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Rubus crataegifolius Bunge regulates
adipogenesis through Akt and inhibits
high-fat diet-induced obesity in rats
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Abstract

Background: Obesity is one of the greatest public health problems and major risk factors for serious metabolic
diseases and significantly increases the risk of premature death. The aim of this study was to determine the
inhibitory effects of Rubus crataegifolius Bunge (RCB) on adipocyte differentiation in 3 T3-L1 cells and its anti-obesity
properties in high fat diet (HFD)-induced obese rats.

Methods: 3 T3-L1 adipocytes and HFD-induced obese rats were treated with RCB, and its effect on gene expression
was analyzed using RT-PCR and Western blotting experiments.

Results: RCB treatment significantly inhibited adipocyte differentiation by suppressing the expression of C/EBPβ, C/
EBPα, and PPARγ in the 3 T3-L1 adipocytes. Subsequently, the expression of the PPARγ target genes aP2 and fatty acid
synthase (FAS) decreased following RCB treatment during adipocyte differentiation. In uncovering the specific
mechanism that mediates the effects of RCB, we demonstrated that the insulin-stimulated phosphorylation of Akt
strongly decreased and that its downstream substrate phospho-GSK3β was downregulated following RCB treatment in
the 3 T3-L1 adipocytes. Moreover, LY294002, an inhibitor of Akt phosphorylation, exerted stronger inhibitory effects on
RCB-mediated suppression of adipocyte differentiation, leading to the inhibition of adipocyte differentiation through
the downregulation of Akt signaling. An HFD-induced obesity rat model was used to determine the inhibitory effects
of RCB on obesity. Body weight gain and fat accumulation in adipose tissue were significantly reduced by the
supplementation of RCB. Moreover, RCB treatment caused a significant decrease in adipocyte size, associated with a
decrease in epididymal fat weight. The serum total cholesterol (TC) and triglyceride (TG) levels decreased in response
to RCB treatment, whereas HDL cholesterol (HDL-C) increased, indicating that RCB attenuated lipid accumulation in
adipose tissue in HFD-induced obese rats.

Conclusion: Our results demonstrate an inhibitory effect of RCB on adipogenesis through the reduction of the
adipogenic factors PPARγ, C/EBPα, and phospho-Akt. RCB had a potent anti-obesity effect, reducing body weight gain
in HFD-induced obese rats.
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Background
Obesity arises from adipocyte hyperplasia and hyper-
trophy caused by the intake of excess energy [1]. Excess
fat accumulates in adipocytes as excessive amounts of
lipids (triglycerides), resulting in elevated triglyceride
levels in plasma and in tissues such as liver and muscle,
which leads to pathological dysfunction in these tissues
[2, 3]. Thus, adipocyte hyperplasia may be an important
factor in the development of obesity. To prevent obesity,
it is important to maintain an adequate balance between
energy accumulation and energy consumption.
The excessive accumulation of adipose tissue is caused

by increased adipogenesis accompanied by adipocyte dif-
ferentiation, which converts immature pre-adipocytes into
adipocytes. Abnormal fat accumulation and adipocyte
differentiation in adipose tissue are associated with the de-
velopment of obesity [4]. Adipogenesis, the process of adi-
pose cell development, is associated with multiple steps in
the regulation of several transcription factors. During the
differentiation process, many key transcriptional factors
are involved, such as CCAAT-enhancer-binding protein
(C/EBP)-δ and C/EBPβ, which can collectively induce the
expression of peroxisome proliferator-activated receptor
(PPAR)-γ and C/EBPα [5, 6]. PPARγ and C/EBPα also play
important roles as major transcription factors in adipo-
genesis [5]. In addition, these transcription factors are
involved in the acceleration of lipogenesis and lipid
homeostasis by modulating the expression of target genes,
such as adipocyte fatty acid-binding protein 2 (aP2) and
fatty acid synthase (FAS) [7].
The intracellular signaling cascade involving insulin/

phosphoinositide 3-kinase (PI3K)/Akt plays a major role
in adipocyte differentiation. Akt phosphorylates and regu-
lates a number of substrates that are involved in a diverse
array of biological processes [8], and it is essential in the
induction of PPARγ expression [9]. Pharmacological in-
hibition of the PI3K/Akt signaling pathway [10, 11] and
dominant negative mutations [12] can abolish adipocyte
differentiation by inhibiting PI3K/Akt activity. Moreover,
the overexpression of constitutively active Akt increases
glucose uptake and adipocyte differentiation in 3 T3-L1
adipocytes [13].
Rubus crataegifolius Bunge (RCB) is a type of red rasp-

berry and is a member of the Rosaceae family. Rubus is
one of the most diverse and largest genera in the Rosaceae
family and is comprised of approximately 600 to 800 spe-
cies, including blackberries, raspberries and their hybrids
[14, 15]. Traditionally, Rubi coreanus (Rubi Fructus) fruit
has been used as a medicinal agent for the treatment of
impotence, spermatorrhea, enuresis, and asthma [16].
Rubi crataegifolius has also been used for treatment of
rheumatic arthritis, hepatitis and lung cancer in China
[17]. Traditional herbal medicines may have some poten-
tial to prevent obesity. Although the use of these fruits in

fresh and processed food items, such as jams, jellies and
juices, represents a multimillion dollar industry [18], their
medicinal properties—including their anti-inflammatory
effects on ulcers and their capacity to reduce blood chol-
esterol levels [19] and cell proliferation [20] in animal
models—have recently attracted the attention of the inter-
national market. However, no reports documenting the
anti-obesity effects of RCB have been published.
In this study, we hypothesized that RCB could exert

the inhibitory effect on the differentiation of 3 T3-L1
preadipocytes and its in vivo inhibition of high fat diet
(HFD)-induced obesity in rats. To study this possibility,
the inhibitory effects of RCB on differentiation of 3 T3-L1
preadipocytes into adipocytes was examined by measuring
triglyceride accumulation levels and expression levels of
genes involved in adipogenesis and lipogenesis in adipo-
cytes. We also investigated the underlying mechanism
whether Akt signaling is critical for the anti-obesity func-
tion of RCB. Moreover, we examined the effects of RCB
on body weight, adipose tissue mass, and lipid metabolism
in HFD-induced obese rats.

Methods
Preparation of Rubus crataegifolius Bunge (RCB) extracts
The fresh fruits of Rubus crataegifolius Bunge (RCB)
were collected in Gyeongsan-si, Gyeongsangbuk-do,
Korea in September 2013. A voucher specimen repre-
senting this collection was identified by Prof. Gon-Sup
Kim and deposited at the Animal Bio Resources Bank of
Gyeongsang National University. The fresh fruits of RCB
were prepared by alcohol extraction. The fruit bodies
were peeled off and air-dried in an oven at an initial
temperature of 30 °C, which was increased by 5 °C every
3 h until it reached 40 °C. The dried fruit bodies of RCB
were milled into a powder (40 mesh). Fifteen grams of
RCB powder were then suspended in an 80 % (v/v) etha-
nol solution using a mixer, followed by the extraction of
the samples for 3 days with vigorous shaking at room
temperature and filtering through Whatman No. 1 filter
paper. The 80 % ethanol extracts of RCB were concen-
trated using rotary-vacuum evaporation at 50 °C and
then freeze-dried. The RCB extract was stored in the
freezer until it was used for experiments.

Measurement of total phenolic content using folin-ciocalteu
assay
The total phenolic content of RCB was measured using
a spectrophotometer according to the Folin-Ciocalteu
colorimetric method as previously described [21, 22]. Be-
cause quercetin is one of the polyphenol compounds
found in RCB, the total phenolic content of the ethanol
extract of RCB was expressed as mg catechin equivalents
(QE)/g. Catechin was purchased from Sigma-Aldrich (St.

Jung et al. Nutrition & Metabolism  (2016) 13:29 Page 2 of 14



Louis, MO. USA). The measurements were performed
four times.

Measurement of total flavonoids
Total flavonoid content was determined as previously
described [23] with slight modifications. Briefly, 0.25 mL
of RCB (100 μg/mL) was added to a tube containing
1 mL of double-distilled water. Following this, 0.075 mL
of 5 % NaNO2, 0.075 mL of 10 % AlCl3 and 0.5 mL of
1 M NaOH were added sequentially at 0, 5 and 6 min.
Finally, the volume of the reacting solution was adjusted
to 2.5 mL with double-distilled water. The 410 nm ab-
sorbance of the solution was detected using an Ultrospec
2100 Pro Spectrophotometer (Section 3.3). The results
are expressed in mg quercetin equivalents (QE)/g. The
experiments were carried out in quadruplicate.

Measurement of free radical scavenging activity using a
2,2-diphenyl-1-picrylhydrazyl (DPPH) assay
The free radical scavenging activity of RCB (100 μg/mL
in DW) was measured using a method created by
Brand-Williams [24] with slight modifications. The in-
hibition percentage was calculated using the following
equation: Inhibition % = [(absorbance of control - ab-
sorbance of sample)/absorbance of control] × 100. The
absorbance was measured using a spectrophotometer
(Ultrospec 2100 pro; Amersham Pharmacia Biotech Co.,
Piscataway, NJ, USA). The experiments were carried out
in quadruplicate.

Measurement of superoxide anion (O2●−) radical
scavenging and hydroxyl (OH●) radical scavenging
activity
Superoxide radicals were generated according to a
method described in a previous paper [25]. The samples
(100 μg/mL in DMSO) were added to a reaction solution
containing 100 μL of 30 mM EDTA (pH 7.4), 10 μL of
30 mM hypoxanthine in 50 mM NaOH, and 200 μL of
1.42 mM nitroblue tetrazolium (NBT). After the solution
was preincubated at room temperature for 3 min,
100 μL of 0.5 U/mL xanthine oxidase was added to the
mixture, and the volume was brought up to 3 mL with
50 mM phosphate buffer (pH 7.4). After the solution
was incubated at room temperature for 20 min, absorb-
ance was measured at 560 nm. The reaction mixture
without xanthine oxidase was used as a blank (A1). The
samples (A2) were added to the reaction mixture, in
which O2●− was scavenged and thereby inhibited the re-
duction of NBT. The absorbance was measured, and a de-
crease in O2●− was represented by A2-A1. The scavenging
activity of the superoxide anion radical (SRSA) was calcu-
lated using the following equation: SRSA % = (A2 −A1/
A1) × 100. The scavenging activity of the samples (100 μg/
mL) in DMSO on the hydroxyl radical (OH●) was

measured using the deoxyribose method [26] with slight
modifications. The deoxyribose assay was performed in
10 mM phosphate buffer (pH 7.4) containing 2.5 mM de-
oxyribose, 1.5 mM H2O2, 100 μM FeCl3, 104 μM EDTA,
and a test sample (0.5 mg/mL). The reaction was initiated
by adding ascorbic acid to a final concentration of
100 μM. The reaction mixture was incubated for 1 h at
37 °C in a water bath. After incubation, the color was de-
veloped by the addition of 0.5 % thiobarbituric acid
followed by an addition of ice-cold 2.8 % trichloroacetic
acid in 25 mM NaOH and incubation for 30 min at 80 °C.
A control experiment was performed without the samples
(A1). The samples (A2) were cooled on ice, and the ab-
sorbance was measured at 532 nm. The hydroxyl radical
scavenging activity (HRSA) was calculated using the fol-
lowing equation: HRSA% = (A1− A2/A1) × 100. The mea-
surements were performed four times.

Cell culture
Murine 3 T3-L1 fibroblasts as preadipocytes were main-
tained in Dulbecco’s modified Eagle’s high-glucose
medium (DMEM) containing 10 % calf serum, 100
units/mL penicillin, and 100 μg/mL streptomycin. Two-
day post-confluent 3 T3-L1 cells, designated as day 0,
were differentiated with complete DMEM containing
10 % FBS by adding a mixture (DMI) of 0.5 mM 3-
isobutyl-1-methylxanthine, 100 μM indomethacin,
0.25 μM dexamethasone (DEX), and 167 nM insulin.
The 3-isobutyl-1-methylxanthine, DEX, indomethacin,
and Oil red O were purchased from Sigma-Aldrich (St.
Louis, MO, USA). The medium was changed every
2 days. RCBs were added to the culture medium of the
adipocytes on day 0. The cells were treated with 0, 50,
or 150 μg/mL RCB extracts every day. After treatment
with RCB on day 4 and day 7, the 3 T3-L1 adipocytes
were harvested and lysed for Western blot analysis as
described in section 2.12. To analyze cell viability, the
cytotoxicity of the RCB was evaluated using 3-(4, 5-
demethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT) according to the manufacturer’s instructions.

Oil red O staining and triglyceride assay
Lipid accumulated within cells was visualized by Oil red
O staining as described previously [27]. Oil red O stain-
ing was performed on day 7 of differentiation to stain
accumulated lipid droplets in 3 T3-L1 adipocytes. The
cells were gently washed with phosphate-buffered saline
(PBS) and stained with filtered Oil red O solution (60 %
isopropanol and 40 % water) for 30 min. After staining
the lipid droplets red, the Oil Red O staining solution
was removed, and the plates were rinsed with water and
dried. The photographs were taken using an Olympus
microscope (Tokyo, Japan). To analyze the content of
cellular triglycerides, the cells were washed with PBS,

Jung et al. Nutrition & Metabolism  (2016) 13:29 Page 3 of 14



scraped into 200 μL of PBS and sonicated for 1 min.
The 3 T3-L1 cells were incubated with or without the
selective PI3K inhibitor LY294002, which was purchased
from Sigma-Aldrich (St. Louis, MO, USA) at a concen-
tration of 10 μM in the presence or absence of RCB for
7 days. Total triglyceride content was measured in cell
lysates using an assay kit, and cellular protein was mea-
sured using a Bio-Rad protein assay kit (Hercules, CA,
USA). The results are expressed as percentage changes.
All the experiments were carried out in triplicate.

RT-PCR
Total RNA was isolated from the 3 T3-L1 adipocytes
using Trizol reagent (Invitrogen, CA, USA) according to
the manufacturer’s protocol. The total RNA (1 μg) was
reverse-transcribed to cDNA using a reverse transcrip-
tion system (Invitrogen, CA, USA) according to the
manufacturer’s protocol. The mRNA expression of adi-
pocyte differentiation-related genes was examined using
cDNA and the following gene-specific primers: C/EBPβ,
5′-GACTACGCAACACACGTGTAACT-3′ and 5′-CA
AAACCAAAAACATCAACAACCC-3′; PPARγ, 5′-TT
TTCAAGGGTGCCAGTTTC-3′ and 5′-AATCCTTG
GCCCTCTGAGAT-3′; C/EBPα, 5′-TTACAACAGGC-
CAGGTTTCC-3′ and 5′-GGCTGGCGACATACAGA
TCA-3′; β-actin (control), 5′-GACAACGGCTCCGG
CATGTGCAAAG-3′ and 5′-TTCACGGTTGGCCTT
AGGGTTCAG-3′.

Western blot analysis
Western blotting was performed according to standard
procedures [6] with slight modifications. Briefly, whole
cells were lysed in lysis buffer containing 50 mM
Tris–HCl (pH 8.0), 0.4 % Nonidet P-40, 120 mM
NaCl, 1.5 mM MgCl2, 0.1 % SDS, 2 mM phenyl-
methylsulfonyl fluoride, 80 μg/ml leupeptin, 3 mM
NaF and 1 mM DTT. Cell lysates were separated by
10 % SDS-polyacrylamide gel electrophoresis, trans-
ferred onto a polyvinylidene fluoride membrane
(Amersham Pharmacia, England, UK), blocked with 5 %
skim milk and hybridized with primary antibodies. The
following antibodies were purchased from Cell Signaling
technology (Danvers, MA USA): PPARγ, C/EBPβ, C/
EBPα, aP2, FAS, Akt, and GSK3β; the monoclonal β-actin
antibody was purchased from Chemicon (Millipore Inc.,
Billerica, MA USA). HRP-labeled mouse anti-rabbit
IgG was obtained from Jackson ImmunoResearch. The
Chemiluminescence kit was from Pierce (Rockford, IL).
After incubation with horseradish-peroxidase-conjugated
secondary antibody at room temperature, immunoreactive
proteins were detected using a chemiluminescent ECL
assay kit (Amersham Pharmacia, UK) according to the
manufacturer’s instructions.

Measurement of glucose uptake
Glucose uptake in the 3 T3-L1 cells was measured using
the fluorescent D-glucose analogue 2-[N-(7-nitrobenz-2-
oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG)
(Invitrogen, Carlsbad, USA) with slight modifications to a
previously reported protocol [28]. Briefly, 3 T3-L1 pre-
adipocytes were differentiated in various concentrations
(0, 50, and 150 μg/ml) of RCB or DMSO for 7 days in 6-
well plates. After washing, the differentiated 3 T3-L1 cells
were treated with or without the indicated concentrations
of RCB and insulin in the absence or presence of 10 μM
2-NBDG. After incubation for 2 h, the cells were washed
three times with PBS, and the resulting fluorescence was
measured (excitation at 485 nm and emission at 530 nm)
using a fluorescent microplate reader (Molecular Devices,
USA). All the experiments were carried out in triplicate.

Animal experiments
Five-week-old Sprague–Dawley male rats were obtained
from Central Lab Animal Inc. (Seoul, Korea). All animal
experiments were conducted in accordance with the Na-
tional Institutes of Health (NIH) guidelines and with the
approval of the Animal Care and Use committee of
Gyeongsang National University (Approval Number:
GNU-140513-R0049). The rats were housed in polycar-
bonate cages in a room maintained at 22 °C with 55 %
relative humidity on a 12 h dark/light cycle. All of the
rats were allowed free access to food and water for five
weeks. The rats were randomly divided into three groups
that were fed a normal diet (ND, n = 10), a high-fat diet
(HFD, n = 10), or a HFD supplemented with RCB
(HFD + RCB, n = 10) for 5 weeks. The ND group was
maintained on a normal diet based on a commercial
diet (#55VXT0038, Samyang Co, Korea). The HFD
group was fed an HFD based on a commercial diet
(rodent diet with 60 % kcal fat, Research Diet, Korea).
To test the anti-obesity activity of RCB extracts
(200 mg/kg BW) orally administered to the HFD-fed
rats for five weeks. Food intake was measured daily,
and body weight was measured every two days. Rats
were food deprived overnight prior to blood collection
and euthanized by ketamine (40 mg/kg) plus xylazine
(2 mg/kg).
Group 1: Normal diet group (ND)
Group 2: High-fat diet group (HFD)
Group 3: HFD + RCB 200 mg/kg BW (HFD + RCB)

Biochemical and histological analysis
Body weight and fatty tissue mass (n = 10 rats/group)
were measured with sensitivity limits of 0.1 g and 0.01 g,
respectively. Blood samples were collected and centri-
fuged 1000 x g for 15 min at 4 °C, and serum was sepa-
rated to analyze plasma biomarkers. Epididymal fat pads
were excised, weighed and stored at −20 °C until they
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were assayed. Concentrations of plasma triglyceride
(TG), total cholesterol (TC), and high-density lipoprotein-
cholesterol (HDL-C) were assayed enzymatically using
commercial kits (Asan phams, Co., Korea) as previously
described [27]. There were 10 animals per group in all
experiments. Epididymal adipose tissue samples were
dehydrated, embedded in paraffin, cut into 5-μm sections
and stained with hematoxylin-eosin for microscopic
assessment (Olympus, Tokyo, Japan). For quantification
analysis, adipocyte dimensions were measured using
MetaMorph image analysis software (Molecular devices,
CA, USA) equipped for the automation and programmable
distance and color segmentation (n = 5 rats/group).

Statistical analysis
Data were analyzed using SPSS version 12.0 software
(SPSS Inc., Chicago, IL, USA). Each experiment was per-
formed in at least triplicate. The data are expressed as
the mean ± SD. Differences among multiple groups were
analyzed by conducting one-way analysis of variance
(ANOVA) followed by Duncan’s multiple range test, and
differences between 2 groups were identified using
Student’s t test. P < 0.05 was considered statistically
significant and extremely significant between groups.

Results
Total phenol content (TPC) and total flavonoid content
(TFC) of RCB
The antioxidant properties of RCB extracts are summa-
rized in Table 1. The TPC and TFC content of RCB ex-
tract was found to be 125.3 ± 17.56 catechin equivalents/g
and 35.45 ± 3.65 quercetin equivalents/g of extract, re-
spectively (Table 1). RCB showed strong DPPH radical
scavenging activity. The hydroxyl radical scavenging activ-
ity of RCB was measured by the inhibition of nitroblue
tetrazolium and by RCB’s reduction of hydroxyl radical
generation. The RCB extract also exhibited a potent scav-
enging effect on superoxide radicals.

Inhibitory effect of RCB on 3 T3-L1 pre-adipocyte
differentiation
To examine the effects of RCB on the differentiation of
pre-adipocytes into adipocytes, confluent 3 T3-L1 pre-
adipocytes were treated with various concentrations (0,

50, and 150 μg/ml) of RCB extract in the presence or ab-
sence of a DMI mixture. The cell culture media was sup-
plemented with RCB extract from day 0 to day 7, and
the fully differentiated cells exhibited numerous lipid
droplets, indicating lipid accumulation. On the seventh
day of incubation, lipid accumulation was examined as a
marker of differentiation by Oil red O staining. RCB ex-
tract showed anti-adipogenic properties, as indicated by
the decreased levels of Oil red O staining on differenti-
ation day 7 in Fig. 1a. To further investigate whether
RCB had an effect on adipocyte differentiation, lipid ac-
cumulation was quantified by measuring triglyceride
content during 3 T3-L1 differentiation. The triglyceride
content of the cells increased during 3 T3-L1 differenti-
ation over the course of 7 days, whereas the addition of
RCB extract into the differentiation media strongly
blocked triglyceride accumulation (Fig. 1b). These results
showed that treatment with 50 or 150 μg/ml RCB ex-
tract resulted in a 17 % or 28 % decrease, respectively, in
triglyceride accumulation in the 3 T3-L1 adipocytes.

Cytotoxic effects of RCB on 3 T3-L1 cells
The toxic concentration of the RCB extract was assessed
via an MTT viability assay using thiazoyl blue tetrazolium
bromide. 3 T3-L1 cells were treated with different concen-
trations of RCB (0, 50, and 150 μg/ml) in combination
with a DMI mixture for either 4 or 7 days. There were no
significant differences in 3 T3-L1 cell viability at concen-
trations of up to 150 μg/ml of RCB extract compared to
the control (Fig. 1c). These results demonstrated that RCB
strongly blocks adipocyte differentiation in 3 T3-L1 cells.

Inhibitory effect of RCB on adipogenic-specific gene and
lipogenic gene expression
Adipocyte differentiation is accompanied by changes in
the expression of various adipogenesis- and lipogenesis-
related genes. C/EBPs and PPARγ are known adipogenic
genes that have roles in transforming pre-adipocytes into
mature adipocytes [5]. To investigate the anti-adipogenic
mechanism of RCB, its effects on both mRNA and pro-
tein levels of C/EBPα, C/EBPβ, and PPARγ were eluci-
dated. After inducing differentiation, 3 T3-L1 cells were
exposed for 4 or 7 days to a concentration of 50 and
150 μg/ml RCB. As shown in Fig. 2a, the mRNA level of

Table 1 Radical scavenging activities, total phenolic and flavonoid contents of RCB extract

DRSA HRSA SRSA TP (mgCE/g) Flavonoids (mgQE/g)

RCB 28.24 ± 2.05a 13.38 ± 1.47a 32.43 ± 2.40b 125.30 ± 17.56 35.45 ± 3.65

BHT 42.73 ± 0.50b 13.76 ± 2.01a 26.48 ± 1.95a - -

Ascorbic acid 75.42 ± 3.33c 18.14 ± 1.73b 24.27 ± 2.17a - -

DRSA, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity; HRSA, hydroxyl radial scavenging activity; SRSA, superoxide anion radical scavenging
activity; TPC, total phenolic acid. Total phenolic acid is expressed as milligrams of catechin equivalents (CE)/g of extract, and total flavonoid content is expressed
as milligrams of quercetin equivalents (QE)/g of extract. Butylated hydroxytoluene (BHT) and ascorbic acid at the concentration of 100 μg/mL were used as
positive control. Each value represents mean ± SD (n = 4). a-cMeans with different superscript letters in the same column were significantly different by Duncan’s
multiple range test (p < 0.05)
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C/EBPβ was significantly lower in cells treated with
150 μg/ml RCB extract during adipocyte differentiation
than that in the cells treated with DMI alone. The ex-
pression of C/EBPα and PPARγ mRNA was also signifi-
cantly reduced following treatment with RCB extract
(Fig. 2a). Furthermore, the protein levels of C/EBPβ, C/
EBPα, and PPARγ were reduced in a dose-dependent
manner after RCB treatment for 4 or 7 days (Fig. 2b).
The activation of C/EBPα and PPARγ induces the ex-
pression of lipogenesis-related genes, including aP2 and

FAS [5]. Thus, we examined whether the above-detailed
down-regulation was related to decreased C/EBPα and
PPARγ target gene expression levels. Consistent with the
above observations, RCB suppressed the expression levels
of C/EBPα and PPARγ target genes, such as aP2 and FAS
(Fig. 2b). We also found that RCB extract treatment
resulted in a dose-dependent suppression of aP2 and FAS
at the protein level. Taken together, these results suggest
that the activation of C/EBPα and PPARγ plays a critical
role in the regulation of adipogenesis by RCB.
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Fig. 1 Effect of RCB on adipocyte differentiation in 3 T3-L1 cells. a Lipid accumulation in 3 T3-L1 adipocytes assessed by Oil red O staining. 3 T3-L1
pre-adipocytes were differentiated into mature adipocytes and then treated with RCB for 7 days. At day 7 post-induction, the cells were fixed, and
neutral lipids were stained with Oil red O. DMI, fully differentiated adipocytes (0.5 mM 3 IBMX, 100 μM indomethason, 0.25 μM dexamethasone and
167 nM insulin); 50, fully differentiated adipocytes (DMI + 50 μg/ml RCB); 150, fully differentiated adipocytes (DMI + 150 μg/ml RCB). RCB represents
Rubus crataegifolius Bunge extracts. The scale bar is 50 μm. b Effect of RCB on TG accumulation in differentiating 3 T3-L1 cells. Triglyceride content was
measured using a triglyceride assay kit. The results shown are representative of at least three independent experiments. The values are presented as
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concentrations (0, 50, or 150 μg/ml) in a DMI mixture for 4 or 7 days. Cell viability after treatment with RCB was determined with an MTT assay
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Effect of RCB on the phosphorylation of Akt and GSK3β
during adipocyte differentiation
To investigate whether Akt, a major factor in adipocyte
differentiation, is regulated by RCB during 3 T3-L1 dif-
ferentiation, levels of phosphorylated Akt and GSK3β
were analyzed and compared with total levels of Akt.
Our results showed that DMI-stimulated 3 T3-L1 adipo-
cytes exhibited strongly increased phosphorylation levels

of Akt (Ser473) and GSK3β (Ser9). The phosphorylation
of Akt was significantly decreased in the RCB-treated
groups compared to the differentiated 3 T3-L1 adipocytes
(Fig. 3a). Likewise, the expression of phospho-GSK3β was
also substantially decreased following treatment with RCB
during 3 T3-L1 cell differentiation (Fig. 3b). These results
suggest that RCB extract treatment decreases Akt phos-
phorylation and down-regulates the phosphorylation of
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GSK3β, a substrate kinase of Akt, leading to the inhibition
of the adipogenesis pathway.

RCB inhibited 3 T3-L1 adipocyte differentiation through
the Akt signaling pathway
To further understand the underlying mechanism of the
inhibitory effects of RCB on adipocyte differentiation, we
performed an experiment with LY294002, a chemical in-
hibitor of the Akt pathway. After treatment with DMI
for 7 days, differentiated 3 T3-L1 cells showed increased
accumulation of triglyceride droplets compared to undif-
ferentiated 3 T3-L1 cells (Fig. 3c). Interestingly, treatment
with 10 μM LY294002 resulted in a decrease in intracellu-
lar triglyceride accumulation in the differentiated 3 T3-L1
cells. Moreover, we found that the inhibitory effects of
RCB on the formation of lipid droplets were more en-
hanced by the combined treatment of LY29400 and RCB
than by treatment with RCB alone (Fig. 3c). These results
indicate that the role of Akt signaling is significantly asso-
ciated with the functional modulation of the RCB, which
reduces adipogenesis in 3 T3-L1 cells.

RCB reduced glucose uptake in 3 T3-L1 adipocytes
To examine the effects of RCB on glucose uptake in
3 T3-L1 adipocytes, a fluorescent deoxyglucose analog
(2-NBDG) was used to calculate glucose uptake rates.
3 T3-L1 cells were exposed to 0, 10, 50, and 150 μg/ml
concentrations of RCB extract in differentiation media
for 7 days. The RCB treatment led to a significant dose-
dependent decrease in glucose uptake compared to cells
treated with DMI alone; glucose uptake in the 50 and
150 μg/ml RCB-treated groups showed decreases of
27 % and 38 %, respectively, compared to the DMI alone
group (Fig. 3d).

RCB induced decreases in body weight and adipose tissue
weight in HFD-induced obese rats
We further evaluated whether RCB possessed anti-
obesity effects in rats fed a HFD for 5 weeks. At the end
of the experiment, the body weights of the HFD group
were 39 % greater than those of the ND control group,
demonstrating that HFD-fed rats developed obesity
(Additional file 1 and Fig. 4a). The weight gain observed

for the group of rats that were administered RCB extract
(200 mg/kg/daily) was markedly decreased compared to
the HFD only group. We did not observe any significant
changes in food intake in any of the treatment groups
compared to the HFD-fed group and the HFD-fed plus
RCB extract treatment group (data not shown). Thus,
these data indicate that the reduction in body weight
gain in the RCB-treated rats was not mediated by a re-
duction of food and water intake in the HFD rats. To in-
vestigate whether the reduction in body weight gain in
the RCB-treated group was related to decreased fat ac-
cumulation, epididymal and perirenal adipose tissues
were weighed. Supplementation with RCB significantly
reduced epididymal fat (25 %) and perirenal fat (22 %)
mass compared to the untreated HFD group (Fig. 4b
and c). Histological examination of the epididymal adi-
pose tissue revealed that adipocyte size was significantly
smaller in the epididymal adipose tissue of the RCB-
treated group than in that of the HFD only group
(Fig. 4d), further demonstrating that the reduction in
body weight gain primarily arose because of decreased
fat accumulation and adipocyte size.

RCB changed serum triglyceride (TG), total cholesterol
and HDL cholesterol levels in HFD-induced obese rats
To support biochemical evidence underlying changes in
epididymal and perirenal adipose tissues following treat-
ment with RCB extract, we further investigated the effects
of RCB on the serum levels of TG, total cholesterol (TC),
and HDL-cholesterol (HDL-C) in HFD-induced obese
rats. The serum levels of TG and TC were significantly re-
duced in the RCB extract-treated obese rats. Compared to
the ND group, the serum levels of TG and TC in the HFD
group increased, whereas the serum levels of TG and TC
were significantly reduced by 29 % and 26 %, respectively,
in the RCB extract-treated obese rats compared to the
levels observed in the HFD only group (Fig. 5a and b).
The serum HDL-C level was significantly higher in the
HFD + RCB group compared to the HFD group (Fig. 5c).

Discussion
Metabolic syndrome has become a major public health
problem throughout the world. It is characterized by a

(See figure on previous page.)
Fig. 3 Effect of RCB on Akt and GSK3β phosphorylation during 3 T3-L1 adipogenesis. a RCB downregulated Akt phosphorylation induced by DMI
in 3 T3-L1 adipocytes. The 3 T3-L1 pre-adipocytes were induced to differentiate with DMI media in the absence or presence of RCB for 4 or 7 days,
and the phosphorylation levels of Akt were detected with its specific antibody. The results are reported as the means ± SD of three independent
experiments. *P < 0.05. **P < 0.01. b Effect of RCB on GSK3β phosphorylation during 3 T3-L1 adipogenesis. The phosphorylation levels of GSK3β
were determined using a specific antibody. The results are reported as the means ± SD of three independent experiments. *P < 0.05. c Inhibitory
effects of LY294002 on 3 T3-L1 adipocyte differentiation. 3 T3-L1 cells were incubated with or without RCB at a concentration of 50 or 150 μg/ml
during differentiation in the presence or absence of LY294002 (10 μM). After differentiation, the TG contents in the 3 T3-L1 adipocytes were determined
by a triglyceride assay. The data presented are the mean ± SD from three independent experiments. *P < 0.05. d RCB inhibited DMI-stimulated glucose
uptake in 3 T3-L1 adipocytes. Glucose uptake activity in differentiated 3 T3-L1 cells was analyzed by measuring the fluorescence intensity of the cells after
incubation with 10 μM 2-NBDG for 2 h. The results are reported as the mean ± SD of three independent experiments. *P < 0.05. **P < 0.01
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cluster of risk factors that occur simultaneously, including
insulin resistance, obesity, hypertension, and dyslipidemia,
all of which considerably increase the risk of developing
cardiovascular disease and type 2 diabetes mellitus [29].
Among these risk factors, obesity correlates most strongly
with the prevalence of metabolic syndrome [30]. Due
to the severe side effects of anti-obesity drugs, natural
products for treating obesity have been recognized to
be beneficial as an alternative.
In the present study, we investigated the anti-adipogenic

effects of RCB in 3 T3-L1 adipocytes and evaluated its
anti-obesity properties in HFD-induced obese rats. RCB
extract treatment decreased lipid droplet formation in
3 T3-L1 adipocytes and reduced triglyceride accumulation
in RCB-treated 3 T3-L1 adipocytes when used at a con-
centration of 150 μg/ml; these effects were not due to cel-
lular cytotoxicity. These results demonstrate that RCB
inhibits the differentiation of 3 T3-L1 preadipocytes into
adipocytes as well as the accumulation of lipid droplets in
cytoplasm, which is an adipocyte phenotype that occurs
following differentiation based on lipid accumulation.
Differentiation-associated lipid accumulation was ac-

companied by induction of the adipogenic transcription
factors C/EBPα and PPARγ, which are active during the
early stages of adipocyte differentiation and stimulate
the expression of numerous metabolic genes to produce
an adipocyte phenotype [31]. C/EBPα induces the autoac-
tivation of its own transcription as well as PPARγ expres-
sion, and it maintains the expression levels of PPARγ and
C/EBPα, which enables PPARγ to stimulate adipocyte dif-
ferentiation. Rosen et al. [32] reported that C/EBPα sup-
ports adipocyte-specific gene expression in the presence
of PPARγ in genes associated with cell morphology and
lipid accumulation. In the present study, we found that
treatment of 3 T3-L1 adipocytes with RCB extract exhib-
ited decreased mRNA expression and protein expression
of C/EBPα and PPARγ, which are master regulators of adi-
pocyte differentiation. Moreover, our data indicated that
the exposure of 3 T3-L1 adipocytes to RCB extract signifi-
cantly decreased the expression levels of aP2 and FAS
compared to differentiated 3 T3-L1 adipocyte cells. aP2, a

member of the cytoplasmic fatty acid-binding protein
family, has been detected in adipose tissue, and its ex-
pression is highly regulated during the differentiation of
adipocytes [33]. FAS is a lipogenic enzyme that stimulates
triglyceride synthesis and facilitates fatty acid storage in
the cell cytoplasm [34]. PPARγ activation is required for
proper functioning of the fat-selective enhancement of
the aP2 and FAS genes in adipocytes [5]. Overall, we
suggested that RCB inhibited adipocyte differentiation
by reducing the expression of adipocyte-specific factors,
including C/EBPβ, C/EBPα, and PPARγ, which leads to
the downregulation of lipogenesis-related genes, such as
aP2 and FAS.
Activation of the Akt pathway during adipogenesis has

been shown to promote differentiation by activating fac-
tors that regulate the C/EBP family and PPARγ expression
[9]. Insulin signaling activates Akt through PI3K and
induces the serine/threonine phosphorylation of down-
stream targets, such as GSK3β [35]. Expression of a con-
stitutively active variant of Akt kinase in 3 T3-L1 cells has
been shown to result in the spontaneous differentiation of
fibroblasts into adipocytes, which is associated with the in-
creased accumulation of lipid droplets [13]. A previous
study used LY294002 to demonstrate that the function of
PI3-kinase was indispensable to lipid accumulation in
3 T3-L1 adipocytes. Thus, the PI3-kinase and Akt kinase
pathways play pivotal roles in terminal adipocyte differen-
tiation. Therefore, to explore the above-mentioned ques-
tion, we examined whether RCB increased TG
accumulation and the expression of adipocyte-related
genes through the Akt signaling pathway.
In the present study, we showed that RCB caused a

marked attenuation in Akt phosphorylation induced by
insulin in a dose-dependent manner. RCB extract treat-
ment also strongly suppressed insulin-induced GSK3β
phosphorylation in 3 T3-L1 adipocytes. DMI induced a
strong increase in the Akt phosphorylation in 3 T3-L1
cells, which is consistent with the observed enhance-
ment in Akt activation. Moreover, treatment of 3 T3-L1
cells with a combination of LY294002 and RCB showed
significantly stronger inhibitory effects on triglyceride

(See figure on previous page.)
Fig. 4 Effects of RCB extracts on body weight in HFD-induced obese rats. a Body weight gain. The rats were divided into three groups (n = 10):
an ND group given a normal diet (ND), an HFD group fed an HFD, and an HFD + RCB group fed an HFD in addition to treatment with
RCB (200 mg/kg BW) orally by gavage once a day for 5 weeks. There were significant differences between the body weights of the HFD
and ND (**P < 0.01) and HFD and HFD + RCB groups (*P < 0.05) at the end of the experimental period. b Food intake. The mean daily
food consumption was 26.7 g and no significant differences were found in food intake between ND and HFD groups. c Adipose tissue
mass. The weight of the epididymal adipose tissue was measured by dividing fatty tissue weight by body weight (fatty tissue/body
weight x 100). Values represent the means ± SD; P < 0.05, as shown by ANOVA. Bars labeled with different letters indicate significant differences at
according to Duncan’s multiple range test. d The weight of the perirenal adipose tissue was measured by dividing fatty tissue weight by body weight
(fatty tissue/body weight x 100). The data presented are the mean ± SD from three independent experiments. Values represent the means ±
SD; P < 0.05 as shown by ANOVA. Different letters (a and b) mean that values are significantly different among groups. e Representative
hematoxylin and eosin-stained sections of epididymal adipose tissue. The adipocyte sizes from the HFD + RCB group were smaller than those
from the HFD only group. The scale bar is 100 μm
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accumulation than treatment with RCB alone. In
addition, our present results confirmed that the level of
Akt phosphorylation decreased significantly after RCB
extract treatment, which also significantly reduced
insulin-stimulated glucose uptake, indicating that the
Akt signaling pathway might be involved in the inhibi-
tory effect of RCB on 3 T3-L1 adipocyte differentiation.
Based on these findings, we concluded that RCB acts
through Akt kinase pathways, resulting in decreased
levels of TG accumulation and adipocyte-related gene
expression. Therefore, our results suggest that the inhib-
ition of Akt phosphorylation and activation via RCB
blocked insulin-induced adipocyte differentiation in
3 T3-L1 pre-adipocytes.
Previous studies have revealed that the fruits of rasp-

berry species have essential positive effects on the
human diet and human health, which are likely mainly
due to their medicinally active phytochemicals, such as
polyphenols, various flavonoids (such as anthocyanins
and flavanols), condensed and hydrolysable tannins and
phenolic acid derivatives [36]. The major polyphenols in
raspberries are anthocyanins and ellagitannins [37, 38],

which comprise > 90 % of the total phenolic content of
the fruit. Many studies have shown that the polyphenols
present in green tea, Schisandra chinensis, blueberry
peel, and grapefruit combat adipogenesis at the molecular
level and also induce lipolysis [27, 39]. The administration
of Rubus coreanus (RC) to HFD-fed mice combined with
exercise has previously been shown to accelerate energy
expenditure and protect against oxidative stress [40]. RC
exerts an anti-obesity effect by upregulating Carnitine
palmitoyl transferase I (CPT1) and elevating antioxidant
levels [40]. In the present study, our data revealed that
RCB exhibited free radical scavenging activity similar to
DPPH, superoxide anion and hydroxyl radicals, and dis-
played potent antioxidant activity correlated with levels of
strong phenols and flavonoids.
Adipose mass, which reflects the average adipocyte

size and total adipocyte number, is increased in obese
individuals. Adipogenesis occurs when extra fat mass is
required for caloric gain or for cellular homeostasis [41].
Increased sizes (hypertrophy) and numbers (hyperplasia)
of fat cells were present in the HFD-induced obese rats
in the current study. Adipose tissue hyperplasia is a
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result of increased adipogenesis, which includes pre-
adipocyte proliferation and adipocyte differentiation. We
investigated whether RCB modulates obesity in HFD-
induced obese rats. These results showed that the body
weights of rats that were fed a HFD plus RCB extract
were significantly reduced and comparable to those of
rats that were fed a control HFD diet.
To examine whether the reduction in body weight gain

exhibited by the RCB-treated group was related to de-
creased fat accumulation, epididymal and perirenal adipose
tissues were weighed. The weights of both of these tissue
types were significantly reduced in the RCB-treated group
compared to the HFD group, indicating that the alleviation
of obesity in the RCB-treated rats was due to reduced adi-
posity in adipose tissues. In addition to the effects of RCB
on epididymal fat mass, histological examinations of the
epididymal adipose tissues revealed that RCB extract
greatly decreased the average size of adipocytes in the
HFD-induced obese rats. The adipocyte size in epididymal
adipose tissue was 26 % lower in the HFD-RCB group
compared to the adipocyte size in the HFD group, which
further demonstrated that the reduction in body weight
gain was primarily due to decreased fat accumulation in
adipocytes.
Excessive body weight gain causes obesity-related

health problems and dyslipidemia, characterized by an
increase in circulating triglycerides and a decrease in
high-density lipoprotein cholesterol (HDL-C) [42, 43]. In
particular, triglyceride accumulation is mainly responsible
for weight gain or adiposity, accelerating the development
of obesity and metabolic diseases. In parallel with its effect
on body weight, we also found that RCB extract supple-
mentation significantly decreased serum TG and TC levels
and increased serum HDL-C level, indicating that RCB
efficiently prevents abnormal metabolism of TC and chol-
esterol in HFD-induced obese rats. Therefore, our results
demonstrate that the effects of RCB supplementation were
much more evident with respect to reductions of adipose
tissue mass compared to body weight gain. Overall, these
results may shed light on the fact that RCB suppressed
HFD-induced increases in adipose tissue mass and body
weight gain, which may reflect the influence of adipose tis-
sue metabolism, particularly by increasing lipid excretion.

Conclusion
In the present study, we investigated the anti-obesity
effects of RCB on adipocyte differentiation and the associ-
ated mechanisms in 3 T3-L1 cells, and we confirmed our
findings in a rat model of obesity that was induced with a
HFD. Treatment with RCB extract significantly inhibited
the expression of C/EBPβ and subsequently downregu-
lated the activation of the key transcriptional regulators
C/EBPα and PPARγ in 3 T3-L1 adipocytes. The phosphor-
ylation levels of Akt and its substrate GSK3β were

significantly reduced in response to RCB treatment, sug-
gesting that RCB induced the inhibition of adipogenesis
by regulating Akt phosphorylation and the upstream
signaling of C/EBPα and PPARγ in 3 T3-L1 cells.
Moreover, RCB significantly decreased body weight
gain, body fat accumulation, and serum TG and TC
levels in HFD-induced obese rats, which can prevent
the development of HFD-induced obesity. Our results
in cell lines and animal studies revealed that the anti-obesity
effects of RCB were caused by decreased adipogenesis. It
may be worthwhile to explore whether RCB could serve as
a suitable candidate for enhancing anti-obesity activity or
the development of therapeutic supplements for obesity.

Additional file

Additional file 1: Effects of supplementing RCB on body weight gain,
and serum profiles in rats fed a high fat diet for two weeks. (A) Weight
gain, (B) serum triglyceride level, and (C) total cholesterol level. The
values are expressed as the mean ± SD. The bars showing different letters
indicate significant differences among each group of bars, according to
Duncan’s test; *p < 0.05. (ZIP 90 kb)
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