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Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the

four clinical forms as defined by the McDonald criteria using machine learning algorithms

trained on clinical data combined with lesion loads and magnetic resonance metabolic

features.

Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome

(CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary

Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data

available for each MS patient included clinical (e.g., age, disease duration, Expanded

Disability Status Scale), conventional magnetic resonance imaging and spectroscopic

imaging. We extract N-acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre)

concentrations, and we compute three features for each spectroscopic grid by averaging

metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear

mixed-effectsmodels to test for statistically significant differences betweenMS forms.We

test nine binary classification tasks on clinical data, lesion loads, and metabolic features,

using a leave-one-patient-out cross-validation method based on 100 random patient-

based bootstrap selections. We compute F1-scores and BAR values after tuning Linear

Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf),

and Random Forests.

Results: Statistically significant differences were found between the disease

starting points of each MS form using four different response variables: Lesion

Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and

lesion loads yields F1-scores of 71–72% for CIS vs. RR and CIS vs. RR+SP,

respectively. For RR vs. PP we obtained good classification results (maximum F1-

score of 85%) after training LDA on clinical and metabolic features, while for RR

vs. SP we obtained slightly higher classification results (maximum F1-score of 87%)

after training LDA and SVM-rbf on clinical, lesion loads and metabolic features.
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Conclusions: Our results suggest that metabolic features are better at differentiating

between relapsing-remitting and primary progressive forms, while lesion loads are

better at differentiating between relapsing-remitting and secondary progressive forms.

Therefore, combining clinical data with magnetic resonance lesion loads and metabolic

features can improve the discrimination between relapsing-remitting and progressive

forms.

Keywords: multiple sclerosis, longitudinal analysis, magnetic resonance spectroscopic imaging, EDSS, lesion

load, machine learning

1. INTRODUCTION

Multiple sclerosis (MS) is an inflammatory disorder of the brain
and spinal cord in which focal lymphocytic infiltration leads to
damage of myelin and axons (Compston and Coles, 2008). MS
affects approximately 2.5million people worldwide, with an onset
age commonly between 20 and 40 years, and an incidence more
than twice as high in women compared to men (McAlpine and
Compston, 2005).

The majority of MS patients (85%) usually experience a
first attack defined as Clinically Isolated Syndrome (CIS), and
will develop a relapsing-remitting (RR) form (Miller et al.,
2012). Two thirds of the RR patients will develop a secondary
progressive (SP) form, while the other third will follow a
benign course (Scalfari et al., 2010). The rest of MS patients
(15%) will start directly with a primary progressive (PP)
form.

The criteria to diagnose MS forms was originally formulated
by McDonald et al. (2001) and revised by Polman et al. (2005,
2011). They all rely on using conventional magnetic resonance
imaging techniques (MRI) such as T1-weighted, gadolinium-
enhanced T1-weighted MRI, as well as T2-weighted and FLAIR,
due to a high sensitivity for visualizing MS lesions. Conventional
MRI is also used for quantifying lesion load (LL), a marker
of inflammation process but only a moderate predictor of MS
evolution (Filippi et al., 1994).

More recently, advanced magnetic resonance techniques
such as 1H-Magnetic Resonance Spectroscopic Imaging (MRSI),
Diffusion Tensor Imaging (DTI), and Magnetization Transfer
Imaging (MTI) have been shown (Rovira et al., 2013) to provide
a better characterization of the normal appearing white matter
(NAWM) and thus a better understanding of the pathological
mechanisms of MS. MTI metrics reflect the demyelination
and remyelination processes and have been shown to predict
the evolution of MS lesions. DTI metrics are very sensitive
to the MS pathology and have been shown to be mainly
affected by myelin loss and decreased neuronal integrity. MRS
metrics provide high MS pathological specificity as well as
high sensitivity to biochemical changes. Decrease of N-acetyl-
aspartate (NAA) was observed in both chronic lesions and
NAWM, reflecting a neuronal integrity loss (Rovira et al., 2013).
Choline (Cho) and Creatine (Cre) contents were found to
be increased in WM lesions and in NAWM, indicating the
presence of severe demyelination and cell proliferation in relation
with inflammatory processes (Tartaglia et al., 2002; Sajja et al.,
2009).

Therefore, in this study we investigate the added value of
magnetic resonance metabolic features (NAA/Cho, NAA/Cre,
Cho/Cre) combined with routinely collected clinical MS data
[e.g., patient age, disease duration (DD), Expanded Disability
Status Scale (EDSS)] and lesion load values (LL). To this purpose,
we build multiple binary classifiers to automatically discriminate
between different clinical forms of MS patients, by training each
classifier on combinations of clinical data, lesion loads, and
metabolic features.

2. MATERIALS AND METHODS

2.1. Patient Population
Eighty-seven MS patients (12 CIS, 30 RR, 28 SP, and 17 PP)
were included in this study, while 18 volunteers without any
neurological disorders served as healthy control (HC) subjects.
Diagnosis and disease course were established according to the
McDonald criteria (Lublin and Reingold, 1996; McDonald et al.,
2001), while disability was assessed with EDSS. This prospective
study was approved by the local ethics committee (CPP Sud-
Est IV) and the French national agency for medicine and health
products safety (ANSM) and written informed consents were
obtained from all patients and control subjects prior to study
initiation. More details for each MS group, such as average age
at first scan, average disease duration, median EDSS, and average
lesion loads can be found in Table 1.

2.2. Longitudinal MS Data
The MS patients involved in this study were scanned multiple
times over a different period for each patient, ranging from 2.5 to
6 years. The minimum number of scans is 3, while the maximum

TABLE 1 | Patient population: Age − average value (standard deviation); Disease

duration − average value (standard deviation); EDSS − median (minimum −

maximum); Lesion Load − average value (standard deviation).

CIS RR PP SP

Number of patients (Male/Female) 12 (6/6) 30 (6/24) 17 (6/11) 28 (17/11)

Age at first scan (years) 31.8 (6.4) 33.2 (7) 39.5 (6) 41.1 (4.8)

Disease duration (years) 2.9 (1.9) 8.3 (4.8) 7.5 (2.9) 14.9 (6.1)

EDSS median (range) 1 (0–4) 2 (0–5.5) 4 (2–7.5) 5 (3–8.5)

Lesion Load (ml) 6.6 (3.5) 16.7 (12.6) 20.8 (13) 31 (12.9)

Total number of scans 62 226 125 206
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is 10. The gap between two consecutive scans is either 6 months
or 1 year. In total there are 619 MS scans, but because of missing
lesion loads and metabolic features, there are 592 (95.6%) scans
with full complete data, leading to an average of 6–7 complete
scans/patient.

2.3. MRI Acquisition and Processing
All patients and control subjects underwent MR examination
using a 1.5 Tesla MR system (Sonata Siemens, Erlangen,
Germany) and an 8 elements phased-array head-coil.

2.3.1. Conventional MRI
Conventional MRI protocol consisted of a 3 dimensional
T1-weighted (magnetization prepared rapid gradient echo-
MPRAGE) sequence with repetition time/echo time/time for
inversion (TR/TE/TI) = 1, 970/3.93/1, 100 ms, flip angle = 15◦,
matrix size = 256 × 256, field of view (FOV) = 256 × 256
mm, slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm,
acquisition time = 4.62 min, and a fluid attenuated inversion
recovery (FLAIR) sequence with TR/TE/TI = 8, 000/105/2, 200
ms, flip angle = 150◦, matrix size = 192 × 256, field of view
(FOV) = 240 × 240 mm, slice thickness = 3 mm, voxel size
= 0.9× 0.9× 3 mm, acquisition time= 4.57 min.

2.3.2. MRSI Acquisition
MRSI data was acquired from one slice of 1.5 cm thickness,
placed above the corpus callosum and along the anterior
commissure - posterior commissure (AC-PC) axis, encompassing
the centrum semioval region, and took 5min and 20 s. A point-
resolved spectroscopic sequence (PRESS) with TR = 1,690 ms
and TE = 135 ms was used to select a volume of interest (VOI)
of 105 × 105 × 15 mm3 during the acquisition of 24 × 24
(interpolated to 32 × 32) phase-encodings over a field of view
(FOV) of 240× 240 mm2.

2.3.3. MRSI Processing
MRSI data processing was performed using SPID (Poullet, 2008;
Poullet et al., 2008) in MatLab 2015a (MathWorks, Natick, MA,
USA). AQSES-MRSI (Poullet et al., 2007; Sava et al., 2011) was
used to quantifyN-acetyl-aspartate, Choline (Cho), and Creatine
(Cre), using a synthetic basis set. The basis set incorporates prior
knowledge of the individual metabolites in the quantification
procedure. MPFIR (maximum-phase finite impulse response)
filtering (Sundin et al., 1999) was included in the AQSES-MRSI
procedure for residual water suppression, with a filter length of
50 and spectral range from 1.9 to 3.4 ppm. A band of two voxels
at the outer edges of each VOI was discarded in order to avoid
chemical shift displacement artifacts and lipid contamination
artifacts.

2.3.4. Quality Control
After quantifying metabolites from all MRSI grids, a quality
control was performed. Voxels with Cramer-Rao Lower Bounds
(CRLBs) lower than 10% for each of the three metabolites (NAA,
Cho, and Cre) were kept as having “good quality” to perform
feature extraction. If the number of “good quality” voxels is lower
than 50% of the total amount of voxels in the MRSI grid, then the
acquisition is discarded. All 18 Control subjects had MRSI data

with a number of “good quality” voxels higher than 50% of the
total amount of voxels, and 606 out of 619 (97.9%) MRSI data
from MS patients had good quality as defined earlier.

2.4. Feature Extraction
In this study we use three types of features: clinical (e.g., patient
age, disease duration, and EDSS), lesion loads, and metabolic
features. The clinical features are routinely acquired in the
hospital. The lesion loads were computed based on T1 and
FLAIR, using the MSmetrix software (Jain et al., 2015) developed
by icometrix (Leuven, Belgium). The computation of metabolic
features was performed in two steps: three metabolic ratios
(NAA/Cho, NAA/Cre, Cho/Cre) were computed for each “good
quality” voxel and then averaged, leading to three metabolic
features extracted from each MRSI grid.

2.5. Training Approach
Nine binary classification tasks were studied: HC vs. CIS, HC
vs. RR, HC vs. PP, HC vs. RR+SP, HC vs. PP+SP, CIS vs.
RR, CIS vs. RR+SP, RR vs. PP, RR vs. SP. The first three
tasks investigated differences between HC and the starting MS
forms (CIS, RR, and PP). The next task investigated differences
between HC and MS patients that are likely to evolve or had
evolved into secondary progressive form (RR+SP). Afterwards,
we investigated differences between HC and definite progressive
forms (PP+SP). The next two tasks investigated differences
between CIS patients and the most likely progression of CIS,
namely RR and RR+SP. From a neurological point of view,
the last two tasks were the most intriguing, as they were
discriminating between the most common inflammatory MS
form (RR) and the two progressive forms, PP and SP.

For each task, data normalization was performed. We
use a leave-one-patient-out cross-validation (LOPOCV) setup,
meaning that all data points of each patient will be in the test
set, and will be classified based on a model learned on a training
set with n− 1 data points corresponding to n− 1 patients, where
n is the total number of patients, different for each classification
task (e.g., for HC vs. CIS, n = 30). Because each patient has at
least 3 data points, we randomly select one data point to be in
the training set. We repeat the random sampling for each patient
in the training set, and repeat the whole procedure 100 times.
Therefore, each data point will be assigned 100 times to either
class 1 or class 2, and in the end it will be assigned to one of the
classes according to majority voting. This procedure is repeated
until all patients from each classification task have been tested.

By using this random patient-based bootstrap sampling, the
two classes in the training set have a more balanced distribution
of points (18 HC, 12 CIS, 30 RR, 17 PP, 28 SP), compared to using
the total number of points of each class (18 HC, 61 CIS, 214 RR,
121 PP, 196 SP).

2.6. Performance Measures and Statistical
Testing
For each task, we computed and reported four measures,
in percentage: F1-score, sensitivity, specificity, and balanced
accuracy rate (BAR). We explain these four measures using the
general confusion matrix in Table 2.
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TABLE 2 | General confusion matrix.

Confusion matrix Predicted condition

Predicted negative Predicted positive

True condition Condition negative True negative (TN) False positive (FP)

Condition positive False negative (FN) True positive (TP)

The four measures are defined by the following formulas:
F1 =

2×TP
2×TP+ FN+ FP , Sensitivity =

TP
TP+ FN , Specificity =

TN
TN+ FP ,

BAR =
Sensitivity+ Specificity

2 .
Throughout our study the positive class was the first class from

each of the nine binary classification tasks: HC for the first 5 tasks,
CIS for the 6th and 7th tasks, and RR for 8th and 9th tasks.

In order to correctly assess if there are significant differences
between the four MS groups, we built several linear mixed effects
models which were able to incorporate the temporal evolution
of each patient’s MS course. We used five fixed effects and
two random effects. The fixed effects are: MS course, gender,
disease onset age, disease duration, and the interaction between
MS course and disease duration. The random effects are set
for each patient allowing an individual starting point and an
individual disease evolution. The most interesting fixed effect
for this study is the first one, which represents the average of
the response variable at the beginning of the MS course, or
when “disease duration” = 0. We built four linear mixed effects
models, one for each response variable: NAA/Cho, NAA/Cre,
Cho/Cre, and lesion load. All statistical models were built in the
“R” software using the “lme4” package (Bates, 2010), statistical
testing was done using the “lmerTest” package (Kuznetsova et al.,
2015) and post-hoc analysis was done using the “multcomp”
package (Hothorn et al., 2008). All tests were done for a
significance level (α) of 0.05.

2.7. Classifiers
Three supervised classifiers implemented in Python 2.7.11
with scikit-learn 0.17.1 (Pedregosa et al., 2011) have been
used: Linear Discriminant Analysis (LDA), Support Vector
Machines (SVM), and Random Forest (RF). We tuned each
classifier’s parameters by optimizing the F1-score over a five-
fold cross validation on the training set within a grid search
of individual parameters, specified further for each particular
classifier. Fisher’s LDA (Fisher, 1936) is based on a linear
combination of input features, with three possible solvers:
singular value decomposition, least squares solution, and
eigenvalue decomposition. Tuning involved choosing between
the first solver and the last two solvers combined with shrinkage
varying from 0 to 1 in steps of 0.1. Class unbalance was adjusted
by setting the priors parameter equal to class probabilities. We
use SVM (Cortes and Vapnik, 1995; Cristianini and Shawe-
Taylor, 2000) with a radial basis function kernel (SVM-rbf),
defined by two parameters: C, or themisclassification cost, and γ ,
which is proportional to the inverse of a support vector’s radius
of influence. We tuned C and γ by performing a logarithmic
grid search between 0.00001 and 100,000. Class unbalance was

TABLE 3 | Adjusted p-values for multiple comparisons between MS groups

modeled by linear mixed effects model, tested using the “multcomp” package in

“R” (*p < 0.05 and **p < 0.01).

CIS-RR RR-PP RR-SP

NAA/Cho – ** **

NAA/Cre – – *

Cho/Cre – – –

LL – – *

adjusted by setting the class_weight parameter to balanced.
Random Forests (Breiman, 2001) is based on a group of decision
trees. We tune the number of decision trees between 200, 400,
600, 800, and 1,000. Class unbalance was adjusted by setting the
class_weight parameter to balanced_subsample.

3. RESULTS

Figure 1 shows boxplots comparing MR metabolic features
(Figures 1A–C) and lesion loads (Figure 1D) extracted from HC
and each MS course. Boxplots are drawn using default style in
MatLab, meaning the middle line inside the box represents the
median value, the vertical limits are the 25th and 75th percentiles
(q1 and q3), each whisker covers 1.5 the interquartile range (i.e.,
q3−q1), and the crosses outside the whiskers represent outliers.
Supplementary Figures 1–4 show the MS data points in various
2-D feature spaces.

Using the previously described (Section 2.6) linear mixed-
effects models we found that the fixed effect MS course is
statistically significant in the evolution of NAA/Cho, NAA/Cre,
Cho/Cre, and LL, with corresponding p-values of: 3.4 ×

10−6, 2 × 10−4, 2.3 × 10−2, and 2.6 × 10−4. Table 3 provides
adjusted p-values for multiple comparisons between the MS
groups.

Table 4 shows F1-scores after training LDA using only
metabolic ratios, as clinical data and lesion loads were not
available for healthy controls. Corresponding BAR, sensitivity
and specificity values of this table can be found in Table A1 in
Appendix. If F1-scores are missing, then the classifier assigned all
data points to the negative class (second MS group).

Surprisingly, the F1-scores for separating HC from any MS
course are very low, and the same holds true for separating very
early MS form (CIS) and the most likely MS evolution, RR and
RR+SP. In contrast, for RR vs. PP we find that all three metabolic
ratios have F1-scores higher than 75, with a maximum of 78 for
NAA/Cre. For RR vs. SP the F1-scores are lower, with amaximum
of 69 after combining all metabolic features.

Table 5 shows F1-scores of classification tasks involving only
MS patients. Training was done on seven different combinations
of features to evaluate the classification power of clinical
data, lesion loads, and metabolic features. Corresponding BAR,
sensitivity, and specificity values can be found in Appendix in
Tables A2–A4, respectively. If F1-scores are missing, then the
classifier assigned all data points to the negative class (second MS
group).

Frontiers in Neuroscience | www.frontiersin.org 4 July 2017 | Volume 11 | Article 398

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
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FIGURE 1 | Boxplots of MR metabolic features and lesion loads extracted from HC and MS patients: (A) NAA/Cho; (B) NAA/Cre; (C) Cho/Cre; (D) Lesion load (LL).

TABLE 4 | F1-scores for all nine classification tasks (rows) after training LDA using

only metabolic ratios.

NAA/Cho NAA/Cre Cho/Cre All 3 metabolic ratios

HC vs. CIS 35 33 43 36

HC vs. RR 6 16 – 14

HC vs. PP 47 45 19 49

HC vs. RR+SP 8 19 – 16

HC vs. PP+SP 21 26 – 28

CIS vs. RR 15 – – 21

CIS vs. RR+SP 3 – – 19

RR vs. PP 75 78 75 74

RR vs. SP 60 67 58 69

Values above 75 are colored in light gray.

The highest F1-scores for CIS vs. RR and CIS vs. RR+SP,
respectively 71 and 72, were achieved by SVM-rbf trained on
clinical data and lesion loads. Training any classifier only on
metabolic features yielded very low F1-scores.

The highest F1-score for RR vs. PP (85) was achieved by LDA
using patient age, disease age, and EDSS. Adding all spectroscopic
information maintained the F1-score at 85, while adding lesion
load lowered the F1-score at 79. LDA outperformed SVM-rbf and
RF in all RR vs. PP cases, always achieving an F1-score higher
than 70.

The highest value for RR vs. SP (87) was first achieved after
training SVM-rbf on clinical and metabolic features, but also
with LDA trained on all features combined (clinical data, lesion
loads, andmetabolic features). SVM-rbf outperfomed LDA in the
majority RR vs. SP cases, but only with 1–2%.

4. DISCUSSION

In this paper, we present results for nine binary classification
problems using clinical data, lesion loads and metabolic features

extracted from MS patients and healthy controls. We focused
on metabolic features as numerous studies showed significant
metabolic alterations in MS patients of different MS forms. It has
been demonstrated that metabolic abnormalities in MS patients
are not restricted to lesions alone (Husted et al., 1994; Doyle et al.,
1995; Narayanan et al., 1997; Fu et al., 1998; Narayana et al.,
1998; Sarchielli et al., 1999; He et al., 2005) and NAWM tissue is
well known to be altered in MS (Narayana, 2005; De Stefano and
Filippi, 2007). Concentrations of NAA in NAWM were shown
to be significantly lower in MS patients (Bitsch et al., 1999; Suhy
et al., 2000; Bjartmar et al., 2001; Inglese et al., 2003; Tiberio
et al., 2006; Wattjes et al., 2007, 2008). Concentrations of Cho
and Cre in NAWM were shown to be significantly higher in MS
patients (Narayana et al., 1998; Tourbah et al., 1999; Suhy et al.,
2000; Tartaglia et al., 2002; Inglese et al., 2003). Concentrations
of NAA/Cre in NAWM were shown to be significantly lower in
MS patients (Leary et al., 1999; Narayana et al., 2004). Multiple
studies also report significant differences between metabolite
concentrations in lesions vs. NAWM of HC: lower NAA and
increased Cho and Cre (Wolinsky et al., 1990; Larsson et al., 1991;
Davie et al., 1994, 1997; Narayana et al., 1998; Arnold et al., 2000;
He et al., 2005).

Our findings are in agreement with these previous reports
as decreased NAA and increased Cho and Cre contents were
measured in NAWM and lesions of MS patients. After building
linear mixed-effects models to properly analyze the statistical
difference between the four clinical courses, we observed
significant differences at the disease starting points of all MS
courses using four response variables, namely the lesion load,
NAA/Cre, NAA/Cho, and Cho/Cre ratios. A cross-sectional
study (Hannoun et al., 2012) based on a subset of our MRSI
data found statistical differences in the NAA/Cre and NAA/Cho
ratios between HC and RR, PP, SP, and RR+PP+SP patients. To
our knowledge, there is only one study that reports sensitivity
and specificity values for classifying healthy controls from MS
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TABLE 5 | F1-scores for classification tasks involving only MS patients (columns).

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP

LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 21 48 11 19 31 – 74 52 73 69 70 67

LL – 51 27 – 40 24 71 19 73 75 77 68

Age + DD 48 58 51 44 56 50 79 64 74 76 75 71

Age + DD + EDSS 55 65 49 57 66 48 85 81 79 84 85 84

Age + DD + EDSS + LL 67 71 59 63 72 60 79 75 79 86 86 86

Age + DD + EDSS + M 56 59 48 60 59 51 85 83 80 86 87 85

Age + DD + EDSS + LL + M 65 64 57 65 63 57 83 81 78 87 87 86

M, all three average metabolic ratios; Age, patient age; DD, disease duration; LL, lesion load; EDSS, Expanded Disability Status Scale. Values between 75 and 79 are colored in light

gray, values between 80 and 84 are colored in medium gray, while values larger than 85 are colored in dark gray.

patients based on spectroscopic features. Inglese et al. (2003)
show that absolute values of choline in NAWM can differentiate
9 controls and 10 out of 11 RR patients.

Other MS classification studies are Muthuraman et al. (2016)
and Kocevar et al. (2016), both based on diffusion features. The
first one reports a classification accuracy of 97% between 20 CIS
and 33 RR patients. The second one analyzes classification tasks
based on DTI data from a cross-sectional subset of our database.
They found very high F1-scores (91.8% for both HC-CIS and
CIS-RR) after training SVM-rbf on six global brain connectivity
metrics. For RR vs. PP theirmaximumF1-score was 75.6%, which
is lower than our results based onmetabolic features, while for RR
vs. SP, their maximum F1-score was 85.5%, which is comparable
to our results. It is also worth mentioning that they did not use
any clinical data, which might improve their results.

In this study, we analyzed the added value of combining
standard clinical data with quantitative magnetic resonance
features. To this purpose, we trained linear and non-linear
classifiers only on advanced MR features, and then only on
clinical data. Afterwards we train the classifiers on clinical data
combined with lesion loads and metabolic features.

Although, MS patients are expected to have significantly
different WM metabolism compared to healthy controls, this
difference was not reflected in the metabolic average obtained
from “good quality” voxels (Supplementary Figures 1A,B). This
result is not entirely surprising, considering that we averaged
over a high number of voxels, and the subtle lesion information
could be lost in the average. However, we can visually see
in Supplementary Figures 1C,D that the two progressive MS
courses tend to have lower NAA/Cho and NAA/Cre ratios than
healthy controls.

CIS and RR patients’ distribution over the NAA/Cho and
NAA/Cre feature space do not differ much, as seen in
Supplementary Figure 2A. Disease duration interval for RR
patients is much larger than for CIS patients, as most of CIS
patients have a disease duration lower than 5 years, which can
be seen in Supplementary Figure 3A. Because RR patients have
more relapses than CIS patients, the number of lesions will be
higher and the lesion volume as well, while EDSS scores are
mainly in the same range, as seen in Supplementary Figure 4A.
BAR values inTable A2 show amaximum of 85, when combining

patient age, disease duration, EDSS, and lesion load. However, the
corresponding maximum F1-score of 71 is much lower because
the dataset is unbalanced (61 CIS vs. 214 RR), heavily influencing
the classifier’s precision. In this case the F1-score reflects better
than BAR the difficulty of discriminating CIS from RR forms.

CIS and SP patients’ distribution over different features is
visible in Supplementary Figures 2B, 3B, 4B and it is clear that
these two are the least and most advanced forms of MS. Because
RR patients will eventually evolve into SP forms during their
lifetime, we grouped together RR and SP patients for a separate
classification task versus CIS patients. BAR values in Table A2

show a maximum of 92, when combining patient age, disease
duration, EDSS and lesion load. The same discussion as for CIS
vs. RR apply: the corresponding maximum F1-score is only 72
because the dataset is very unbalanced (61 CIS vs. 410 RR+SP)
and the precision will be very low.

RR and PP patients can be discriminated using only EDSS
by visually inspecting Supplementary Figure 4C. Training a
linear classifier on clinical data (patient age, disease duration,
and EDSS) gives the maximum F1-score of 85. Adding the 3
metabolic features keeps the score at 85, while adding lesion load
information lowers the score to 79. This drop in the F1-score
suggests that lesion load is not useful in differentiating RR from
PP patients. Indeed, these two MS forms have the closest lesion
load averages (16.7 and 20.8 ml), as shown in Table 1. In contrast,
the clinical status of RR and PP patients are very different, as
reflected by the EDSS values of 2 for RR and 4 for PP. Moreover,
training LDA on individual metabolic features always provided
higher F1-scores than lesion load, therefore we can conclude that
for RR vs. PP, metabolic features have a higher discrimination
power than LL. BAR values in Table A2 are also closer to the F1-
scores in Table 5 because the dataset is more balanced compared
to previous cases.

RR and SP patients can also be discriminated using only EDSS
by visually inspecting Supplementary Figure 4D. Our results
showed that EDSS is very important in differentiating RR patients
from primary or secondary progressive patients. We also report
consistent higher F1-scores for classifiers trained only on lesion
load compared to classifiers trained only on metabolic features.
Furthermore, it is clearly visible in Table 4 that we obtain higher
F1-scores for this classification task using multiple features,
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compared to the rest of 8 tasks. These findings suggest that in
the future it might be possible to build a decision support system
using clinical data combined with lesion loads and metabolic
features.

However, this study suffers from a few limitations caused
by the low scanning frequency of only 1.5 Tesla. Firstly, it
is known that the sensitivity of lesion load segmentation is
improved by scanning at higher frequencies (Sicotte et al., 2003).
Therefore, our LL values may not reflect entirely the pathological
changes inside the brain. Secondly, the signal to noise ratio
of MRSI is proportional to the scanning frequency, meaning
our metabolites’ quantification is not entirely accurate. In order
to obtain true metabolites values, we would have to measure
T1 and T2 relaxation times of water for each patient, which
would be impossible in clinical practice. Moreover, spectroscopic
signal scales can differ from patient to patient, resulting in large
metabolite variations. To overcome some of these limitations, we
use as features all three metabolite ratios (NAA/Cho, NAA/Cre,
Cho/Cre). By doing so, we expect to retain the most valuable
information.

When comparing classification tasks from a computational
point of view, LDA is clearly the winner as the training period last
only 3 h using a computer with 8 threads. Training both SVM-
rbf and RF took around 20 days in total and it was done using
60 threads, meaning LDA is approximately 600 times faster than
SVM-rbf or RF. Also, the maximum F1-scores for RR vs. PP and
RR vs. SP were obtained with LDA and SVM-rbf, suggesting that
a linear classifier performs equally good as a non-linear classifier
in these cases.

This study is a proof of concept that investigates the added
value of MR metabolites combined with clinical data and
lesion loads, in classifying MS patients and healthy controls.
Clinical data is routinely collected by doctors, lesion load is
a known marker of neurodegeneration, while MR metabolites
have been shown to provide high specificity of MS pathology.
In order to better understand the underlying MS pathological
mechanisms, we used three different machine learning methods,
one linear and two non-linear, and had a strict quality control for
extracting metabolic features. Despite all our efforts, averaging
metabolite ratios over “good quality” voxels provides only
moderate biomarkers for discriminating MS groups (i.e., RR vs.
PP). In general, combining patient age, disease duration, EDSS,
and averaged metabolic ratios, leads to the highest classification
results. We believe extracting metabolic information from
specific brain sub-regions of the MRSI grid (e.g., NAWM) should
provide a more detailed view of MS pathology and help the
classification tasks. Therefore, further investigations about the
MS patients’ evolution will be done in the future on sub-regions
metabolite quantification, DTI-based brain connectivity metrics,
patient treatment, and multi-class classification.

5. CONCLUSIONS

In this paper, we performed nine binary classification tasks
and report F1-scores and BAR values after learning linear and
non-linear classifiers on combinations of clinical data, lesion
loads, and metabolic features. We presented a simple method to
compute metabolic features by averaging metabolite ratios over
“good quality” voxels of a MRSI grid. Using linear mixed-effects
models we found that the MS course is statistically significant in
the evolution of four response variables: Lesion Load, NAA/Cre,
NAA/Cho, and Cho/Cre ratios. Our results showed that the best
classifier for discriminating CIS from RR or RR+SP is SVM-
rbf trained on clinical data and lesion loads. We also showed
that discriminating RR from PP or SP with high accuracy is
possible when training LDA on clinical data. For RR vs. PP,
adding metabolic features will not change the results, while for
RR vs. SP, adding metabolic features and lesion loads will slightly
improve the results.
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A. APPENDIX

TABLE A1 | Balanced accurary rates (BAR), sensitivity (SEN), and specificity (SPE) values, for all 9 classification tasks (rows) after training LDA using only metabolic ratios.

NAA/Cho NAA/Cre Cho/Cre All 3 metabolites

BAR SPE SEN BAR SPE SEN BAR SPE SEN BAR SPE SEN

HC vs. CIS 47 0 94 46 15 78 61 39 83 53 39 67

HC vs. RR 50 94 6 55 82 28 50 100 0 52 76 28

HC vs. PP 76 80 72 78 72 83 45 29 61 77 82 72

HC vs. RR + SP 52 98 6 60 92 28 50 100 0 59 90 28

HC vs. RR + PP 61 89 33 66 88 44 50 100 0 52 88 16

CIS vs. RR 52 95 10 50 100 0 50 99 0 52 88 16

CIS vs. RR + SP 51 100 2 49 99 0 50 100 0 54 94 15

RR vs. PP 59 37 81 63 38 88 48 2 95 63 49 77

RR vs. SP 57 53 62 65 62 69 39 0 79 66 62 70

Values between 75 and 79 are colored in light gray, values between 80 and 84 are colored in medium gray, values between 85 and 89 are colored in dark gray, while values higher than

90 are colored in very dark gray.

TABLE A2 | BAR values for classification tasks involving only MS patients (columns).

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP

LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 52 68 49 54 63 49 63 28 59 66 66 63

LL 48 70 52 50 73 56 43 12 58 74 75 68

Age + DD 66 75 68 66 83 70 67 38 62 75 76 71

Age + DD + EDSS 71 80 67 77 89 69 81 78 70 84 85 84

Age + DD + EDSS + LL 79 85 73 81 92 76 71 72 69 86 86 85

Age + DD + EDSS + M 72 76 66 81 82 70 80 81 71 86 87 84

Age + DD + EDSS + LL + M 78 80 71 82 83 73 78 78 68 86 86 86

M, all three average metabolic ratios; Age, patient age; DD, disease duration; LL, lesion load; EDSS, Expanded Disability Status Scale.Values between 75 and 79 are colored in light

gray, values between 80 and 84 are colored in medium gray, values between 85 and 89 are colored in dark gray, while values higher than or equal to 90 are colored in very dark gray.

TABLE A3 | Sensitivity values for classification tasks involving only MS patients (columns).

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP

LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 16 79 8 15 67 0 77 56 78 70 75 72

LL 0 80 30 0 80 23 87 16 78 77 80 67

Age + DD 41 77 49 36 84 46 84 75 78 74 70 70

Age + DD + EDSS 56 82 44 62 92 43 84 75 80 80 83 81

Age + DD + EDSS + LL 69 87 56 69 93 57 81 69 83 85 84 85

Age + DD + EDSS + M 59 74 41 74 79 44 84 76 82 84 85 84

Age + DD + EDSS + LL + M 67 79 49 72 77 51 83 75 81 87 87 86

M, all three average metabolic ratios; Age, patient age; DD, disease duration; LL, lesion load; EDSS, Expanded Disability Status Scale. Values between 75 and 79 are colored in light

gray, values between 80 and 84 are colored in medium gray, values between 85 and 89 are colored in dark gray, while values higher than or equal to 90 are colored in very dark gray.
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TABLE A4 | Specificity values for classification tasks involving only MS patients (columns).

CIS vs. RR CIS vs. RR+SP RR vs. PP RR vs. SP

LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF LDA SVM-rbf RF

M 88 57 89 94 59 98 49 0 40 62 56 54

LL 96 60 75 100 66 89 0 7 37 70 70 69

Age + DD 91 74 87 96 83 94 50 0 46 76 82 72

Age + DD + EDSS 87 79 89 91 87 95 78 81 60 89 87 86

Age + DD + EDSS + LL 89 83 90 92 90 95 60 75 55 87 87 85

Age + DD + EDSS + M 85 78 91 89 86 95 75 86 60 88 88 84

Age + DD + EDSS + LL + M 88 81 93 92 89 96 74 82 56 85 86 85

M, all three average metabolic ratios; Age, patient age; DD, disease duration; LL, lesion load; EDSS, Expanded Disability Status Scale. Values between 75 and 79 are colored in light

gray, values between 80 and 84 are colored in medium gray, values between 85 and 89 are colored in dark gray, while values higher than or equal to 90 are colored in very dark gray.
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