous testing of the materials, as shown in Figure 7b. The main capacity decay for analyzed
samples occurred during the initial 6–7 cycles, after which the cycling performance stabi-
lized. This continuing degradation was associated with the loss of guest Li+ ions within
the host TiO2 lattice and SEI variations. During the 10th cycle, Ni-doped TiO2(B) nanobelts
kept around 92% of their initial reversible capacity. Upon further cycling, the average
capacity decay for TO-Ni-05 was merely around 0.01 mAh·g−1 per cycle, which is an
obvious improvement compared to TO (~0.08 mAh·g−1) and TO-Zn-02 (~0.04 mAh·g−1).
The specific capacity of about 173 mAh g−1 could be maintained after 100 cycles for Ni-
containing TiO2(B) nanobelts. In the case of undoped and Zn-modified materials, capacities
of approximately 140 and 151 mAh·g−1, respectively, were achieved at the 100th cycle.
Note that the results obtained for undoped TiO2(B) nanobelts are in good accordance with
the literature [63,64].

To analyze the electrochemical Li+-insertion/extraction behavior of Ni-doped TiO2(B),
CV tests (Figure 7c) were performed in the voltage range from 1 to 3 V at a scan rate of
0.1 mV·s−1. It can be seen that a few redox peaks existed in CV curves. A pair of intense
peaks with precise splitting (so-called S-peaks [11]) at around 1.47/1.55 V (cathode region)
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and 1.58/1.66 V (anode region) could be attributed to lithiation and delithiation of TiO2(B),
while the cathode and anode peaks near 1.72 and 1.98 V (A-peaks) were related to anatase.
It is noteworthy that S-peaks in CVs almost completely overlapped in subsequent cycles,
showing the good stability of the TiO2(B) lattice containing Ni dopant. The broad cathode
peak between 2.06 and 2.42 V registered in the first cycle had no pair in the corresponding
anode region, as well as no overlap in subsequent CVs, indicating that the irreversible
nature of this process caused its appearance. According to [57], it is associated with the
presence of residual water or carbon species and radicals adsorbed on the surface of
titanium dioxide nanoparticles (consistent with XPS data).

By testing rate performance (Figure 7d), a reversible capacity of around 101 mAh·g−1

was obtained for undoped bronze titanium dioxide nanobelts at the current load of
150 mA·g−1, which then decreased to about 73, 55, and 11 mAh·g−1 at current rates
of 300, 700, and 1800 mA·g−1, respectively. It is known that, along with simplicity of
preparation, belt-like TiO2(B) nanostructures possess poorer rate characteristics (close to
bulk TiO2(B) [65,66]) as compared to others (Figure S8 and Table S2, Supplementary Mate-
rials). At the same time, when doped, bronze titanium dioxide nanobelts demonstrate an
improved rate capability with higher delivered capacity. In particular, upon increasing the
current density to 150, 300, 700, and 1800 mA·g−1, the TO-Zn-02 electrode maintained about
117, 95, 83, and 48 mAh·g−1. However, the best properties were detected for Ni-containing
TiO2(B), i.e., the TO-Ni-05 sample; a reversible specific capacity of approximately 152, 136,
128, and 104 mAh·g−1 was achieved at rates of 150, 300, 700, and 1800 mA·g−1, respectively.
This was seemingly due to the enhanced textural characteristics and improved conductive
properties of the TO-Ni-05 product. Thus, the direct comparison in terms of cycling and
rate performance of bronze titanium dioxide nanomaterials tested in this work indicated an
impressive effect of Ni dopant. Hence, it is believed that the reported results may be useful
for preparing advanced TiO2(B)-based anodes for LIBs using such effective nanostructures
as nanofibers, nanowires, nanotubes, and nanosheets and/or for preparing hybrids and
nanocomposites with carbonaceous materials (especially graphene). After high-rate test-
ing, it was observed that TO-Ni-05 restored its capacity without obvious losses when the
current load returned to 30 mA·g−1. It should be noted that, according to previous reports,
the achieved rate capability results may be further enhanced through the optimization
of electrode fabrication and rate test conditions, including carbon additive content and
pressing options [57], type of applied binder or electrolyte composition [67], employed
cutoff potentials (usually 1.2 and 2.5 V [68]), or charge procedure [69]. However, such
experiments are outside the scope of this study and may be performed later.

The electrochemical performance of Ni-doped TiO2(B) nanobelts was next tested in
SIBs, contributing to the search for materials having an open structure with a tolerable
lattice distortion upon continuous sodium ion insertion/extraction. Figure 8a depicts
the five initial charge/discharge voltage profiles of the TO-Ni-05 electrode, registered
between cutoff potentials of 0.005 and 3 V at a current density of 35 mA·g−1. The data
show that sodiation and desodiation capacities of around 337 and 133 mAh·g−1 were
ascertained for the TO-Ni-05 sample during the first cycle. Hence, the initial Coulombic
efficiency for the material was calculated to be about 40%, indicating huge irreversible
capacity losses (204 mAh·g−1), in accordance with other TiO2-based anode materials
for SIBs. According to a literature review [70–72], the main reasons for this observed
irreversibility are (i) side reactions at the electrode/electrolyte interface (usually more
intense for mesoporous materials with a relatively high specific surface area, such as TO-Ni-
05), (ii) trapping of some Na+ ions within the TiO2(B) lattice, (iii) amorphization of anatase
due to interactions with sodium, and (iv) sodiation of the comprised conductive carbon.
Meanwhile, an analysis of subsequent voltage curves demonstrated that they almost
overlapped after the third cycle, presenting good reversibility following the electrochemical
storage process.
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Figure 8b compares the cycling performance of unmodified and Ni-doped bronze
TiO2 nanobelts. It can be observed that TO-Ni-05 material maintained a capacity of around
97 mAh·g−1 after 50 cycles with a Coulombic efficiency of ~99.3%. This is much higher
than the corresponding values of 59 mAh·g−1 and 98.8% observed for the TO electrode for
the same duration of cycling. Retentions of nearly 73% (TO-Ni-05 sample) and 52% (TO
product) of the initial desodiation capacity were observed after 50 charge/discharge tests,
revealing more stable Na+ insertion/extraction into/from Ni-modified titanium dioxide.

Figure 8c displays the CV curves of the TO-Ni-05 electrode measured in the potential
range of 0.005–3 V (vs. Na/Na+). Obviously, the current response during the first cathodic
sweep was much higher than that in subsequent scans, confirming the occurrence of irre-
versible reactions associated with electrolyte reduction (around 1.01 V), decomposition of
organics, formation of amorphous phase(s), and trapping of Na+ ions [71,73]. Furthermore,
the intensive peak at the end of the cycle may have involved the sodiation of carbon in
the electrode. Regarding the anode side, it should be noted that, from the second CV
onward, the broad peak at 0.4–0.9 V became pronounced. According to the literature,
this may be related to Na+ extraction from TiO2(B) [74]. Upon subsequent cycling, the
current of the peak increased, assuming activation of the structure. On the other hand, no
distinguishable cathodic feature was detected in the second or subsequent cyclic sweeps. A
similar phenomenon was previously observed in a study on nanoparticulate TiO2(B) [73].
It was established that Na+ insertion into bronze titanium dioxide occurs in a wide inter-
val of potentials (mainly below 1 V) [22,27]. Lastly, contrary to recent results [73,75], no
characteristic anode peak was registered for conductive carbon desodiation, suggesting its
negligible effect on the overall storage capacity of the TO-Ni-05 electrode.

In order to study the relationship among battery performance, kinetic characteristics,
and diffusion phenomenon, the EIS spectrum of TO-Ni-05 electrode was recorded at the
end (fully desodiated) of the fifth CV cycle (after a 5 h rest). Three main contributions
can be observed in the Nyquist plot (Figure 8d): interfacial effects on the SEI layer, mi-
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gration of charge carriers through the double layer at the electrode/electrolyte surface,
and mass transport within the solid phase, expressed by the deformed semicircle in the
high-to-medium-frequency region and low-frequency sloping line. Further analysis of
the impedance spectrum was performed using the standard equivalent circuit model, as
presented in the inset of Figure 8d. Rs, Rf, CPEf, Rct, CPEdl, and Zw in the circuit denote
the resistance of the cell (electrolyte, separator, and electrodes), the resistance and capac-
itance of the interfacial layer, charge transfer resistance, double-layer capacitance, and
Warburg impedance. The collected data (Table S3, Supplementary Materials) show that
Rct for the TO-Ni-05 sample was equal to approximately 104 Ω, indicating its appropriate
electronic and ionic conductivity. To further evaluate the effects of Ni2+ ions embedding
into the bronze titanium dioxide lattice, the diffusion coefficient of electroactive species
DNa (cm2·s−1) was determined using Equation (4).

DNa =
R2T2

2S2n4F4C2
Naσ2

W
, (4)

where R is the gas constant (8.314 J·mol−1·K−1), T is the absolute temperature (298.15 K),
S is the geometric area of the electrode (0.5 cm2), n is the number of electrons transferred
during the reaction presented in Equation (5), F is the Faraday constant (96,500 C·mol−1),
CNa is the concentration of Na+ species in the material (17 × 10−3 mol·cm−3), and σW is
the Warburg factor, which can be determined from Equation (6) through linear fitting of
the Z′ vs. ω−1/2 plot (Figure S9, Supplementary Materials).

TiO2 + Na+ + e− ↔ NaTiO2, (5)

Z′ = Rs + Rct + σWω−1/2, (6)

where Z′ is the real part of the impedance (Ω), and ω is the angular frequency (s−1).
According to the calculations, the chemical diffusion coefficient of sodium ions for the

Ni-doped sample was 6.84× 10−13 cm2·s−1. Using the same methodology (i.e., EIS) of DNa
determination, this value is better than that obtained for previously reported TiO2 materials,
including anatase/C nanoparticles (1.56 × 10−14 cm2·s−1) [76], rutile TiO2 nanoparticles
(9.9 × 10−15 cm2·s−1) [77], and anatase/C nanofibers (2.0 × 10−13 cm2·s−1) [78]. Further-
more, the calculated DNa is comparable with that of other modified titanium-based oxides
for SIB anodes, as shown in Table S4 (Supplementary Materials). According to the above-
mentioned data, it is reasonable to expect that the DNa of bronze titanium dioxide is
increased after Ni doping.

4. Conclusions

In summary, herein, a hydrothermal route was applied to synthesize mesoporous
belt-like TiO2(B) nanostructures doped with nickel (Ni/Ti atomic ratios of 0.02, 0.05, and
0.08) and zinc (Zn/Ti = 0.02 and 0.05) with a specific surface area and pore volume reach-
ing 114 m2·g−1 and 0.48 cm3·g−1. According to the analysis of XRD data, nickel doping
increased the unit cell volume of bronze titanium dioxide by 4% (Ni/Ti = 0.05), confirming
the incorporation of Ni2+ ions at the Ti4+ positions with the formation of a substitutional
solid solution. Indeed, the Ni2+ ion is bigger (0.69 Å) than Ti4+ (0.605 Å), resulting in
lattice distortions after substitution. The generation of localized Ni 3d defect states within
the band gap of TiO2(B) was confirmed by UV–Vis studies, revealing that the band gap
energy was reduced from 3.28 to 2.70 eV after doping. XPS studies revealed an oxygen
deficiency for Ni-doped TiO2(B). According to EPR, F-centers, which may represent the
conduction band electrons “trapped” with oxygen vacancies, exist in the nickel-containing
material. On the other hand, due to its large ionic radius, zinc (0.74 Å) hardly entered
into TiO2(B) crystal structure, nevertheless provoking a band gap narrowing effect (to
3.21 eV). The EIS technique revealed that the conductivity of nickel- and zinc-containing
titanium dioxide increased to 2.24 × 10−8 S·cm−1 (Ni/Ti = 0.05) and 3.29 × 10−9 S·cm−1
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(Zn/Ti = 0.02), exceeding that of the undoped sample (1.05 × 10−10 S·cm−1). The gal-
vanostatic charge/discharge cycling of materials in lithium cells showed a favorable effect
of nickel and zinc doping on the reversibility of the electrochemical process. Among
the tested samples, Ni-containing TiO2(B) nanobelts with an Ni/Ti atomic ratio of 0.05
demonstrated the best battery performance. In particular, after 100 charge/discharge
cycles, a reversible capacity of 173 mAh·g−1 was achieved for nickel-doped TiO2(B) at
the current density of 50 mA·g−1, whereas unmodified and zinc-doped bronze TiO2 elec-
trodes maintained 140 and 151 mAh·g−1. Moreover, Ni doping improved the rate perfor-
mance of TiO2(B) nanobelts. Concerning its operation in sodium cells, it was found that
nickel-containing material exhibited improved cycling with a specific capacity of about
97 mAh·g−1 after 50 cycles at the current load of 35 mA·g−1. EIS studies identified a DNa
of 6.84 × 10−13 cm2·s−1 for Ni-doped TiO2(B) (Ni/Ti = 0.05). The main factors determining
the enhanced electrochemical performance of doped TiO2(B) were (i) increased electronic
conductivity, (ii) improved stability of crystal lattice toward guest ion insertion/extraction,
and (ii) facilitated transport of Li+ and Na+. Thus, the current study demonstrates that
proper doping might be an effective way to adopt bronze titanium dioxide’s properties for
its usage in the area of metal-ion batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11071703/s1: Figure S1. Rietveld plots for unmodified, Ni-doped, and Zn-doped TiO2(B)
samples (experimental, calculated and difference curves; the vertical bars correspond to the positions
of the Bragg reflections); Figure S2. EDX spectrum (a) and maps of elements (b) for TO-Ni-05
material; Figure S3. N2 adsorption–desorption isotherms, cumulative pore volume curve, and pore
size distribution (inset) for the TO sample; Figure S4. Nyquist diagrams (full-scale view) for the
pellets from undoped, Ni-doped, and Zn-modified TiO2(B) powders; Figure S5. UV–Vis absorption
spectra for TO, TO-Ni-02, and TO-Ni-05 materials in the wavelength range of 550–800 nm; Figure S6.
EPR spectra of undoped bronze TiO2 nanobelts (TO sample); Figure S7. Color of unmodified (a),
Ni-doped (b), and Zn-doped (c) TO2(B) samples; Figure S8. Comparison of the rate capability for
different TiO2(B) nanostructures; Figure S9. Relationship between Z′ and ω−1/2 in low-frequency
region for TO-Ni-05 employed as SIB anode; Table S1. Rietveld refinement results from XRD data of
the undoped, Ni-doped, and Zn-doped TiO2(B) samples; Table S2. Surface area of materials shown
in Figure S6 and features of their fabrication and testing as LIB electrodes; Table S3. Measured EIS
parameters for TO-Ni-05 electrode in sodium half-cell; Table S4. The chemical diffusion coefficient of
sodium ions for different Ti-based oxide materials for SIBs anodes.
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