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ABSTRACT Halorhodopsin from Natronomonas pharaonis (pHR) functions as a light-driven halide ion pump. In the presence
of halide ions, the photochemical reaction of pHR is described by the scheme: K/ L1 / L2 / N/ O/ pHR0 / pHR. Here,
we report light-induced structural changes of the pHR-bromide complex observed in the C2 crystal. In the L1-to-L2 transition, the
bromide ion that initially exists in the extracellular vicinity of retinal moves across the retinal Schiff base. Upon the formation of
the N state with a bromide ion bound to the cytoplasmic vicinity of the retinal Schiff base, the cytoplasmic half of helix F moves
outward to create a water channel in the cytoplasmic interhelical space, whereas the extracellular half of helix C moves inward.
During the transition from N to an N-like reaction state with retinal assuming the 13-cis/15-syn configuration, the translocated
bromide ion is released into the cytoplasmic medium. Subsequently, helix F relaxes into its original conformation, generating
the O state. Anion uptake from the extracellular side occurs when helix C relaxes into its original conformation. These structural
data provide insight into the structural basis of unidirectional anion transport.
INTRODUCTION
Halorhodopsin (HR) is a retinylidene protein that uses light
energy to transport chloride ions from the extracellular side
to the cytoplasmic side of the cell membrane (1–4). The
HR homolog found in Natronomonas pharaonis (pHR)
participates in light-driven ATP synthesis (5–7). Because
this electrogenetic ion pump was reported to be useful as
a neuron silencer (8,9), many researchers have made efforts
to design a novel ion pump with more useful optical pro-
perties (10–13). It is certain that innovation in the field of
optogenetics will be accelerated by the accumulation of
structural data on ion-transporting rhodopsins.

To date, pHR and the HR homolog from Halobacterium
salinarum (sHR) have been crystallized (14,15). Their crys-
tallographic data show that the active site structure is well
conserved, i.e., retinal is covalently linked via a protonated
Schiff base to the ε-amino group of a lysine residue in the
seventh transmembrane helix (helix G), and the primary
anion-binding site (site I) is located in the extracellular vi-
cinity of the retinal Schiff base. A peculiar structural feature
of pHR is seen in that the N-terminal polypeptide folds into
a short amphipathic helix (A0), which, together with a long
BC loop, forms a hydrophobic cap that covers the extracel-
lular surface. This cap structure is absent in sHR, which
instead possesses a secondary anion-binding site near the
extracellular surface (16). This structural difference may
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be correlated with a significant difference in the reaction
kinetics of anion uptake from the extracellular medium
(17,18). A remarkable difference is also seen in the spectral
properties, i.e., the removal of chloride ions from pHR is
accompanied by a purple-to-blue transition (a 20 nm red
shift of the visible band of retinal), whereas a 10 nm blue
shift is induced upon anion removal from sHR (19,20).
The latter spectral shift may be related to the coexistence
of two retinal isomers in the dark-adapted state (21). By
contrast, pHR contains the trans isomer as the major compo-
nent (22). This property has simplified the analysis of the
anion-transporting photocycle of pHR, which is usually
described by the following scheme: pHR þ hn / K/
L1 / L2 / N / O / pHR0 / pHR (18,23,24). From
time-resolved absorption and electric measurements, it
was suggested that anion release into the cytoplasmic me-
dium takes place during the N-to-O transition, whereas
anion uptake from the extracellular medium occurs in the
decay of the O state (24–26). (Although pHR0 was intro-
duced to explain the biphasic decay of O observed in bacter-
ioruberin-free samples of pHR, this reaction state was not
always detected in the anion-pumping cycle of the trimeric
pHR-bacterioruberin complex, the structure of which is
shown in Fig. S1 in the Supporting Material; our unpub-
lished data.)

The anion-depleted blue form of pHR is considered to
mimic the O state (27). A previous structural analysis has
shown that the removal of a halide ion from site I is accom-
panied by the inward movement of the extracellular half of
helix C (28). This result suggests that the extracellular half
of helix C functions as a valve by which the anion uptake
http://dx.doi.org/10.1016/j.bpj.2015.04.027
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process is regulated. On the other hand, the details of the
anion-release process have remained unclear. According
to the generally accepted concept of ion transport, it has
been postulated that the opening of the cytoplasmic interhel-
ical space takes place during the anion release process (29).
To quantitatively analyze this postulated structural change,
we need to solve a technical problem as to how efficiently
a key reaction state with a largely deformed conformation
is trapped in such a three-dimensional crystal that the target
proteins are densely packed. This same problem has been
encountered in crystallographic analyses of reaction inter-
mediates of other photoactive proteins. For example, elec-
tron-micrographic studies of bacteriorhodopsin (bR) in the
purple membrane suggested that the extracellular half of
helix F moves outward upon the formation of the N state
(30–32), whereas this movement is inhibited in high-quality
three-dimensional crystals of bR (33,34). One possible
answer to the previous problem was provided by a recent
crystallographic study of light-induced structural changes
in the pHR-azide complex, i.e., the C2 crystal, the asym-
metric unit of which contains three subunits with different
motional freedoms, was shown to be useful for structural in-
vestigations into the reaction state in which the cytoplasmic
half of helix F is largely deformed (35). However, as the
anion-pumping capability is abolished in the pHR-azide
complex, which instead works as an outward-directed pro-
ton pump (36), the structure of this reaction state provides
no direct information about the anion transport mechanism.

In this study, we investigated light-induced structural
changes in the trimeric pHR assembly using a C2 crystal
that was soaked in a postcrystallization solution containing
bromide ions. It was found that slow cooling of the C2 crys-
tal after illumination at 240 K was effective at trapping the
N state in a subunit with the EF loop facing to the open
space in the unit cell. Meanwhile, rapid cooling of the C2
crystal after illumination at 240 K was effective at trapping
the O state in a different subunit. Furthermore, diffraction
data from the crystals that were illuminated at 200 K pro-
vided information about the reaction states occurring in
the early stage of the photoreaction cycle. The integration
of the structural data of these reaction states enabled a dis-
cussion about the molecular mechanism of anion transloca-
tion by pHR.
MATERIALS AND METHODS

Preparation and crystallization of pHR

The claret membrane of N. pharaonis strain KM-1 was prepared as previ-

ously described (37). For the crystallization of pHR, the claret membrane

was partially delipidated with 0.5% Tween 20 in 0.1 M NaCl (pH 7). The

crystallization of pHR was performed as previously described (15).

For the structural investigation of the resting state of the pHR-bromide

complex, a C2 crystal of pHR that was prepared in the presence of chloride

ions was soaked in a postcrystallization solution consisting of 0.01–0.1 M

NaBr, 3.0 M (NH4)2SO4, 0.1 M HEPES (pH 7), and 30% trehalose
for ~10 min and then flash-cooled with liquid propane at its melting temper-

ature (Tmelt ¼ 83 K). In the investigated range of the bromide concentration

(0.01–0.1 M), the primary anion-binding site was fully occupied by a bro-

mide ion. However, the occupancy of a bromide ion at the secondary anion-

binding site, which is located in the intersubunit crevice, varied notably

with the bromide concentration. For the structural investigation of the reac-

tion states occurring at an early stage of the photocycle, the frozen crystal

was transiently warmed to 200 K, illuminated with red light (l ¼ 635 nm,

~1 mW/mm2) for 1 min, and then cooled to 100 K in the dark. For the struc-

tural investigation of the reaction states occurring in the late half of the pho-

tocycle, the frozen crystal in 0.01–0.1 M NaBr, 3.0 M (NH4)2SO4 or 1.5 M

Na-citrate, 0.1 M HEPES at pH 7, and 30% trehalose was warmed to 240 K,

illuminated with red light for ~1 min, and then cooled to 100 K at a cooling

rate of 2.3 K/s. Alternatively, a crystal was precooled to 240 K under a flow

of cold nitrogen gas, illuminated with red light, and then flash-cooled with

liquid propane.
Measurement of absorption spectra and kinetics

Light-induced absorption changes in the C2 crystal of pHR were measured

using a microspectrophotometer, in which monochromatic light from a

double monochromator was passed through a pinhole with a diameter of

0.05 mm and focused on a small area of the crystal (38).
Data collection and scaling

The x-ray diffraction measurements were performed at the beamline

SPring8-BL38B1, where a frozen crystal kept at 100 K was exposed to a

monochromatic x-ray beam at a wavelength of 1.0 Å with an x-ray flux

rate of ~2 � 1012 photons/mm2/s. Diffraction data were collected using a

charge-coupled device (CCD) detector, with an oscillation range of 1�

and an x-ray flux of ~6 � 1012 photons/mm2 per image. For collection of

a full data set, a single crystal was exposed to an x-ray flux of ~1 � 1015

photons/mm2; using RADDOSE (39), the radiation dose absorbed by the

crystal during the data collection was estimated to be ~0.5 MGy. This

flux of x-rays caused no significant x-ray-induced change in the protein

conformation (Fig. S2). Indexing and integration of diffraction spots were

carried out with Mosflm 6.1 (40). The scaling of data was done using

SCALA in the CCP4 program suite (41). Crystal parameters and data

collection statistics are summarized in Table S1.
Structural refinement

The model building of the resting state of the bromide-bound purple form of

pHR was performed using the previously reported model of pHR (pdb id:

3FEB) as an initial search model. Structural refinement was done using

CNS-1.2 (42) and XtalView-4.0 (43). For the structural investigation of

the reaction states of the pHR-bromide complex, the diffraction data set

(Flight) from an illuminated crystal was compared with that (Fdark) from a

crystal that was flash-cooled in dim light, and the difference electron den-

sity map between the reaction state and the resting state (jFlightj � jFdarkj
map) was evaluated using the phase derived from the structural model of

the resting state of pHR-bromide complex.

When the N (or O) state was preferentially trapped in subunit B (or C)

within the asymmetric unit, the structural analysis was performed based

on the approximation that two conformers (a reaction state and the resting

state) were contained in each subunit. The calculated amplitude Fobs was

evaluated as follows: jFcalcj ¼ Si {ai,jFi_Reactj þ (1�ai),jFi_Restj}, where
Fi_React and Fi_Rest are the structure factors of the reaction state and the

resting state, respectively, in the i-th subunit. The initial model of each

reaction state was built on the basis of the jFlightj � jFdarkj map, whereas

the structure of the second conformer in each subunit was assumed to be

identical to that of the resting state in a crystal that was flash-cooled in
Biophysical Journal 108(11) 2680–2690
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dim light. At each value of ai, the structure of the reaction state in the i-th

subunit was refined by the simulated annealing method, whereas the posi-

tion/orientation of the second conformer was adjusted by the rigid body

refinement. In a new cycle of search for the optimal ai values, the structural

refinement of the reaction state in the i-th subunit was performed using the

previously determined optimal aj (js i) values of the reaction states in the

other subunits. Such a refinement cycle was repeated until no large decrease

in the Rcryst value (at the optimal aj values) was observed. For a crystal that

was soaked in a solution containing 0.1 M bromide ions and slowly cooled

after illumination at 240 K, the crystallographic R value decreased to 0.213

when the optimal values of ai (0.50, 0.65, and 0.52 for subunits A, B, and C,

respectively) were used (Fig. S3).
FIGURE 1 Light-induced absorption changes in the C2 crystal at 240 K.

(a) The C2 crystal was cooled to 240 K under a flow of cold nitrogen gas

and its absorption spectrum was recorded before illumination (black

line), 0–1 min (blue line), and 3–4 min (red line) after illumination with or-

ange light (>540 nm, ~100 mW/cm2). For this measurement, a crystal

adhered to a lower glass in the sitting-drop crystallization kit was soaked

in a postcrystallization solution consisting of 0.01 M NaBr, 3.0 M ammo-

nium sulfate, 0.1 M HEPES at pH7, and 30% trehalose, and mounted on

an x-y stage attached to an optical microscope; the crystal orientation

was then adjusted so that the b axis was parallel to the optical path of

the measuring light beam. (b) Difference absorption spectra derived by sub-

tracting the absorption spectrum of the unilluminated crystal from the

spectra recorded after illumination. (c) The anion-transporting photocycle

of pHR. (Inset) Protein packing in the C2 crystal, viewed along the

b axis. To see this figure in color, go online.
RESULTS

Fig. 1 shows light-induced absorption changes that were
observed in the C2 crystal that had been soaked in a solution
containing 0.01 M NaBr and cooled to 240 K. As the b axis
of the C2 crystal was orientated in parallel to the optical
path of the measuring light beam, the visible absorption
band of retinal (lmax ~578 nm) was more intense as
compared with the vibronic bands (at 542, 506, and
470 nm) of bacterioruberin, which is bound to the intersubu-
nit crevice within the pHR trimer (15). When the C2 crystal
with this orientation was illuminated with orange light
(>540 nm, ~100 mW/cm2), the absorbance at 580 nm
decreased and, conversely, significant absorption increases
were observed at 650 and 520 nm (the blue line in Fig. 1
b). This absorption change suggested the accumulation of
two reaction states; the absorption increase at 640 nm is
attributable to accumulation of the O state with a red-shifted
absorption spectrum (lmax ~600 nm), whereas the absorp-
tion increase at 500 nm can be explained by the accumula-
tion of a reaction state(s) with a blue-shifted absorption
spectrum (lmax ~520 nm). When the absorption spectrum
was recorded 3 min after illumination, the absorption in-
crease at 640 nm was no longer observed (the red line in
Fig. 1 b). It appeared that, in the C2 crystal, the O state de-
cayed more rapidly than the blue-shifted reaction state. This
observation can be explained by supposing that the photore-
action kinetics of pHR are greatly influenced by the crystal
lattice force. It will be shown later that the C2 crystal shrinks
under illumination, and that this shrinkage is accompanied
by a significant retardation of the N-to-O transition in one
subunit within the asymmetric subunit, whereas this retarda-
tion is not significant in other subunits.
Light-induced structural changes at 240 K

For the structural investigation of the reaction states of the
pHR-bromide complex, the C2 crystal was soaked in a solu-
tion containing 0.01–0.1 M bromide ions, illuminated at 240
K with red light at 635 nm, and then cooled to 83–100 K at
various cooling rates. Fig. 2 shows the jFlightj – jFdarkj differ-
ence maps that were evaluated by comparing the diffraction
amplitudes (jFlightj) observed for illuminated crystals with
Biophysical Journal 108(11) 2680–2690
those (jFdarkj) observed for unilluminated crystals. It is clear
that the three subunits within the asymmetric unit underwent
different structural changes under illumination, and that the
contents of the reaction states trapped in the individual sub-
units were dependent on the bromide concentration as well
as the cooling rate after illumination.

When the C2 crystal soaked in a solution containing
0.01 M bromide ions was cooled to 100 K at a cooling
rate of 2.3 K/s after illumination at 240 K (this cooling
was done in the dark), for example, a significant structural



FIGURE 2 Light-induced structural changes in

the trimeric pHR-bromide complex. jFlightj – jFdark

j difference maps observed for the C2 crystal that

had been soaked in a solution containing 0.01 M

(a and b) or 0.1 MNaBr (c). The crystal was cooled

in the dark to 100 K at a cooling rate of 2.3 K/s af-

ter illumination with red light at 240 K (a), cooled

rapidly to 83 K after illumination at 240 K (b), or

slowly cooled in red light from 240 to 100 K (c).

Each jFlightj – jFdarkj difference map was evaluated

by comparing the diffraction amplitudes (jFlightj)
observed for an illuminated crystal with those

(jFdarkj) observed for an unilluminated crystal,

contoured at 3.2 s (positive densities in purple,

negative in green), and overlaid on the structural

model of the resting state (a–c). In the middle

and lower panels, the difference map around the

retinal chromophore in subunit B (d–f) or subunit

C (g–i) were contoured at 3 s (positive densities

in purple, negative in sky blue) and 8 s (positive

densities in red, negative in dark blue) and overlaid

on the structural models of the resting state (pink)

and the major reaction state (green or cyan) trap-

ped in subunit B or subunit C. To see this figure

in color, go online.
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change was observed only in the subunit (subunit B) with
the EF loop facing to the open space in the unit cell
(Fig. 2 a). The jFlightj – jFdarkj difference map within this
subunit exhibited a strong negative peak at site I and a strong
positive peak in the cytoplasmic vicinity of the retinal Schiff
base (see Fig. 2 d). This suggests that the bromide ion
initially existing at site I moved to a cavity that was tran-
siently created between the Schiff base and the side chain
of Ile-134. Hereafter, the latter ion binding site is called
site i134. When the crystal was rapidly cooled to 83 K
with liquid propane after illumination at 240 K, on the other
hand, significant structural changes were observed in all the
subunits (Fig. 2 b). In this case, the jFlightj – jFdarkj differ-
ence map within subunit C (see Fig. 2 h) exhibited a strong
negative peak at site I, whereas no strong positive peak was
seen at any other position within subunit C; i.e., a reaction
state with no bromide inside this subunit was trapped.
Together with the result of the light-induced absorption
changes (Fig. 1), the jFlightj – jFdarkj difference maps shown
in Fig. 2, a and b, suggests that rapid cooling after illumina-
tion is effective at trapping the O state in subunit C, whereas
slow cooling after illumination is effective at trapping the
blue-shifted reaction state(s) in subunit B.
FIGURE 3 The structure of the O state. The structure of the O state trap-

ped in subunit C (cyan) is compared with that of the resting state (salmon).

The pink sphere represents the bromide ion bound to site I in the resting

state. To see this figure in color, go online.
Structure of the O state

We first constructed the structural model of the O state that
was preferentially trapped in subunit C within the C2 crystal
that was rapidly cooled after illumination at 240 K. When
the electron density (2jFoj-jFcj) map was analyzed on the
approximation that only two states (the O state and the
resting state) were contained in subunit C, the content of
the O state was estimated to be ~50%. The major structural
difference between the O state and the resting state was
seen in the anion uptake pathway (Fig. 3). In the O state, 1)
the extracellular half of helix C deforms in such a manner
that the side chain of Thr-126 comes to the position where
the bromide ion occupied in the resting state and 2) the
side chain of Glu-234 is reorientated toward Tyr-124. These
structural differences are similar to those seen between the
chloride-bound purple form and the anion-depleted blue
form (28). In other words, the structure of theO state is nearly
Biophysical Journal 108(11) 2680–2690
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identical to that of the anion-depleted blue form, except that
the O state has a bromide ion at the second anion-binding
site (site II) that is located near the cytoplasmic end of
bacterioruberin in the intersubunit crevice (Fig. S1).
Structure of the N state

We next tried to determine the structure of the blue-shifted
reaction state by analyzing the electron density (2jFoj-jFcj)
map in subunit B within the C2 crystal that was slowly
cooled after illumination at 240 K. However, it turned out
that besides the reaction state with a bromide ion bound to
site i134 (we refer to this as the N state), the O state and/
or another reaction state with no bromide ion inside the pro-
tein was also trapped in this subunit. In such a case, it was
difficult to accurately determine the structure of the N state.

After many trials, we found that the N state was preferen-
tially trapped in subunit B when the crystal that had been
soaked in a solution containing 0.1 M bromide ions was illu-
minated at 240 K and cooled to 100 K at a cooling rate of 2.3
K/s under illumination. In this case, the jFlightj – jFdarkj dif-
ference map in subunit B had such a strong positive peak at
site i134 that its absolute amplitude was comparable to that
of a strong negative peak seen at site I (Fig. 2 h). This dif-
ference map suggests that the N state is the major reaction
state trapped in subunit B. When the structural analysis
was performed on the approximation that only two states
(the resting state and the N state) were contained in subunit
B, the content of the N state trapped in this subunit was esti-
mated to be 65% (Fig. S3). This high content of the N state
made it possible to construct a structural model of the N
state at a resolution of 2.2 Å.

In Fig. 4, the structural model of the N state trapped in
subunit B is compared with that of the resting state of the
pHR-bromide complex. It was found that the retinal chro-
mophore in the N state takes on a planar 13-cis/15-anti
Biophysical Journal 108(11) 2680–2690
configuration so that the C13 methyl of retinal pushes the
indole ring of Trp-222 upward (Fig. 4 b). The upward move-
ment of this tryptophan is accompanied by large movements
of most residues in the cytoplasmic half of helix F (Thr-218,
Lys-215, Phe-211, and so on). Retinal isomerization also
induces a large rotation of the side chain of Ile-134, which
is coupled with outward movements of the side chain of
Phe-259 in helix G and the main chains of Leu-217 and
Thr-218 in helix F (see Fig. 4 d). Because of these move-
ments, a long water channel is created in the cytoplasmic in-
terhelical space. The innermost region of this channel
corresponds to site i134, where a bromide ion interacts
directly with the positively charged Schiff base and Ser-
130 OH. This bromide ion also interacts with a water mole-
cule (Wat601), which is in turn connected to a linear water
cluster (Wat501, Wat602–606) extending to the cytoplasmic
membrane surface. It is noteworthy that, in the resting state,
only one water molecule (Wat501) was detected in the cyto-
plasmic interhelical region.

A considerable structural difference between the N state
and the resting state was also seen on the extracellular
side (Fig. 4 e). In the N state, the middle moiety of helix
C deforms in such a manner that the side chain of Thr-126
moves toward Asp-252, and the side chain of Glu-234 is
oriented toward Tyr-124. These differences were also seen
between the O state and the resting state. In other words,
there is no great structural difference in the extracellular
half between the N state and the O state. This implies that
the structure of the anion-release pathway is closed during
the N-to-O transition, whereas the anion uptake pathway re-
mains unaltered.

Another important structural change occurring during the
N-to-O transition is a sliding movement of helix G toward
the cytoplasmic side. When the structure of the N state
generated in subunit B is compared with those of O and
the resting state, it becomes clear that the relative position
FIGURE 4 Structure of the N state trapped in

subunit B. (a) 2 Fo – Fc map of a mixture of the

N state (65%) and the resting state (45%) that

was trapped in subunit B when the C2 crystal

that had been soaked in a solution containing

0.1 M bromide ions was slowly cooled after illumi-

nation at 240 K; this map was contoured at 1.4 s

(blue) and 7.0 s (red), and overlaid on the struc-

tural model of a mixture of the N state (green)

and the resting state (salmon). (b) Structural

change in the cytoplasmic interhelical space. The

small green spheres represent water molecules in

the N state. (c) The overall structure of the N state

trapped in subunit B (green) is compared with that

of the resting state (salmon). (d) Deformation of

the cytoplasmic half of helix F viewed from the

cytoplasmic side. (e) Deformation of the extracel-

lular half of helix C. To see this figure in color,

go online.
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of helix G is shifted toward the extracellular side in the N
state (Fig. S4). This shift seems to be coupled with reisome-
rization of retinal from the all-trans to the 13-cis/15-anti
configuration. It will be discussed later if this sliding move-
ment is responsible for the light-induced crystal shrinkage
along the b axis.
A reaction state with the 13-cis/15-syn retinal-Lys-
256 chain

A previous study on the photocycle of pHR provided
evidence for two O-kinetic states in equilibrium with a tem-
perature-dependent L-like state and a chloride-dependent
N-like state, respectively (23). In this study, we observed
that besides the N state, a reaction state with no bromide
ion at site i134 also accumulated in subunit B under illumi-
nation at 240 K when the bromide ion concentration in the
soaking solution was not high. This reaction state (we refer
to it as X), in which the cytoplasmic interhelical space is
open, is distinct from the O state mentioned in Fig. 3.

To get the structural information of X, we analyzed the
diffraction data (FOn_0.01M) from the crystal that was soaked
in a solution containing 0.01 M bromide ions, illuminated at
240 K, and rapidly cooled to 83 K (Fig. 2 a). It was sug-
gested that this illuminated crystal contained three states
(N, X, and the resting state) in subunit B. In this case; the
contribution from subunit B to the diffraction amplitude
FOn_0.01M (¼ Si¼1,2,3 Fi) is expressed by using the equation:

Fi¼ 2 ¼ a2F2_N þ b2F2_X þ ð1� a2-b2Þ F2_Rest; (1)

where a2 and b2 are the occupancies of N and X in subunit

B, respectively; F2_N, F2_X, and F2_Rest represent the Fi¼2

amplitudes from N, X, and the resting state, respectively,
that would be expected if subunit B is fully occupied by
one of these states. The occupancies a2 and b2 can be esti-
from 240 to 100 K in red light. The occupancy of the resting state in subunit B w

contribution of the resting state to the jFOn_0.01Mj � jFOn_0.1Mjmap was nearly ze

1.2jFOn_0.1Mj is contoured at 1.3 s (blue) and overlaid on the models of X (cyan

resents the structural feature that would be expected for a mixture of X (65%) an

at different bromide ion concentrations (0.01 and 0.1 M NaBr) contained differen

of this N state to the 2Fo-Fc map was cancelled out when the quantity 2.2jFOn_0.0

the resting state (salmon) are compared. To see this figure in color, go online.
mated by comparing FOn_0.01M with the diffraction data
(FOn_0.1M) from the crystal that was illuminated at a higher
bromide ion concentration (0.1 M NaBr), in which the N
state was preferentially trapped in subunit B (i.e., Fi¼2

was approximated by 0.65 F2_N þ 0.35 F2_Rest).
First, the jFOn_0.01Mj � jFOn_0.1M j difference map has no

peak at site I, suggesting that b2 is ~0.35 (Fig. 5 a). This dif-
ference map, which is identical substantially to the differ-
ence map between N and X, suggests that the protein
structure of X is not much different from that of N. The ma-
jor differences between X and N are seen in the following
features: 1) in X, the side chain of Ile-134 is directed toward
the retinal Schiff base and no bromide ion exists at site i134;
2) the water distribution in the cytoplasmic interhelical
space is altered; 3) the main chain of Lys-256 is less dis-
torted in X (Fig. 5 a). The last feature can be explained by
supposing that the retinal configuration in X is different
from that seen in N. On the other hand, the 2Fo-Fc map
that is derived from the quantity 2.2 � jFOn_0.01Mj – 1.2 �
jFOn_0.1Mj has no significant peak at site i134, suggesting
that the contribution of N to this map was nearly zero
(i.e., a2 ¼ 0.295) (Fig. 5 b). This 2Fo-Fc map was expected
to represent a mixture of X (65%) and the resting state
(35%). Because the b axis of the crystal shrank noticeably
under illumination (Table S1), the structure of X was deter-
mined by the same procedure as used for the structural
determination of N. The result of analysis suggests that in
X, the retinal-Lys-256 chain takes on the 13-cis/15-syn
configuration and the Schiff base interacts directly with
Asp-252 (Fig. 5 c).

Possible interpretations of this observation are 1) X is a
reaction state occurring between N and O; 2) X is in dy-
namic equilibrium with N, whereas N decays into O; and
3) X is an artificial reaction state generated in the C2 crystal.
It is currently difficult to decide which interpretation is cor-
rect. But, because it is natural to consider that in the N-to-O
FIGURE 5 Structure of the X state accumulating

in subunit B under illumination at a low bromide

ion concentration. (a) The jFOn_0.01Mj – jFOn_0.1Mj
difference map, contoured at 3.4 s (positive, pur-

ple; negative, sky blue) and 6 s (negative, dark

blue), is overlaid on the models of X (cyan) and

N (yellow) trapped in subunit B. Here, FOn_0.01M

and FOn_0.1M are the diffraction amplitudes from

the illuminated crystals that had been soaked in

1.5 M Na-citrate solutions containing 0.01 and

0.1 M, respectively, NaBr. The former crystal

(crystal id: 1107 in Table S1) was rapidly cooled

to 83 K after illumination at 240 K; the other crys-

tal (crystal id: 974 in Table S1) was slowly cooled

as suggested to be similar (~35%) in these illuminated crystals; namely, the

ro. (b) The 2Fo-Fc map that was derived from the quantity 2.2jFOn_0.01Mj –
) and the resting state (purple) in subunit B. This electron density map rep-

d the resting state (25%) in subunit B. Although the two crystals illuminated

t amounts (~30% and 65%, respectively) of N in subunit B, the contribution

1Mj – 1.2jFOn_0.1Mjwas used. (c) The structures of X (cyan), N (yellow), and
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transition the anion release pathway should be open, we
adopt the first interpretation here. In this case, it would be
expected that the reisomerization process of retinal occur-
ring in the late half of photocycle is divided into two steps;
i.e., the first step is the isomerization around the Schiff base
linkage and the second step is the double-isomerization
around the C13¼C14 double bond and the Schiff base link-
age. It is important to point out that the transition from N to
X, during which the Schiff base NH bond is reorientated to-
ward the nearby aspartate (Asp-252), prevents the formation
of an M-like state with the deprotonated Schiff base, which
has never been observed to occur during the anion pumping
cycle. The possible reaction pathways from X to pHR,
which may be dependent on the anion concentration, are
shown in Fig. 6, where X is renamed as N0. (From absorp-
tion kinetic data of the pHR-bacterioruberin complex in
membrane suspensions, it is suggested that at high bromide
ion concentrations (>1 M), the X(N0) state decays rapidly
into a long-living state (pHR0) whose absorption spectrum
is similar to that of N (H. Kawaguchi and T. Kouyama, un-
published data)).
Effects of the crystal lattice force on the
photoreaction kinetics

The absorption kinetics data of aqueous suspensions of
claret membrane at pH 7 show that the lifetime of the N state
FIGURE 6 A reaction scheme of the anion-pumping cycle of pHR in

complex with halide ions (red arrows). The retinal-Lys-256 chain takes

on the 13-cis/15-anti configuration in the early stages (K, L1, L2, and N)

of the anion-pumping cycle, whereas it takes on the 13-cis/15-syn configu-

ration in N0(¼X), O0, and pHR0 and the 13-trans/15-anti configuration in

pHR, O, and M0. The cytoplasmic interhelical space is open in N, N0, and
M, whereas it is closed in the other states. The open blue and pink arrows

indicate ion movements occurring at the extracellular side and at the cyto-

plasmic side, respectively, of the protein. At a very high anion concentration,

the transition from O0 to pHR0 may be faster than the O0-to-O transition so

that pHR0 is transiently generated. In the absence of anions, O, O0, and N0

occur at neutral pH and M0 occurs at high pH in the dark. The nonpumping

cycle of pHR-halide ion complex (purple arrows), the inward-directed pro-

ton-pumping cycle driven by two photons (orange arrows), and the out-

ward-directed proton-pumping cycle of the pHR-azide complex (green

arrows) are also shown. To see this figure in color, go online.
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of the pHR-bromide complex is much shorter (t¼ 2.5 ms at
24�C) than that of the O state, unless the bromide ion con-
centration is very high (>1 M). Hence, a question arises
as to why a large amount of N can accumulate in the C2
crystal under illumination. To answer this question, we
need to take into account a possible effect of the crystal lat-
tice force on the reaction kinetics. It was previously shown
that the decay of the M state of bacteriorhodopsin in the
P622 crystal slowed down significantly (>100 times)
when the intermembrane space was reduced by increasing
the concentration of the precipitant (34).

In this study, we observed that the unit cell of the C2
crystal shrank noticeably (~1.5%) along the b axis when
a large amount of N was trapped in subunit B. It is sug-
gested that the major cause of this crystal shrinkage is a
light-induced sliding movement of helix G in subunit B,
the cytoplasmic end of which makes contact with helix
A0 in a neighboring subunit that is related by a crystallo-
graphic twofold screw axis (Fig. S4). Conversely, it would
be expected that light-induced crystal shrinkage exerts a
nonnegligible effect on the reaction kinetics in subunit B.
That is, as the crystal lattice force becomes stronger in
the direction normal to the membrane (nearly parallel to
the b axis), helix G in subunit B is pushed more strongly
toward the extracellular side and, as a consequence, the
formation of the O state, during which a sliding movement
of helix G toward the cytoplasmic side takes place, is
inhibited.

The crystal shrinkage mentioned previously affected the
protein structure and/or the reaction kinetics in other sub-
units. With respect to subunit A, in which no reaction state
was trapped, a better explanation of the electron density map
was achieved by supposing that the resting state in subunit A
underwent a small conformational change in a passive way.
In subunit C, on the other hand, a different reaction state
than the O state was trapped (Fig. 2 i). This reaction state
was suggested to have a bromide ion at site i134. However,
unlike the N state trapped in subunit B, the cytoplasmic in-
terhelical space was only partially opened (Fig. S5). It is
noteworthy that the EF loop of subunit C is involved in pro-
tein-protein interactions between two trimers related by a
twofold screw axis. Hence, it seems possible that the reac-
tion state trapped in subunit C represents an early substate
of N (NL), the relaxation of which would be inhibited
when the obstacle against a structural change in the EF
loop becomes larger.

It has been shown that the transition from N to O is
reversible (18,23). From the dependence of a dynamic equi-
librium between N and O on the chloride ion concentration,
the apparent dissociation constant of the chloride ion to site
i134 (i.e., the anion-binding site generated in the N state)
was estimated to be ~1 M (44). In this study, we observed
that a mixture of N and X (a reaction state with no bromide
ion at site i134) was trapped in subunit B when the crystal
in a solution containing 0.01 M bromide ions was
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illuminated at 240 K and cooled to 100 K (Fig. 2 e). From
this observation, the apparent dissociation constant of the
bromide ion to site i134 was estimated to be ~10 mM. A
possible explanation for this low dissociation constant is
that the dynamic equilibrium between N and O and/or be-
tween X and O is influenced by the crystal lattice force.
This is consistent with the observation that a much smaller
amount of X or N than O accumulated in subunit C when
the C2 crystal was illuminated at a low bromide ion concen-
tration. It should be noted that a mixture of N and X gener-
ated in subunit B decayed much more slowly as compared
with the O state generated in subunit C. Together with these
structural data, the spectral data shown in Fig. 1 suggest
that the spectral property of X is similar to that of N or
the resting state.
FIGURE 7 Light-induced structural change in the trimeric pHR-bro-

mide complex at 200 K. (a) Structural change in the trimeric pHR-

bromide complex that was observed when the C2 crystal that had

been soaked in a solution containing 0.01 M NaBr was illuminated with

red light (635 nm, 1 mW/mm2) at 200 K and then cooled to 100 K.

The jFlightj – jFdarkj difference map was evaluated by comparing the

diffraction data from the illuminated crystal with those from an unillumi-

nated crystal, contoured at 4.5 s (positive densities in purple, negative

in sky blue) and overlaid on the structural model of the trimeric pHR-

bromide complex. (b) An enlarged view of the jFlightj – jFdarkj difference
Light-induced structural changes at 200 K

To elucidate bromide movements in the early stage of the
photoreaction cycle, we investigated the structure of a reac-
tion state(s) that was trapped when the C2 crystal was
cooled to 100 K after illumination at 200 K with red light
at 635 nm (~1 mW/mm2). At this low temperature, only re-
action states with blue-shifted absorption spectra accumu-
lated under illumination. The jFlightj – jFdarkj difference
map between an illuminated crystal and an unilluminated
crystal showed that the light-induced structural change
was confined to the central part of the protein. Inspection
of this difference map showed that two reaction states
were trapped (Fig. 7). One of them, designated as the L1

state, takes on such a conformation that the bromide ion still
exists on the extracellular side of the Schiff base, but the for-
mation of L1 is accompanied by a small movement of a bro-
mide ion within site I, which explains the pair of strong
positive and negative peaks seen around site I. Similar ion
movement was reported to occur upon the formation of
the L1 state of sHR (16). The other reaction state, designated
as the L2 state, possesses a bromide ion at a transiently
generated binding site (termed as site s130) between Ser-
130 and the retinal Schiff base; its formation explains the
strong positive peak seen in the vicinity of the main chain
of Ser-130. In this reaction state, the middle moiety of helix
C is suggested to deform to create the binding site s130.
But, as this binding site is not large, it seems necessary to
postulate a significant backward reaction from L2 state to
the L1 state. This result is in line with the previous report
that the OH group of Ser-130 plays an important role for
the ion transport (45).
map around the retinal Schiff base of subunit A; this map was contoured

at 4 s (positive densities in purple, negative in sky blue) and 6.5 s

(positive densities in red, negative in dark blue), and overlaid on the

structural model of the resting state of pHR. To see this figure in color,

go online.
DISCUSSION

The reaction scheme of pHR that is derived from the
integration of the currently available structural data is
summarized as follows. 1) In the resting state, a halide ion
is bound to the primary anion-binding site (site I) that
Biophysical Journal 108(11) 2680–2690
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is located between Thr-126 OH and the retinal Schiff base.
2) The photoisomerization of retinal into the 13-cis/15-anti
configuration is followed by a small movement of the halide
ion within site I. 3) In the L1-to-L2 transition, the halide ion
existing in site I moves to site s130 that is created between
Ser-130 and the Schiff base. 4) In the L2-to-N transition, the
halide ion at site s130 moves to site i134 that is created by
the rotation of the side chain of Ile-134. Simultaneously, the
extracellular half of helix C moves inward, leading to signif-
icant shrinkage at site I. Coupled with these movements or
within a short delay, the cytoplasmic half of helix F largely
deforms, creating a long water channel in the cytoplasmic
interhelical space. 5) Upon formation of X, in which the
cytoplasmic interhelical space is still open, the halide ion
in site i134 is released into the cytoplasmic medium. In
this state, the retinal-Lys-256 chain takes on the 13-cis/15-
syn configuration and the protonated Schiff base interacts
with the nearby aspartate (Asp-252). 6) In the X-to-O tran-
sition, reisomerization of retinal to the all-trans configura-
tion takes place and the cytoplasmic interhelical space is
closed. 7) In the recovery process of the resting state, helix
C relaxes into its original conformation and a bromide ion is
translocated from the extracellular surface to site I.

The basic concept involved in this reaction scheme is that
the extracellular half of helix C and the cytoplasmic half of
helix F function as two independent valves for unidirec-
tional ion transport (Fig. 8). Basically, similar structural
changes have been argued to take place during the photore-
action of the light-driven proton pump bacteriorhodopsin
(BR) (30–32,46).

An interesting structural feature of the N state is the for-
mation of a narrow water channel in the cytoplasmic inter-
Biophysical Journal 108(11) 2680–2690
helical space (Fig. 4). This water channel is a potential
candidate for the anion release pathway from site i134 to
the cytoplasmic medium. But, as this transiently generated
water channel is surrounded mostly by hydrophobic resi-
dues, it would be difficult for a nonhydrated halide ion to
escape from the protonated Schiff base on the millisecond
timescale at room temperature. The rapid anion release
observed under physiological conditions can be explained
by postulating the following scenario: 1) the halide ion at
site i134 receives a proton from a positively charged residue
(i.e., Lys-215) existing near the cytoplasmic medium and 2)
the resulting HCl or HBr escapes from the protonated
Schiff base and diffuses along the water channel to the
cytoplasmic medium (47). This scenario is in line with a
previous mutagenesis study showing that the reaction
kinetics of pHR are greatly perturbed by the replacement
of Lys-215 (48). It is also supported by our observation
that, in the presence of 4 M NaBr, the formation rate of
the O state becomes slower as the medium pH is increased
above pH 10 (Fig. S6).

In fact, the above scenario was already suggested by a
previous crystallographic study of the pHR-azide complex,
which showed that the cytoplasmic half of helix F greatly
deforms when an M-like state (Malk) is generated in sub-
unit B under illumination at pH 9 (35). It is interesting to
note that the structure of Malk is similar to that of the N
state of the pHR-bromide complex, except that the bromide
ion at site i134 is replaced by a water molecule in Malk.
Because the pHR-azide complex works as a light-driven
proton pump (36), this similarity implies that the same
molecular valves (i.e., the extracellular half of helix C
and the cytoplasmic half of helix F) are used for the
FIGURE 8 Conformational changes during the

anion-transporting cycle of pHR. In the resting

state (left panels), the cytoplasmic half of helix C

has a kink at Thr-216 to accommodate a halide

ion in the extracellular vicinity of the retinal Schiff

base. In the N state (middle panels), the extracel-

lular half of helix C moves inward, a halide ion

is translocated to the extracellular vicinity of the

Schiff base, and the cytoplasmic half of helix F

has a kink at Lys-215 to create a water channel in

the cytoplasmic interhelical space. In the X(N0)
state, the translocated halide ion is released into

the cytoplasmic medium and the retinal Schiff

base interacts with the nearby aspartate (Asp-

252). In the O state (right panel), the cytoplasmic

interhelical space is closed, whereas the extracel-

lular half of helix C remains to take on an unbent

conformation. The small red spheres represent

water molecules. To see this figure in color,

go online.
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inward-directed transport of halide ions in the pHR-halide
ion complex and the outward-directed transport of protons
in the pHR-azide complex.

N. pharaonis contains another retinylidene protein, pho-
borhodopsin (sensory rhodopsin-2), which functions as a
receptor of negative phototaxis by forming a complex
with a membrane-embedded transducin, pHtrII (49).
Kamo and colleagues (50) have previously shown that
the pHR double mutant, P240T/F250Y, can form a com-
plex with pHtrII and that the L-to-N transition of this
pHR mutant is inhibited after the complex formation
with pHtrII (51). When the structure of the N state of
pHR is taken into account, their observations suggest that
the outward movement of the extracellular half of helix F
is a key event for transmission of the light signal to the
transducer. It would be interesting to ask whether similar
light-induced structural changes as shown in Fig. 8 occur
in other rhodopsins. For bovine rhodopsin, the outward
movement of the cytoplasmic moiety of helix VI was sug-
gested to occur upon the formation of Meta II (52). It has
recently been shown that channelrhodopsin, which func-
tions as a light-gated cation channel and is frequently
used for light-induced neuron activation, can be converted
to a light-gated chloride channel by replacement of a gluta-
mate in the central gate with positively charged residues
(53). It seems likely that the molecular mechanism of
this light-gated chloride channel is not much different
from that of the light-driven chloride pump. If this is the
case, it would not be difficult to modify pHR into such a
light-gated chloride channel that exhibits an absorption
maximum in the red region.

Recent crystallographic studies of bacteriorhodopsin
have shown that the conformation of the active site is modi-
fied by a very low dose of x-rays (54–56). Although no
significant x-ray-induced structural change was detected in
this study (Fig. S2), we cannot exclude the possibility that
the retinal chromophore in pHR was partially modified dur-
ing the data collection. It is currently difficult to determine
the undamaged structures of the reaction states of pHR at
high resolutions. We need to overcome this difficulty for a
quantitative discussion about the retinal bond twists in key
reaction states (especially in the X state), which will become
an important issue.
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