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ABSTRACT: The number of research papers that report photo-
catalyst-free protocols is currently increasing. Among the different
approaches proposed, the conversion of a strong C−X bond of a
stable substrate into a photolabile reactive moiety has been recently
proposed. In this Synopsis, we introduce the so-dubbed
dyedauxiliary group strategy by focusing on arylazo sulfones that
are bench stable and visible-light responsive derivatives of anilines
that have been exploited as precursors of a wide range of
intermediates, including carbon-centered radicals as well as aryl
cations.

The development of successful synthetic procedures able
to satisfy simultaneously the needs for selectivity,

efficiency, and sustainability has been considered for a long
time as the holy grail for every organic chemist. Along with
catalysis, photochemistry has always offered a valuable
contribution to this target since the light is exclusively
responsible for the activation of the substrate. Accordingly,
the efficient generation of a reactive intermediate occurs
without the intermediacy of either aggressive reactants or harsh
conditions.1 As a matter of fact, the photon is the greenest
reactant that activates the substrate without leaving traces at
the end of the process;2 unfortunately, most organic
compounds are colorless, thus imposing the use of expensive
apparatuses and dedicated equipment.3 However, the current
availability of low energy-demand visible-light sources (e.g.,
LEDs, compact fluorescent lamps) and “infinitely available”
sunlight4 has forced the photochemical community to find
chemical systems able to absorb such photons. A way to
overcome this hurdle is by having recourse to visible-light
photocatalysis where a colored compound has the role of
absorbing the radiation and promoting the elaboration of
colorless compounds.5

In the simplest scenario, however, photons should be
directly absorbed by one of the colored reactants, thus
inducing the chemical event under photocatalyst-free con-
ditions. Though natural and artificial colored compounds are
widely present, their direct photochemistry is not of practical
interest,6 apart from the case of diarylazo compounds, which
found sparse application in supramolecular chemistry as
photoswitches7 and molecular machines,8 and the case of α-
diketones.9

Different approaches to obtain a colored, (photo)reactive
moiety in solution have been elaborated. The best known is
the formation of an electron donor−acceptor (EDA) complex
obtained via the interaction occurring between colorless
compounds upon mixing where visible-light irradiation of the
resulting chromophore led to the desired products.10

Alternatively, a chromophore activation strategy can be
adopted.11 This involves the use of an additive (e.g., a
Brønsted or a Lewis acid) to complex a colorless compound
causing a bathochromic shift of the absorption spectrum to the
visible region. This reversible complexation induced a
spectroscopic change such as the conversion of enone
dithianes and dithiolanes 1 into colored thionium ions 2 that
underwent a visible-light-induced [2 + 2] photocycloaddition
under acid catalysis at a low temperature (Figure 1).11

A colored compound may, however, engage a bimolecular
reaction (usually via a Single Electron Transfer, SET, process)
upon light absorption. Representative cases are the function-
alization of colored cyanoarenes (9,10-dicyanoanthracene,
DCA, and 2,6,9,10-tetracyanoanthracene, TCA) in the
presence of electron donors12 or of 4-alkyl-1,4-dihydropyr-
idines in the presence of electron acceptors.13

A more intriguing situation is observed when the colored
compound can release photochemically reactive intermediates
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such as radicals without the need for a photocatalyst. In the last
five years, we outlined the concept of dyedauxiliary group
(Figure 2), a moiety able to impart both color and
photoreactivity to an organic molecule.

This must exhibit three different properties:

(a) The incorporation of a dyedauxiliary group (D, path a)
via functional group interconversion (FGI) in an organic
compound (having a strong R1−Y bond) makes the
organic compound able to absorb in the visible light
region.

(b) The resulting R1−D bond must be photolabile to
generate the desired reactive intermediate.

(c) The mechanism of dyedauxiliary photoremoval should
not depend on the nature of the R1 group, to ensure a
large versatility of the method.

The use of such dyedauxiliary groups is sparsely reported,
with Barton esters (Scheme 1a) and acyl xanthates the
prototypical examples. In the first case, the strong R1−C bond
in the starting carboxylic acid is made photolabile by the
introduction of a thiohydroxamate chromophore. Photo-
induced homolysis of the N−O bond releases a carbonyloxy
radical that, after the loss of carbon dioxide, furnished a
(substituted) carbon-centered radical.14 Acyl xanthates are
easily prepared by treatment of an acid chloride with a xanthate
salt and exploited as a source of either acyl or alkyl radicals
upon visible-light exposition.15

A more recent example deals with the conversion of a stable
colorless glyoxal hydrate into a colored 4-benzoyl-1,4-
dihydropyridine having a photolabile C−C bond prone to

release an acyl radical upon direct photocleavage (Scheme
1b).16 This behavior has been exploited in asymmetric catalytic
transformations (Scheme 1c). The conversion of a benzyl
bromide into the corresponding 2,3,6,7-tetrakis-
(tetramethylguanidino)pyridinium salt was likewise reported
to promote visible-light-driven benzyl radical dimerization.17

Analogously, dithiocarbamate anion was used as a catalyst to
transform alkyl halides into colored and photoreactive
precursors of several carbon-centered radicals.18

One of the most recent examples of dyedauxiliary group is
represented by the −N2SO2R substituent in (hetero)arylazo
sulfones 5. Such thermally stable and colored derivatives can
be smoothly prepared from the corresponding anilines 3 (via
conversion to diazonium salts followed by coupling with
sulfinate salts, Scheme 2, path a)19 or via oxidation of N-
sulfonylaryl hydrazines, in turn generated from aryl hydrazine 4
(path b).20 Since the discovery of their photoreactivity,
sulfones 5 should be stored under exclusion of light.
Compounds 5 have been investigated in the past, and their

decomposition at high temperatures21 or in the presence of

Figure 1. UV/vis absorption spectra of compound 1 in CH2Cl2
solution without (···) and in the presence () of a Brønsted acid
(Tf2NH). Adapted with permission from ref 11b. Copyright 2018
Springer Nature.

Figure 2. Dyedauxiliary group strategy for the generation of reactive
intermediates.

Scheme 1. Generation of Chemical Intermediates via
Visible-Light-Driven Photolysis of (a) Barton Esters, (b) a
4-Benzoyl-1,4-dihydropyridine, and (c) an Example of the
Approach Described in (b)

Scheme 2. Preparation of Arylazo Sulfones 5 from (a)
Anilines and (b) Aryl Hydrazines
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strong acids22 and bases (e.g., CaO or pyridine)21b,23 was
reported to release aryl cations and aryl radicals. The synthetic
potential of arylazo sulfones, however, received only little
attention: examples include the preparation of iodoarenes24

and their use as electrophiles in the reaction with Grignard
reagents,25 selenolate and tellurate anions,26 as well as
dienophiles in [3 + 2] cycloadditions.27

Concerning their photophysics, such compounds exhibit two
absorption maxima, located in the UV (300−360 nm, ε =
10000−20000 M−1 cm−1) and in the visible region (400−450
nm, ε = 100−200 M−1 cm−1, see an example in Figure 3) that
have been assigned to a ππ* and an nπ* transition,
respectively.28

The photochemical generation of aryl radicals from arylazo
sulfones was suggested in the early 1970s,22 but only recently
has a detailed investigation been performed.28 As a matter of
fact, the observed photoreactivity depends on the populated
excited state in a wavelength-dependent fashion.29 Thus, upon
UV irradiation, the generated 1ππ* state undergoes intersystem
crossing (ISC) to the corresponding triplet (3ππ*, Scheme 3

path a), and heterolysis of the N−S bond takes place to release
a diazonium salt with the same multiplicity (3ArN2

+, path b).
The latter, upon dediazoniation (path c), is converted in a
triplet phenyl cation (3Ar+) along with methanesulfinate anion
as the counterion.28 On the other hand, visible-light exposition
populates selectively the 1nπ* state of 5 and homolysis of the

N−S bond generates, after nitrogen loss from the diazenyl
radical Ar−N2

•, an aryl (Ar•)/methanesulfonyl (CH3SO2
•)

radical pair (paths e,f). It is, however, believed that
isomerization of the NN bond from the trans to the (less
stable) cis configuration plays a key role in the cleavage of the
N−S bond.30 Both aryl cations and aryl radicals are accessible
when a polychromatic light (e.g., sunlight) is used as the
energy source.28

The application of these electrophiles in synthesis has been
widely described.29,31 In this context, the chance of generating
both cations and radicals from arylazo sulfones under mild and
(photo)catalyst-free conditions spurred some research groups
to consider them as promising substrates in organic chemistry.

■ ARYLAZO SULFONES IN ARYL−C BOND
FORMATION

As notes above, Minato and co-workers previously reported
the photolysis of phenylazo p-tolyl sulfones22 by means of a
high-pressure mercury lamp to form the corresponding biaryls
by using aromatic media as coupling partners. In 2016, we
developed a protocol for the formation of Ar−Ar bonds via
both visible and sunlight irradiation of arylazo sulfones in the
presence of different heteroaromatics 6 (Scheme 4).28 The
reaction allowed for the preparation of various heterobiaryls 7
in satisfactory yields without the intermediacy of any
(photo)catalyst or additive.

The same reactions were also optimized (in three different
geographical locations, Germany, Italy, and Brazil) under flow
conditions by adopting a solar microcapillary reactor (the so-
called “Sunflow” apparatus),32 a device that allowed for an
efficient conversion of the substrate after only 1 h of exposition
to natural sunlight. A similar approach was exploited for the
direct C−H arylation of caffeine 8a and theophylline 8b in
aqueous acidic media.33 Indeed, it was demonstrated that the
biological performance of a xanthine is significantly improved
by the presence of an aryl group at the 8-position (as in
compound 9, Scheme 5a).34 The process can be performed
successfully also by using a 456 nm Kessil Lamp as the light
source. In a similar way, 3-arylquinoxalin-2(1H)-ones 11, a
moiety diffused in several enzyme inhibitors and anticancer

Figure 3. UV absorption spectrum of a 5 × 10−5 M solution of 4-
chlorophenylazo methylsulfone in acetonitrile. Inset: absorption in the
visible region (5 × 10−4 M).

Scheme 3. Photochemistry of Arylazo Sulfones 5

Scheme 4. Gomberg−Bachmann Photoarylation via Arylazo
Sulfones 5 (General Procedure and Selected Examples)
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agents,35 has been achieved by using arylazo sulfones as the
photoarylating agents.36

In recent decades, the interaction between transition-metal
catalysts and carbon-centered radicals was the object of interest
for promoting valuable ipso-substitutions in the aromatic ring.
In this regard, the dual visible-light/gold-catalyzed Suzuki-type
coupling of arylazo sulfones with arylboronic acids (Scheme
6a) gives access to a variety of (hetero)biaryls in moderate to
good yields under visible-light-assisted regime and mild
conditions.37 The reaction mechanism proceeds as illustrated

in Scheme 6b. The oxidative addition of Ar• (generated from
5) onto the Au(I) catalyst generated the Au(II) species I,
which was further oxidized by the methanesulfonyl radical
(CH3SO2

•) and afforded the Au(III) adduct II+. Nucleophilic
substitution at the Au(III) center by the aryl boronic acid, and
the subsequent reductive elimination, resulted in the formation
of coupling product 13 while restoring the Au(I)-based
catalyst.37

An alternative approach to forge an Ar−C(sp2) bond is via
arylation of alkenes to have access to substituted triaryl-
ethylenes (TAEs, 14, Scheme 7).38 The reaction proceeds in a

solar simulator equipped with a 1500 W xenon lamp (able to
simulate the solar emission spectrum) as the photochemical
reactor. Noteworthy, the unreacted diphenylethylenes were
easily recovered during the purification step. According to the
photoreactivity of 5, both triplet aryl cations (path a) and aryl
radicals (path a′) are generated upon sunlight exposition and
the two intermediates are efficiently trapped by 1,1-diaryl
ethylenes (path b, b′) to form a phenethyl cation (IV+) and a
radical (V•), respectively. Deprotonation of IV+ by the
methanesulfinate anion (CH3SO2

−, path c) and hydrogen
atom abstraction from V• (path c′) operated by CH3SO2

•

afforded the desired 14 in a convergent fashion.38

The conventional approaches for the allylations of arenes
suffered from harsh reaction conditions or contamination of
the products by heavy metals.39 In this context, arylazo
sulfones have been used in the synthesis of allyl arenes 15
starting from α-benzyl styrenes and 2-benzyl acrylates (Scheme
8) as the coupling partners. Again, the purification step allowed
for an efficient recovery of the unreacted allylating agent.40

The use of isocyanides for the introduction of an amide
group onto an aromatic ring has recently attracted attention.41

A visible-light-driven, metal-free synthetic way to aromatic
amides 16 (including the antidepressant moclobemide) was
achieved via radical arylation of isonitriles using arylazo
sulfones as suitable precursors of aryl radicals (Scheme 9) in
aqueous acetonitrile.42

Scheme 5. Visible Light Driven Arylation of (a) Xanthines
and (b) Quinoxalin-2(1H)-ones

Scheme 6. (a) Visible-Light-Driven Gold-Catalyzed Suzuki
Synthesis of (Hetero)biaryls. (b) Proposed Mechanisma

abpy = 2,2′-bipyridine.

Scheme 7. Visible-Light-Driven Synthesis of
Triarylethylenes 14 via Metal-Free Heck-Type Coupling
between Arylazo Sulfones 5 and 1,1-Diarylethylenes
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■ ARYLAZO SULFONES IN ARYL−X BOND
FORMATIONS

Arylazo sulfones also have been used to build aryl−X bonds.
Aryl boronic acids and aryl boronates find widespread
applications as arylating agents in the Suzuki−Miyaura cross-
coupling reactions. Different photochemical procedures for
their preparation have been reported,43,44 but additives or
photosensitizers are mandatory for the success of the process.
In 2018, Fang and co-workers proposed a photocatalyst- and
additive-free visible-light-induced borylation of arylazo sulfones
5 to afford substituted aryl boronates 17 in high yields by using
a diboron reagent as the borylating agent (Scheme 10).45 An
analogous formation of Ar−B bonds was later reported, having
recourse to cyclic diboranes.46

The formation of Ar−S bonds for the synthesis of aryl
sulfides 18 starting from dialkyl and diaryl disulfides (Scheme
11a) was also reported.46 In 2019, Wei described a catalyst-free
visible-light-induced synthetic method for the preparation of a
variety of functionalized unsymmetrical sulfoxides 19 via
irradiation of 5 in the presence of commercially available thiols

in air saturated atmosphere (Scheme 11b).47 This strategy
displayed several advantages such as high selectivity, mild
conditions, and good functional group tolerance.
Organotin derivatives (especially aryl stannanes) are widely

used in organic synthesis.48 In 2019, we achieved a visible-
light-driven preparation of (hetero)aryl stannanes 20 under
both photocatalyst- and metal-free conditions (Scheme 12a).49

Scheme 8. Metal-Free Synthesis of Allyl Arenes 15 (General
Procedure and Selected Examples)

Scheme 9. Visible-Light-Driven Route to Aromatic Amides
via Radical Arylation of Isonitriles (General Procedure and
Selected Examples)

Scheme 10. Metal-Free Synthesis of Aryl Boronates 17
(General Procedure and Selected Examples)

Scheme 11. Visible-Light-Promoted Oxidative Coupling of
Arylazo Sulfones Leading to Unsymmetrical Sulfoxides

Scheme 12. Visible-Light-Driven Synthesis of Aryl
Stannanes 20
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This mild protocol features high efficiency and extremely wide
substrates scope, and the stannylation may be easily scaled to
gram-scale amounts. The reaction occurs via the pathway
illustrated in Scheme 12b, as demonstrated by mechanistic
investigations. Indeed, aryl and heteroaryl radicals generated
via blue light excitation of 5 (path a) react with (Me3Sn)2 to
give the desired product 20 along with Me3Sn

• radical 21
(path b). The direct radical combination of Ar• with Me3Sn

• is
another possible route to reach 20 (path c).49

Arylazo sulfones have been adopted for the construction of
C−P bonds by employing triaryl (or trialkyl) phosphites as the
phosphorus sources.50 The reaction gives functionalized
(hetero)aryl phosphonates 22 in moderate to good yields
(Scheme 13) and exhibits a wide substrates scope, especially
for the excellent compatibility to electron-rich arenes and
(hetero)aromatics.

Deuterated compounds find application in the field of mass
and NMR spectroscopy, and methods for the construction of
aryl−D bonds were variously developed in the past decade,
some of them exploiting photoredox catalysis.51 A set of
monodeuterated aromatics 23 was instead obtained via a
catalyst-free visible-light-driven deutero deamination of arylazo
sulfones in the presence of either aqueous isopropanol-d7 or
tetrahydrofuran-d8 as deuterium sources. Notably, the presence
of a significant amount of water did not appreciably affect the
deuteration yield (Scheme 14).52

■ THE DYEDAUXILIARY −N2SO2R: LEAVING GROUP
OR REACTANT?

As stated in Scheme 3, different reactive intermediates may be
generated during the irradiation of 5, most of them playing a
key role in the processes described above. In all cases, the
leaving group D is released and is lost in the process. However,
in some cases, part of the dyedauxiliary group is incorporated
in the final product, thus further highlighting the versatility of
arylazo sulfones chemistry. As an example, trapping of the
generated diazenyl radical by the π-bond system can occur
before N2 loss. This behavior was exploited for the
diazenylation of enol silyl ethers to form a set of aza derivatives
that exhibit bioactive properties and that found application in
the synthesis of N-containing heterocycles.53

The same methanesulfonyl radical generated via visible light
photolysis of 5 has been used for synthetic purposes. In fact, in

2019, Wei and co-workers reported the visible-light-induced
oxysulfonylation of alkenes in the presence of arylazo sulfones
and oxygen operated by the sulfonyl radical produced. In the
protocol, a series of functionalized β-oxo sulfones 25 were
synthesized at room temperature via oxidative difunctionaliza-
tion of styrenes 24 (Scheme 15a).54 Later, the same group
employed an analogous approach to prepare α-sulfonyl ketones
from alkynes, again making use of 4-methoxyphenylazo
sulfones as the sulfonylating agents.55

Scheme 13. Visible-Light-Driven Phosphonylation of 5
(General Procedure and Selected Examples)

Scheme 14. Visible-Light-Driven Deutero Deamination of
Arylazo Sulfones. General Procedure and Selected Examples

Scheme 15. Photocatalyst-Free Visible-Light-Induced
Synthesis of (a) β-Oxo Sulfones 25 via Oxysulfonylation of
Aromatic Alkenes and (b) of Vinyl Sulfones 27 from
Cinnamic Acids and Arylazo Sulfones (General Procedure
and Selected Examples)
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In 2020, Yadav developed a way to access (E)-vinyl sulfones
27 in moderate to high yields via sulfonylation/decarbox-
ylation of cinnamic acids (26, Scheme 15b) upon blue LED
irradiation.56

■ APPLICATION OF ARYLAZO SULFONES IN
MATERIAL SCIENCES

The use of arylazo sulfones as thermal57,58 and (rarely)
photochemical59 initiators in the polymerization of methacry-
late esters has been sparsely reported. The simultaneous
photografting of both differently substituted aryl and
methanesulfonyl groups on a gold surface was achieved via
the N−S photoinduced cleavage of arylazo sulfones 5 and
trapping of the generated aryl/methanesulfonyl radical pair
(Scheme 16).60 The developed approach simply involves

visible light as the only promoting agent of 5 and avoids the
use of electrografting or photoredox-catalyzed processes
commonly employed for the surface functionalization via
onium salts.
In this context, however, more attention has been offered to

the related arylazo sulfonates, water-soluble compounds that
could be easily prepared by treating the corresponding
arenediazonium salt with aqueous Na2SO3 in the presence of
a base (e.g., Na2CO3). The azosulfonate chromophore can be
incorporated as a side group into a polymer, and the resulting
photoresin is exploited in offset printing techniques and
photolithography.61 Recently, a set of water-based azosulfo-
nate-doped poly(vinyl alcohols) (28, Figure 4a) was prepared
and tested as a highly thermally stable photoresist material.62

Dunkin et al. exploited the reactivity of arylazo sulfonates to
develop a new class of visible-light photoactive surfactants (29,
Figure 4b)63 that were later employed as photolabile
emulsifiers in the polymerization of methylmethacrylate.64

Sodium 4-hexylphenylazosulfonate 30 (Figure 4c) was used
as photolabile surfactant in photoresposive emulsions.65 Thus,
aqueous systems, containing nanoscopic micellar aggregates
obtained by the simultaneous presence of photolabile 30 and
the inert nonionic hexaethylene glycol as the surfactants,
undergo macroscopic phase separation via light-driven
photolysis of 30 (see Figure 5).66

■ OUTLOOK AND CONCLUSIONS
Visible-light irradiation is now considered as a standard
condition in organic synthesis, but in most cases its use is
strictly related to the presence of a photocatalyst.5,31b As a
matter of fact, this approach stated the role of photons to that
of an energy source alternative to conventional heating, while
the reaction course (occurring via energy, electron or atom
transfer)5 depends on the reactivity of the excited state of the
photocatalyst. This is not necessarily a limitation, since an
impressive versatility and efficiency has been demonstrated for
most of these protocols, but, however, the potential of photons
as green reactants, able to directly cleave/form a chemical
bond, is unexpressed.
In view of these premises, the generation of a wide range of

reactive intermediates upon direct visible-light irradiation of
the reactant would be, in the opinion of the authors, a further,
evolutionary leap for organic photochemistry that will
underline the role of light as a green reactant in synthesis. In
this context, as recently demonstrated, the dyedauxiliary group
strategy represents a promising approach to make a wide range
of highly reactive intermediates in modern organic synthesis
easily accessible.
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