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A B S T R A C T   

Concentrations at which global gene expression profiles in cells or animals exposed to a test substance start to 
differ significantly from those of controls have been proposed as an alternative point of departure for use in 
screening level hazard assessment. The present study describes pilot testing of a high throughput compatible 
transcriptomics assay with larval fathead minnows. One day post hatch fathead minnows were exposed to eleven 
different concentrations of three metals, three selective serotonin reuptake inhibitors, and four neonicotinoid- 
like compounds for 24 h and concentration response modeling was applied to whole body gene expression 
data. Transcriptomics-based points of departure (tPODs) were consistently lower than effect concentrations re
ported in apical endpoint studies in fish. However, larval fathead minnow-based tPODs were not always lower 
than concentrations reported to elicit apical toxicity in other aquatic organisms like crustaceans or insects. 
Random in silico subsampling of data from the pilot assays was used to evaluate various assay design and 
acceptance considerations such as transcriptome coverage, number of replicate individuals to sequence per 
treatment, and minimum number of differentially expressed genes to produce a reliable tPOD estimate. Results 
showed a strong association between the total number of genes for which a concentration response relationship 
could be derived and the overall variability in the resulting tPOD estimates. We conclude that, for our current 
assay design and analysis pipeline, tPODs based on fewer than 15 differentially expressed genes are likely to be 
unreliable for screening and that interindividual variability in gene expression profiles appears to be a more 
significant driver of tPOD variability than sample size alone. Results represent initial steps toward developing 
high throughput transcriptomics assays for use in ecological hazard screening.   

1. Introduction 

In the effort to protect human health and the environment from 
hazardous effects of chemicals, regulatory agencies and industry alike 
have heavily relied on animal toxicity testing to identify exposure con
centrations at which chemicals can cause adverse effects. Traditionally, 
these were identified through direct observation of the adverse effect(s) 

of concern (e.g., impact on survival, growth, reproduction, or organ 
pathology) in an intact animal model. However, while effective, such 
testing is costly and time-consuming, making it challenging for apically 
based hazard evaluations to keep pace with the production and release 
of new chemicals into the environment. Recognition of these challenges 
led to the crystallization of a vision for toxicity testing in the 21st cen
tury that would employ greater use of mechanistically oriented high 
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throughput assays as a basis for chemical hazard evaluation (Krewski 
et al., 2010). Use of human cell lines was intended to address human 
relevance of such testing. However, application to evaluation of 
ecological hazards of chemicals was not substantively considered in the 
original human health-focused vision (Villeneuve and Garcia-Reyero, 
2011). 

A significant response to the proposed vision for high throughput 
toxicity testing was the US EPA Toxicity Forecaster (ToxCast) program 
(Kavlock et al., 2012) and the Tox21 consortium (Tice et al., 2013). 
Despite incorporation of over 1000 assay endpoints representing greater 
than 300 different gene targets, an acknowledged concern was that the 
assay battery was still insufficient to cover the diversity of molecular 
targets and pathways needed to provide a comprehensive evaluation of 
potential hazards (Thomas et al., 2019). Consequently, as part of an 
updated blueprint for computational toxicology at the United States 
Environmental Protection Agency (US EPA), additional broad coverage, 
high content assays, such as high throughput transcriptomics (HTTr) 
and high throughput phenotyping utilizing human cell lines, were 
incorporated as part of a tiered testing framework for hazard charac
terization (Thomas et al., 2019; Harrill et al., 2021; Nyffeler et al., 
2020). High throughput transcriptomics approaches allow near whole 
human transcriptome coverage, thereby dramatically increasing effec
tive pathway coverage in the screening program. The approach was 
inspired in part by promising research in mammals suggesting that 
short-term transcriptomics responses can be effective in predicting 
concentrations at which much longer term, chronic toxicity can be 
detected (National Toxicology Program, 2018). In concept, the approach 
assumes that any stressor that perturbs a biological system sufficiently to 
yield some kind of adverse outcome (acute or chronic) will cause a 
“concerted molecular change” detectable as a change in gene expression 
profile (Johnson et al., 2022). Concentration-response modeling can be 
applied to determine the benchmark doses at which individual gene 
expression responses are impacted. In turn the distribution of bench
mark doses for individual genes can be used to determine a concentra
tion at which the transcriptome shows some concerted, concentration- 
dependent, response to the stressor, i.e., a transcriptomic point of de
parture (tPOD; Thomas et al., 2012; Farmahin et al., 2017; National 
Toxicology Program 2018; Johnson et al., 2022). It is postulated that 
concentrations below the tPOD do not elicit a concerted molecular 
response in an exposed organism and are thus unlikely to cause adverse 
effects (Johnson et al., 2022). With this in mind, high throughput 
transcriptomics approaches were proposed to provide protective point 
of departure estimates for use in risk-based screening and prioritization 
as well as pathway-oriented data that can be used to infer putative mode 
(s) of action that could help guide additional tiers of hazard character
ization (Thomas et al., 2019). 

A recognized gap in both the ToxCast/Tox21 program and the 
updated blueprint for computational toxicology has been explicit 
consideration of ecological hazards (Villeneuve et al., 2019). Conser
vation of human gene targets, proteins, and pathways across organisms 
allow for some level of ecological coverage, even with the human ori
ented testing strategy (LaLone et al., 2018). However, there remain 
many examples of physiological pathways and processes in other or
ganisms such as plants, invertebrates, “lower” vertebrates, etc. for which 
no analogous pathways exist in humans (e.g., photosynthesis in plants, 
molting behaviors in invertebrates, vitellogenesis in fish). These are not 
only potential incidental targets for chemicals to act on, but in many 
cases are specifically targeted by designed chemicals such as pest 
management agents. Consequently, to meet the chemical safety objec
tives of protecting both human health and the environment, there is a 
need to develop an appropriate battery of ecologically-focused high 
throughput assays to incorporate into the overall blueprint for compu
tational toxicology (Thomas et al., 2019; Villeneuve et al., 2019). 

With this in mind, US EPA has initiated development and evaluation 
of a series of ecologically-focused high throughput transcriptomics (eco- 
HTTr) assays for potential inclusion into its tiered hazard 

characterization framework. As an initial step in this direction, the 
present study focused on the development and pilot evaluation of an 
eco-HTTr assay employing larval fathead minnows. Fathead minnows 
(Pimephales promelas) are one of the most widely used test species in 
ecological hazard characterization (Ankley and Villeneuve, 2006). Fish 
are one of the three main taxa used in the evaluation of hazards to 
aquatic environments (United Nations, 2015). Additionally, the fathead 
minnow reference genome has been sequenced, assembled, and anno
tated (Martinson et al., 2022). Thus, fathead minnow was used as a 
model species to pilot the approach. 

The present study focused on three primary objectives. The first was 
to devise an experimental design that would facilitate relatively high 
throughput exposures of larval fathead minnows in a small test volume 
and provide enough whole-body mRNA to support analysis by RNA 
sequencing (RNAseq). The second objective was to employ that design to 
test a preliminary set of 10 chemicals with a range of chemical prop
erties and modes of action. Our final objective was to utilize the pilot 
results to suggest refinements to the overall experimental design that 
could improve the approach in terms of efficiency and the ability to 
judge the quality, acceptability, and fit-for-purpose, of the assay results. 
In silico subsampling approaches were used to probe the influence of 
several experimental design variables on the number of genes for which 
benchmark doses (BMDs) could be defined, and associated levels of 
variability in the tPOD estimates. 

Data from these assays were used to evaluate two hypotheses. First, 
based on the idea that changes in the transcriptome would indicate that 
the exposed organism was responding to the presence of the chemical, 
but that such responses would not necessarily be adverse, we hypothe
sized that points of departure based on concentration–response 
modeling of gene expression (i.e., transcriptomics-based points of de
parture; tPODs) would be lower than adverse effect concentrations 
observed in acute or chronic toxicity tests. Ideally, tPODs would be 
protective, but not overly conservative. Second, to test the assumption 
that eco-HTTr assays with multiple representative taxa may be needed 
for an effective ecological hazard characterization strategy, we evalu
ated the hypothesis that tPODs derived from larval fathead minnow 
exposures would be lower than adverse effect concentrations observed 
in acute or chronic toxicity tests with invertebrates or algae/plants. 

2. Materials and methods 

2.1. Assay design and rationale 

Our pilot assay design involved exposing 1 day post hatch (equiva
lent to 5 days post fertilization if incubated at 25 ◦C) larval fathead 
minnows in 96-well deep bottom (1 ml well) plates (catalog #502162, 
NEST Scientific USA, NJ, USA) for 24 h. Exposures were static and 
conducted in a total of approximately 700 µl of ultraviolet light-treated, 
0.4 µM filtered, Lake Superior water, held at 25 ◦C under a 16 h light, 8 h 
dark photoperiod. There was one fish per well with eight replicate wells 
(fish) per concentration, and a total of 11 chemical concentrations and a 
control (12 treatments) were tested on each plate (Supplementary 
Fig. S.1). The maximum concentration tested was based on reported 
LC50s for each of the pilot chemicals, where available (Supplementary 
Table S.1), and subsequent concentrations represented ½ log serial di
lutions from the maximum concentration such that each concen
tration–response spanned six orders of magnitude. For the pilot 
investigations, all organism loading and dosing was done manually, so 
treatments were arrayed systematically on each plate, with concentra
tion increasing across columns on the plate, and each row containing a 
different replicate fish for each dose (Supplementary Fig. S.1). Conse
quently, it is recognized that the pilot design confounds position on the 
plate with treatment, such that any spatially associated variability in 
temperatures, light intensity, etc. across the plate (e.g., edge effects) 
may confound the treatment-related transcriptomic responses. That 
said, we had no prior evidence either supporting or rejecting the 
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potential for spatial location within this system to influence one or more 
elements of the whole-body transcriptome. The opportunity for errors 
associated with manual dosing and subsequent processing of a more 
randomized sample layout was viewed as a greater potential concern for 
data quality than any speculative impacts of position within the plates 
on the transcriptomic responses. Thus, the more systematic dosing 
scheme (Supplementary Fig. S.1) was employed. 

Overall attributes of the pilot design were motivated by multiple 
considerations. First, to achieve throughput needed to eventually test 
10 s of chemicals per week in concentration–response, we desired an 
assay that could be conducted in a 96-well plate which would allow 
future development of automated dosing and sample processing systems 
(even though manual processing was employed for the current expo
sures). Based on some previous larval or adult time-course studies (un
published results; Garcia-Reyero et al., 2014; Schroeder et al., 2017), 24 
h of exposure was identified as generally being sufficient for a robust 
gene expression response, but still short enough in duration to make the 
test rapid. It is acknowledged that 24 h may not be the optimal time- 
point for capturing the transcriptomic response to all chemicals. How
ever, given that the optimal time for measuring a transcriptomic 
response likely varies based on chemical specific properties associated 
with adsorption, distribution, metabolism, elimination, mode(s) of ac
tion, potency, etc. there likely is no time-point that is universally optimal 
for all chemicals. Thus, standardization of a practical time-point was 
viewed as a pragmatic approach. Additionally, it was desirable to limit 
or eliminate the need for solution renewal during the test to minimize 
chemical use, labor, and additional opportunities for error and organism 
stress associated with handling/manipulation. These considerations had 
to be balanced against the need to maintain water quality and organism 
health for the duration of the exposure period. We were able to 
demonstrate water quality could be maintained under static conditions 
over the 24 h exposure period and control survival was within accept
able limits for aquatic toxicity testing (Flynn et al., 2022; OECD 2019). 

Water quality and organism health was an additional consideration 
with respect to the life-stage selected for testing. At 1–2 days post hatch, 
fathead minnows are still dependent on their yolk sac and not inde
pendently feeding (US EPA, 1987). Consequently, the fish could be 
exposed at this stage without adding food to the system which could 
both compromise water quality and introduce additional organic carbon 
that could bind exposure chemical(s). At the same time, 1–2 days post 
hatch fathead minnows are of sufficient size to provide adequate RNA to 
support individual-level RNAseq analyses (i.e., on average yielding 
0.5–1.5 µg RNA). Furthermore, while the fish are not fully mature at this 
stage, most major organogenesis has taken place and major transcrip
tional programs associated with early development are complete (US 
EPA, 1987; US EPA 1996). Consequently, transcriptomic variability 
associated with minor differences in developmental stage, earlier in 
development, were expected to be reduced at the 1–2 days post hatch 
life-stage. 

Standard 96-well microtiter plates have a well volume of 300 µl. 
Although the 300 µl volume was shown to be sufficient for maintaining 
water quality over the 24 h, static exposure (Flynn et al., 2022), it was 
desirable to provide extra volume to help protect against degradation of 
water quality (e.g., reduced dissolved oxygen, increased ammonia, 
altered pH, etc.) over the course of chemical exposure. The larger vol
ume also provides a greater reservoir of available exposure chemical to 
help reduce the impact of chemical uptake by the fish and binding to 
plate wells. Finally, the additional volume associated with deep-well 
plates allows for a more robust range of swimming behavior and activ
ity within each well. Consequently, deep well (1 ml) 96 well plates were 
selected. 

2.2. Chemicals 

A total of ten chemicals organized into three groups based on mode 
of action and/or properties were tested in the present study 

(Supplementary Table S.1). Chemicals were procured from Sigma- 
Aldrich (St. Louis, MO), and all were >98 % pure. Stock solutions for 
the metals were prepared in Lake Superior water. Stock solutions of the 
organic compounds (selective serotonin reuptake inhibitors [SSRIs] and 
neonicotinoids) were prepared in dimethylsulfoxide (DMSO). Stock so
lutions were diluted in Lake Superior water to achieve the desired 
nominal concentrations in the test wells, and in the case of the organic 
chemical exposures, DMSO concentrations in each well were no greater 
than 0.5 % DMSO and were equivalent across all wells of the plate for 
each assay. 

2.3. Assay procedure 

All larval fathead minnows used for testing were provided by an on- 
site aquatic culture facility at the US EPA Great Lakes Toxicology and 
Ecology Division, Duluth, MN. Five days in advance of each exposure, 
newly fertilized fathead minnow embryos, from several breeding pairs, 
were gently rolled off polyvinyl chloride breeding tiles and transferred 
to a bath of aerated Lake Superior water and held at 25 ◦C. On day five 
post-fertilization, fish that had hatched and were free swimming were 
pooled for use in the assay. Larval fish were transferred to a glass petri 
dish in Lake Superior water. Fish were then individually loaded into 
each well of 3–4 replicate 96-well deep bottom plates using a small glass 
capillary tube equipped with a short length of rubber tubing to act as a 
suction device. Fish were transferred in a minimal volume (generally 
less than 20 µl) to wells containing 150 µl of Lake Superior water. Plates 
were visually inspected to assure that all wells were loaded. Subse
quently, wells were dosed by pipetting an additional 550 µl volume test 
chemical dissolved in Lake Superior water to each well. Due to slight 
variations in the volumes transferred with each fish, an approximate 3 % 
error in nominal concentration in each well was expected but considered 
negligible relative to the ½ log concentration series employed. Following 
dosing, plates were sealed with an air-permeable silicone sealing mat 
(catalog #506065, NEST Scientific USA, NJ, USA), then placed in a 
temperature-controlled incubator set to 25 ◦C for 24 h (±30 min) at a 
16:8 light:dark cycle. 

Following each exposure period, wells were individually inspected 
under a dissecting microscope. Mortalities and phenotypic abnormal
ities such as deformities, cardiac or yolk sac edema, etc. were recorded. 
Exposure solutions were then removed and either replaced immediately 
with homogenization buffer (Buffer RLT – Qiagen 79216) or flash frozen 
at − 80 ◦C. All laboratory procedures involving larval fathead minnows 
were reviewed and approved by an animal care and use committee in 
accordance with the Guide for the Care and Use of Laboratory Animals 
(National Research Council, 2011). 

2.4. RNA extraction and cDNA library preparation 

Total RNA was isolated in 96 well format (1 fish per well) using 
MagMAX-96 Total RNA Isolation kits (ThermoFisher Scientific AM1830) 
following the manufacturer’s instructions. RNA was quantified on a 
Synergy HTX plate reader (BioTek, USA) using a Take3 microvolume 
plate (Biotek). A random set of 16 total RNA samples from each plate 
was analyzed using an Agilent Tapestation (Agilent, Santa Clara, CA) to 
confirm the quality of the RNA isolation procedure. 

Sequencing libraries were prepared from 250 ng of total RNA using 
the SENSE mRNA-Seq Library Prep kit (Lexogen) following the manu
facturer’s protocol, with 15 cycles of end point PCR amplification. The 
quality and size of libraries were checked on the D5000 ScreenTape 
Assay for the TapeStation (Agilent), and concentrations were measured 
using the Quant-iT PicoGreen dsDNA Assay (ThermoFisher Scientific). 
Pooled libraries (19–24 samples per pool) were quality checked using 
either Qubit double stranded DNA HS assay kits (ThermoFischer, 
Q32851), Agilent 4200 TapeStation HS DNA 1000 assays, or Kapa 
Illumina Library quantification kits (Roche). 
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2.5. RNA sequencing 

On a per experiment basis, samples, each tagged with a unique 
adapter sequence, were divided into four pools for sequencing (i.e., 
19–24 samples per pool; see Supplementary Table S.2 for total samples 
sequenced per experiment). Each pool contained samples from across all 
treatment groups (e.g., n = 2 samples per treatment) wherever possible 
so that pool and associated sequencing lane was not confounded with 
treatment. Sequencing was performed at the Research Technology 
Support Facility Genomics Core at Michigan State University. Each pool 
was loaded onto one lane of an Illumina 4000 Single Read flow cell 
(llumina, Foster City, CA). Sequencing was performed in a 1x50 bp 
single end read format using HiSeq 4000 SBS reagents (Illumina). Base 
calling was performed with Illumina Real Time Analysis v. 2.7.7 and 
output was demultiplexed and converted to FastQ format with Illumina 
Bcl2fastq v.2.20.0. 

The fathead minnow genome (Martinson et al., 2022) was indexed 
with STAR version 2.7.1 and concurrently had in-house gene annota
tions loaded (Supplementary Information SM.1). Raw reads for all 
samples were then mapped and counted with STAR to the indexed 
genome with default parameters, also invoking “–quantMode Gene
Counts”. All samples, except two, had at least 50 % of their reads map to 
a unique genome location (Supplementary Table S.2; Supplementary 
Information SM.1). Counts assigned to each gene were parsed, and count 
data for each treatment written to a single tab-delimited matrix file 
where each column represented a sample and each row represented a 
gene. Additional quality control screening and filter steps were then 
applied on an experiment-by-experiment basis (see Supplementary In
formation SM.1). Based on the QC screening criteria, seven samples 
were removed across all ten chemicals and twelve doses. There was only 
one experiment (ZnSO4) where more than a single sample was removed. 

Raw FASTQ files, raw count files, and normalized expression 
matrices have been submitted to the Gene Expression Omnibus (Acces
sion GSE207231). 

2.6. Transcriptomic concentration–response modeling and points of 
departure 

Concentration-response modeling was applied to the gene expression 
datasets to calculate a benchmark dose (BMD) for each gene for which a 
concentration–response curve could be fit. A tPOD was then calculated 
based on the distribution of gene-specific BMDs. All concen
tration–response modeling analyses were conducted using BMDEx
press2 (Phillips et al., 2019; Yang et al., 2007). The protocol applied and 
associated settings in BMDExpress 2 (Supplementary Table S.3) were 
based on the general approach outlined by the National Toxicology 
Program (National Toxicology Program, 2018). First, differentially 
expressed genes (DEGs) were identified by employing a one-way 
ANOVA test with a Benjamini and Hochberg false discovery rate mul
tiple testing correction (p less than 0.05) and chemical concentration as 
the single categorical treatment variable (Supplementary Table S.3; Step 
1). If at least one feature significantly differed across chemical concen
trations as indicated by the ANOVA test (at least one DEG), data were 
then subjected to a statistical trend test (Williams’ Trend Test; p < 0.05; 
100 permutations; Supplementary Table S.3, Step 2). Features that did 
not show a concentration-dependent trend in expression and at least a 
twofold change in response were excluded from the more computa
tionally intensive and time-consuming curve fitting analysis. Relation
ships between remaining chemical-gene pairs were then fit using eight 
different regression models (Hill, Linear, Power, Polynomial 2◦, Expo
nential 2◦, Exponential 3◦, Exponential 4◦, Exponential 5◦; Supple
mentary Table S.3, Step 3). The model with the lowest Akaike 
information criterion was selected as the final model and used to 
calculate the BMD and upper and lower 95 % confidence bounds. The 
BMD was defined as the modeled dose corresponding to a benchmark 
response of 1.0-standard deviation over the modeled control response. 

To retain only transcripts with high quality BMD estimates, additional 
filters were then applied (Supplementary Table S.3, Step 4): global 
goodness of fit P-value > 0.1; upper confidence bound of the BMD/ 
lower confidence bound of the BMD < 40; BMD < highest dose; and 
BMD > ten times lower than the lowest dose (National Toxicology 
Program, 2018; Pagé-Larivière et al., 2019). Only BMDs for genes that 
passed all the filters (filtered DEGs) were included in the determination 
of a tPOD. While there are multiple methods for calculating a tPOD 
(Pagé-Larivière et al., 2019; Farmahin et al., 2017) for the present pilot 
study we used the 10th percentile BMD of filtered DEGs as the tPOD 
(10th percentile) for the purposes of hypothesis testing the other ana
lyses reported here. 

2.7. Effect concentrations from ECOTOX 

To support our second objective of comparing tPODs with adverse 
effect concentrations observed in acute or chronic toxicity tests with 
fish, invertebrates, or algae/plants, available effects data for the ten 
pilot chemicals were extracted from US EPA’s Ecotoxicology Knowl
edgebase (ECOTOX; https://cfpub.epa.gov/ecotox/; Olker et al., 2022). 
For each chemical, the database was queried by CAS (Chemical Ab
stracts Service) Registry number. The Aquatic table of results for each 
query was exported as an Excel file. Using the R statistical environment 
(R Core Team, 2020), the exported results were filtered to four species 
groups of interest (Fish, Crustaceans, Algae, Insects) and information 
fields coded in the ECOTOX outputs (See Supplementary information 
SM.2; Tables S.4, S.5). Any records for which effect concentrations were 
reported in units other than mg/L active ingredient were removed from 
further analyses. Effect types were sorted into two “Tiers”. “Tier 1” 
included effects coded as mortality, reproduction, behavior, population, 
growth, development, intoxication, and would generally be viewed as 
adverse effects in an ecological context. “Tier 2” included remaining 
types of biological effects (e.g., enzyme(s), genetics, histology, 
biochemistry, morphology, physiology, feeding behavior, cell(s), 
immunological, hormone(s), avoidance, injury), which may or may not 
be directly linked with adversity. It should be noted that effect con
centrations reported in ECOTOX are not points of departure based on a 
benchmark response of one standard deviation from control baseline (as 
for BMDs), they are a mix of reporting values including lethal LCx, ECx, 
LOECs, etc. Precise concordance between tPODs and effect concentra
tions from ECOTOX cannot be expected. 

2.8. In silico subsampling to inform assay optimization 

Based on the experimental design used for the pilot assays, the full 
gene expression matrix for each experiment consisted of 79–96 columns 
and 30,000 + rows. Columns of the matrix represented unique sample 
identifiers with their corresponding chemical concentration (i.e., 
generally-eight replicate individuals [samples] per treatment across 
10–12 treatments [depending on mortality at the high concentrations 
tested]). Rows of the matrix represented unique transcript identifiers, 
and cells within the matrix represented expression levels across the 
79–96 samples. To evaluate the effect of transcriptome coverage 
(number of gene/rows for which counts are included) or sample size 
(number of individuals analyzed per treatment) on the total DEGs, 
filtered DEGs, BMDs, and tPOD (10th percentile) for each of the 10 
chemicals, in silico subsampling was performed followed by analysis of 
the subsampled expression matrices via BMDExpress2 using the same 
approaches detailed in section 2.6. 

Expression data for each chemical were subsampled in silico using a 
custom R script (Supporting Information). Two distinct subsampling 
events occurred (Table 1; Supplementary Fig. S.2); one focused on 
evaluating the effect of varying transcriptome coverage (i.e., whole 
transcriptome versus partial transcriptome coverage), the other focused 
on the effect of number of replicate samples per treatment. Subsampling 
was random and performed with replacement between sampling events, 
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such that each time a subsampling event occurred it could contain any 
replicate/transcript from the original dataset regardless of whether that 
replicate/transcript had been included in another subsampling event. To 
generate the subsampled transcript datasets, rows from the original 
dataset were randomly selected without replacement to contain m 
transcripts, where m ranged from 100 to 30,000 at various intervals 
(Table 1). For example, the m = 10,000 dataset consisted of 10,000 
randomly selected, distinct, transcripts. All exposure concentrations and 
the full set of replicates per dose were retained from the original dataset 
for each sub-sampled transcript dataset. 

To consider the effect of replication (n individuals per treatment) and 
inter-individual variation, based on inclusion or exclusion of data for 
specific individuals, sub-sampled replicate datasets were generated by 
randomly selecting columns from the original matrix, without replace
ment, such that each dataset contained n distinct replicate samples per 
treatment group, where n = 3–7. For example, the n = 3 dataset con
sisted of three randomly selected control samples, three samples for the 
0.02 mg/L concentration, three samples for 0.2 mg/L concentration, and 
so forth for all 10–12 treatment groups. Each subsampling event was 
performed in 12 iterations per chemical. This generated a total of 60 
data matrix files per chemical, with twelve n = 3, n = 4, n = 5, n = 6, and 
n = 7 datasets. For each replicate set, the full set of genes and all 
exposure concentrations were retained from the original dataset 
(Table 1). 

Finally, to examine background random detection of filtered DEGs 
that would yield a BMD estimate an expression matrix consisting of just 
the control (i.e., Dose = 0 mg/L) samples from all 10 experiments was 
created. This matrix contained 80 samples total, with 8 replicate con
trols per chemical exposure, and 34,228 unique features. Original 
expression values for each control sample were retained; in cases where 
a feature was not present for a given sample, the expression value was 
coded as 0 for that sample. Quality assurance metrics (boxplot of raw 
read counts [Supplementary Fig. S.3], principal component analysis of 
samples coded by chemical treatment) showed that the data did not 
require additional downstream processing (e.g., normalization) prior to 
analysis. Control samples were randomly and arbitrarily assigned to ten 
“mock treatment groups” ranging from 0 to 10 mg/L (e.g., 0.001 mg/L, 
0.03 mg/L, 3.16 mg/L), with eight samples per group (Table 1). This 
random assignment of control samples to mock treatment groups was 

repeated 30 times, to create 30 iterations of the control sample matrix. 
Each of the 30 iterations were imported into the software BMDExpress2 
for dose response analysis using the same approaches detailed in Section 
2.6. 

3. Results 

3.1. Assay throughput and performance 

The pilot assay design, which was implemented manually, could be 
viewed as medium throughput. Assay set up, including preparation of 
chemical dilutions, loading of organisms, and dosing of the plate, took 
approximately 2.5 h to set up 3–4 plates. Following the 24 h exposure, 
evaluation of individual survival and phenotypic effects took an average 
of 10–15 min per plate for manual inspection under a dissecting mi
croscope, followed by an additional 20–30 min per plate for manual 
removal of test solutions and subsequent homogenization using a bead 
mixer mill. Extraction of the RNA and cDNA library preparation repre
sented a substantial investment of additional time, taking approximately 
10–12 additional hours per plate when performed manually. 

Control survival over the course of the 24 h assays was high (Table 2; 
Supplementary Fig. S.4). For seven of the 10 experiments there were no 
control mortalities. In two other experiments, a single control fish died. 
The maximum control mortality observed was 10 %, and in this exper
iment two fish were verified mortalities while one fish was absent from 
the well (likely a loading error rather than mortality). 

RNA yields were adequate to support RNA sequencing at the level of 
individual fish. In nearly all cases, at least 1 µg total RNA was obtained 
with the average sample yielding around 1.2 µg/L. 

3.2. – 24 h acute mortality evaluated in 96-well plate format 

Seven of the 10 chemicals tested caused acute mortality at the 
highest concentration tested (Supplementary Fig. S.4; Table 2). Parox
etine, sertraline, thiacloprid, zinc sulfate, and copper sulfate all caused 
100 % mortality at the highest concentration tested, while nickel sulfate 
and fluoxetine caused partial mortality. Concentration response curves 
were steep, with only copper sulfate causing significant mortality at 
subsequent diluted concentrations (1/2 log steps). Three test chemicals, 
clothianidin, flupyradifurone, and imidacloprid, were non-toxic at the 
nominal concentrations tested (Supplementary Fig. S.4; Table 2). These 
were all chemicals for which there were limited or no fathead minnow 
LC50 data upon which to base concentration selection. 

3.3. – Transcriptomics-based points of departure 

The number of annotated transcripts for each experiment ranged 
from 30,861–32,996 (Table 3). Among these, the number of genes 
exhibiting differential expression across treatments (evaluated by 
ANOVA) and a concentration-dependent trend (based on Willams Trend 

Table 1 
List of in silico subsampling events performed on the original, full expression 
datasets. k = 1000×.  

Variable of Interest Data Sub-sampled Total Datasets 
per Chemical 

Transcriptome coverageb 30 k, 25 k, 20 k, 15 k, 10 k, 5 k – 1 k, 
500, 200, 100 genes 
Genes (rows) included in each set 
selected randomly 
All available exposure concentrations 
(n = 10–12) 
8 replicates per concentration 

13 

12x biological replicate 
sets 

3–7 replicates per dose, 12 iterations 
of each replicate set 
Full mapped transcriptome (30,000 
+ transcripts; all rows) in each set 
All available exposure concentrations 
(n = 10–12) 
Equal number of replicates at each 
concentration 

60 

Background (random) 
detection of filtered 
DEGs 

Controls (n = 80 samples total) from 
each of the 10 experiments were 
randomly assigned to ten mock 
treatment groups; n = 8 control 
samples per group. 

30a  

a In this case refers to total number of datasets tested, not datasets per 
chemical. 

b Refers to the total number of unique transcripts for which count data were 
used in estimating a tPOD. 

Table 2 
Acute mortality following 24 h static exposure in a 96 well plate format.  

Chemical Control 
survival 

LC50 (mg/ 
L) 

LOEC (mg/ 
L) 

NOEC (mg/ 
L) 

CuSO4 32/32 (100 %) 0.57 0.63 0.2 
NiSO4 32/32 (100 %) 29.29 15.81 5 
ZnSO4 24/24 (100 %) 3.85 4 1.26 
Fluoxetine 28/31 (90 %)a 1.42 1.5 0.5 
Paroxetine 32/32 (100 %) 4.77 5 1.58 
Sertraline 31/32 (97 %) 2.21 3 0.95 
Clothianidin 23/24 (98 %) n/a n/a n/a 
Flupyradifurone 24/24 (100 %) n/a n/a n/a 
Imidacloprid 24/24 (100 %) n/a n/a n/a 
Thiacloprid 24/24 (100 %) 194.44 250 79 

n/a = not applicable. 
a Fish missing from one well. 
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test), and thus subjected to curve-fitting, ranged from a minimum of 13 
for clothianidin to a maximum of 937 for fluoxetine (Table 3). Among 
the transcripts for which curve-fitting was applied, on average the 
additional quality filters removed around 70 % DEGs. However, the 
percentage of DEGs passing the filters, and thus used for final determi
nation of the median BMD and tPOD (10th percentile), varied consid
erably among experiments, with just 6.3 % of the initial DEGs passing 
the filters for fluoxetine, while nearly 63 % of those identified for the 
paroxetine experiment passed the filters (Table 3). Based on median 
BMD, the rank order of potency among the chemicals was flupyr
adifurone > ZnSO4 ≈ clothianidin ≈ fluoxetine > CuSO4 > imidacloprid 
≈ NiSO4 > sertraline > paroxetine ≫ thiacloprid. By definition, the 
tPOD (10th percentile BMD) was lower than the median BMD. tPOD 
(10th percentile) ranged from a factor of 1.5 to 2600-fold lower than the 
median BMD (Table 3). The notable exception was for flupyradifurone 
whose median BMD was equivalent to the tPOD (10th percentile), 
largely due to a highly skewed distribution of best BMDs (Supplemen
tary Fig. S.5). When ranked by 10th percentile-based tPOD, the rank 
order of potency was quite different with fluoxetine and ZnSO4 ranking 
as most potent, followed by flupyradifurone ≈ imidacloprid > clothia
nidin > sertraline ≈ CuSO4 > thiacloprid, with NiSO4 and paroxetine 
identified as least potent. Median BMD and tPOD (10th percentile) were 
consistent in ranking ZnSO4 as the most potent of the three metals and 

fluoxetine as at least 375 times more potent than the other two SSRIs. 
Similarly, among the neonicotinoid-like compounds flupyradifurone 
was consistently identified as most potent and thiacloprid least potent, 
but the relative ranking of imidacloprid and clothianidin varied. 

3.4. – Comparison with effect concentrations from ECOTOX 

One or more ECOTOX records (accessed January 2021) meeting our 
filtering criteria were available for all ten chemicals tested in the current 
study. However, effects in fish were not available for flupyradifurone, 
thiacloprid, or paroxetine. Fish data were also limited for clothianidin 
and sertraline with just six records, all Tier 1, available for sertraline and 
just two records, both for Tier 2 endpoints, available for clothianidin 
(Fig. 1, Supplementary Fig. S.6). Regarding our hypothesis that tPODs 
will be protective of apical adverse effects, tPODs derived using the pilot 
assay design with fathead minnow were uniformly lower than Tier 1 
effect concentrations reported in ECOTOX for all chemicals for which 
fish data were available (Fig. 1). The tPODs (10th percentile) were 
generally well below the distribution of Tier 1 effect concentrations. The 
only exception was the tPOD for CuSO4 which corresponded to the 
approximate 5th percentile of the nearly 2500 records for effects in fish 
in ECOTOX. The tPODs were anywhere from 0.7 to 5 orders of magni
tude lower than the than the 25th percentile of Tier 1 effect 

Table 3 
Summary of BMDExpress2 results for larval FHM high throughput exposure assays involving the full transcriptome and 10–12 doses per chemical with 8 replicates per 
dose. Transcriptomic point of departure (tPOD) calculated as the 10th percentile of the benchmark dose (BMD). Differentially expressed genes (DEGs), lower bound of 
the 95% confidence interval of the BMD (BMDL), upper bound of the 95% confidence interval of the BMD (BMDU), transcriptomics-based point of departure (tPOD).  

Chemical name Input 
transcripts 

DEGS pre- 
filter1 

DEGs post- 
filter2 

Median BMD (mg/ 
L) 

Median BMDL (mg/ 
L) 

Median BMDU (mg/ 
L) 

10th Percentile tPOD (mg/ 
L) 

CuSO4 32,996 209 104 2.6e− 2 1.8e− 2 4.9e− 2 5.1e− 3 
NiSO4 31,449 158 33 2.2e− 1 1.6e− 1 4.6e− 2 1.5e− 1 
ZNso4 32,297 206 25 3.2e− 4 1.1e− 4 1.4e− 3 6.3e− 5 
Fluoxetine 31,865 937 24 4.6e− 4 1.1e− 4 1.4e− 3 3.2e− 6 
Paroxetine 31,884 498 313 7.2e− 1 5.5e− 1 1.0 4.4e− 1 
Sertraline 31,711 309 148 4.4e− 1 3.1e− 1 6.4e− 1 1.2e− 3 
Clothianidin 31,158 13 3 3.8e− 4 1.1e− 4 2.6e− 3 2.3e− 4 
Flupyradifurone 30,861 54 10 2.3e− 5 2.3e− 5 2.3e− 5 2.3e− 5 
Imidacloprid 31,182 72 10 9.2e− 2 2.9e− 2 3.0e− 1 3.5e− 5 
Thiacloprid 32,776 209 97 37 28 56 3.6e− 2  

1 Refers to number of genes significant by ANOVA and showing a trend via William’s trend test. 
2 DEGs remaining after removing those with a global goodness of fit P-value ≤ 0.1; upper 95 % confidence bound of BMD/ lower 95 % confidence bound of BMD ≥

40; BMD > highest concentration; and BMD < ten times lower than the lowest concentration tested. 

Fig. 1. Comparison of FHM tPOD (10th percentile) estimates with traditional fish Tier 1 ECOTOX points of departure (i.e., for effects on survival, growth, repro
duction, behavior). Numbers in parentheses indicate the number of relevant ECOTOX records. Center line of box and whisker plot = median; box = interquartile 
range; whiskers = 1.5x interquartile range; points values outside 1.5x interquartile range. 
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concentrations for fish available in ECOTOX (Fig. 1). Comparing with 
effect concentrations reported for fish Tier 2 endpoints from ECOTOX, 
tPODs were universally protective, with only the tPODs for CuSO4 (4.5th 
percentile of 1,374 Tier 2 records) and fluoxetine (2nd percentile of 43 
Tier 2 records; Supplementary Fig. S.6) overlapping the distribution of 
Tier 2 effect concentrations. The tPODs ranged from 0.9 to 3.7 orders of 
magnitude lower than 25th percentile of the ECOTOX Tier 2 effect 
concentrations. 

Given the different order of potency when ranked based on median 
BMD versus 10th percentile tPOD, it was important to compare the 
transcriptomics-based potency estimates to those based on more tradi
tional toxicity testing. Tier 1 (Fig. 1) or Tier 2 (Supplementary Fig. S.6) 
data for fish were only available for six out of the 10 chemicals, with 
clothianidin, flupyradifuone, paroxetine, and thiacloprid lacking Tier 1 
data, while Tier 2 data were available for clothianidin, but not sertra
line. Based on median ECOTOX effect concentrations for Tier 1, CuSO4 
was always the most potent of the three metals tested, followed by 
ZnSO4 and NiSO4. However, based on both median BMD and 10th 
percentile tPOD, ZnSO4 was ranked as the most potent metal, although 
the distribution of effect concentrations in ECOTOX overlap consider
ably between ZnSO4 and CuSO4 (Fig. 1). 

With regard to our second hypothesis, that fish-based tPODs would 

be lower than effect concentrations reported for other aquatic taxa as 
well, fish-based tPODs were not always protective of other aquatic or
ganisms (Fig. 2). Specifically, the tPODs for paroxetine and thiacloprid 
overlapped the 50th and 38th percentile of Tier 1 effect concentrations 
for crustaceans while those for NiSO4 and CuSO4 overlapped the 10th 
and 7th percentile, respectively (Fig. 2A). The tPOD for thiacloprid 
corresponded with the 77th percentile of Tier 1 effect concentrations for 
insects (Fig. 2B). With the exceptions noted previously, the rest of the 
fish-based 10th percentile tPODs were anywhere from one to 
approximately-four orders of magnitude lower than the 25th percentile 
of ECOTOX Tier 1 effect concentrations for crustaceans and insects 
(Fig. 2). 

3.5. In silico subsampling results 

The effect of transcriptome coverage on the ability to derive a tPOD 
and the estimated tPOD concentration was evaluated via concen
tration–response modeling of randomly selected subsets of transcripts 
from each experiment using BMDExpress2 (Supplementary Fig. S.2). As 
one might expect, the number of filtered DEGs was relatively propor
tional with the total number of transcripts analyzed (Supplementary 
Fig. S.7). For random transcript set sizes of at least 10,000 unique 

Fig. 2. Comparison of FHM tPOD (10th percentile) estimates with traditional Tier 1 ECOTOX points of departure for crustaceans (A) and insects (B). Numbers in 
parentheses indicate the number of relevant ECOTOX records. Center line of box and whisker plot = median; box = interquartile range; whiskers = 1.5x interquartile 
range; points values outside 1.5x interquartile range. 
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transcripts, it was always possible to derive a tPOD (10th percentile) 
estimate, even in cases where just a handful of filtered DEGs were 
detected (e.g., clothianidin, flupyradifurone, imidacloprid; Supplemen
tary Figs. S.7 and S.8). Below a random coverage of 10,000 unique 
transcripts, no tPOD estimates could be derived for imidacloprid or 
flupyradifurone. Using 1,000 or less randomly selected transcripts, 
tPODs could only be estimated for approximately 50 % of the chemicals 
tested (Supplementary Fig. S.8). With the exception of fluoxetine, for 
chemicals that yielded over 10 filtered DEGs the tPOD estimated based 
on whole transcriptome was qualitatively similar to that based on a 
random subset of the transcriptome until 5000 or less unique transcripts 
were included (Supplementary Fig. S.8). There was generally a trend 
toward the tPOD increasing in concentration (becoming less sensitive) 
as the size of the transcript set was reduced, although there were some 
exceptions. 

A second application of in silico subsampling was to evaluate the 
potential effect of a smaller sample size per treatment group on the tPOD 
estimates and their relative variability. Twelve random selections of n =
3, 4, 5, 6, or 7 individuals from each treatment group were generated for 
each chemical, then the resulting sixty files for each chemical were 
evaluated in BMDExpress2. This analysis provided the means to both 
evaluate the effect of different sample sizes on the overall variability in 
the tPOD estimate (Fig. 3; Supplementary Fig. S.9) and explore how the 
inclusion or exclusion of certain individual samples from the data set can 
skew the tPOD determinations due to impacts on total filtered DEGs 
(Fig. 4) and overall shape of the best BMD distribution (e.g., Supple
mentary Fig. S.5). Ultimately, there was not a clear trend in terms of the 
effect of numbers of replicates tested per treatment versus overall 
variability in the derived tPOD across 12 random iterations (Supple
mentary Fig. S.9). Variability in the number of filtered DEGs identified 
tended to increase with smaller sample sizes per treatment (Fig. 4). 
Correspondingly, in general, chemicals with larger numbers of filtered 
DEGs had less variability among the tPOD estimates for the 12 random 
iterations (Supplementary Fig. S.10). For paroxetine, sertraline, and 
CuSO4, which were three of the top four chemicals in terms of median 
number of filtered DEGs, the derived tPODs varied by less than a factor 
of three (Fig. 2). In contrast, for the three chemicals with the least 
filtered DEGs, flupyaradifurone, imidacloprid, and clothianidin, the 
tPOD estimates varied by 5–6 orders of magnitude (Fig. 2). There were 
some deviations from the general trend toward more variable tPOD 

estimation when based on fewer filtered DEGs. For example, thiacloprid 
and fluoxetine had greater numbers of filtered DEGs than NiSO4 or 
ZnSO4, respectively, but showed 10–500 fold variability in their tPOD 
estimates versus approximately 3-fold for the metals (Fig. 2). The lack of 
obvious trend between sample size and tPOD variability suggests that 
interindividual variability in gene expression, and associated variations 
in the numbers and composition of filtered DEGs identified (Fig. 4) and 
used in calculating the tPOD, lead to the somewhat unpredictable 
variability observed in the current in silico sub-sampled data sets (Sup
plementary Fig. S.9). 

3.6. Determination of background rate of random filtered DEG detection 

Thirty iterations of parsing control samples into randomly assigned 
to mock treatments were analyzed to evaluate the background rate of 
random detection of filtered DEGs that would contribute to a BMD and 
thus influence tPOD calculation. Among the 30 iterations, there were 
only two cases (6.6 %) for which the randomly grouped sample set 
passed the initial ANOVA test, and thus would have proceeded to BMD 
estimation (Supplementary Table S.5). In these two cases, the back
ground number of filtered DEGs detected was 3 and 34. Among the 30 
iterations, when the initial ANOVA results were ignored and the 
randomly grouped control datasets were subjected to analysis in 
BMDExpress2, random detection of filtered DEGs ranged from 0 to 34 
with a mean of 5, median of 2.5, mode of 1, and 95th percentile of 14.5 
(Supplementary Table S.5). Thus, for 95 % of assays conducted using the 
present design, less than 15 BMDs would be randomly detected and 
estimated, and the majority of samples would have less than three 
random BMDs included in the dataset. 

4. Discussion 

The aim of the present study was pilot testing of a high throughput 
compatible transcriptomics assay with larval fathead minnows and use 
of the resulting data to inform further refinement and optimization of a 
method suitable for incorporation into a tiered hazard screening 
framework (e.g., Thomas et al., 2019). The promise of transcriptomics in 
toxicology and ecotoxicology has been heralded for nearly-two decades 
(Snape et al., 2004; Ankley et al., 2006; Boverhof and Zacharewski 2006; 
National Research Council, 2007). However, optimism about the 

Fig. 3. Distribution of transcriptomic points of departure (tPOD; 10th percentile) determined from twelve random selections of n = 7 individuals from each 
treatment group. Center line of box and whisker plot = median; box = interquartile range; whiskers = 1.5x interquartile range; points indicate the values determined 
for each individual trial. 
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potential advances that toxicogenomic approaches could facilitate has 
been tempered by the challenges of interpreting and applying such data 
in a regulatory context (e.g., Boverhof and Zacharewski 2006; Kroeger, 
2006; Goetz et al., 2011). Some of the notable, and often cited, chal
lenges include the lack of standardized, repeatable, approaches for 
processing and analyzing data, difficult data interpretation particularly 
with regard to linking effects to adversity, and costs limiting experi
mental design in relation to dose–response characterization, time- 

course, and/or statistical power. However, a broader role for tox
icogenomics in a regulatory hazard screening context is starting to 
emerge. 

Thomas et al. (2007) proposed integration of the rich biological in
formation of transcriptomics data sets with statistically rigorous calcu
lation of BMDs to facilitate integration of transcriptomics data into 
chemical risk assessment. The approach leverages the capacity to 
concurrently examine effects on all biological pathways represented in 

Fig. 4. Variation in the number of differentially expressed genes that passed the filters in BMDExpress2 (filtered DEGs) as determined from twelve random selections 
of n = 3, 4, 5, 6, or 7 individuals from each treatment group. Center line of box and whisker plot = median; box = interquartile range; whiskers = 1.5x interquartile 
range; points indicate the values determined for each individual trial. Missing points indicate cases where no filtered DEGs were obtained for the trial. 

D.L. Villeneuve et al.                                                                                                                                                                                                                           



Current Research in Toxicology 4 (2023) 100099

10

the expressed / functional portion of the transcriptome of a given cell 
type or model organism, thereby addressing many of the concerns 
regarding pathway coverage in current high throughput testing batte
ries. The complexity of the output is greatly reduced from a long list of 
DEGs, dense heat map, or indecipherable “hairball” network, to a con
centration estimate, which risk assessors and regulators are accustomed 
to working with. The initial demonstration of concept (Thomas et al., 
2007) was followed by a series of case studies (e.g., Thomas et al., 2012; 
2013; Moffat et al., 2015; Auerbach et al., 2015; Pagé-Larivière et al., 
2019) and evaluations of various technologies and approaches for BMD 
modeling (Webster et al., 2015; Farmahin et al., 2017; Pagé-Larivière 
et al., 2019). These efforts have led to a National Toxicology Program- 
authored approach and guidance for genomic dose response modeling 
(National Toxicology Program, 2018), along with proposed integration 
of this approach into high throughput chemical screening approaches 
(Harrill et al., 2019; Harrill et al., 2021). Notably, because HTTr is 
proposed as an initial tier in a screening battery, challenges associated 
with linking gene expression changes to adversity are alleviated in that it 
is assumed that if exposure concentrations are likely to exceed the tPOD, 
additional targeted testing will be conducted to evaluate potential 
hazard in more detail (Thomas et al., 2019). Integration of HTTr into a 
screening framework is facilitated by standardized approaches for BMD 
estimation, standardized software to conduct the analyses, and 
emerging reporting frameworks (Gant et al., 2017; Harrill et al., 2021b) 
that support increased transparency and reproducibility in tran
scriptomics data analysis. Along with advances in RNAseq technology 
that have lowered the costs of transcriptomic profiling to a point where 
generation of extensive concentration–response data are feasible, the 
opportunity for integration of toxicogenomics into regulatory hazard 
assessment practices has never been better. However, given that the 
large majority of effort in this area to date has focused on human health, 
it is important to make sure that consideration of ecological hazards 
does not get left behind. 

4.1. Adaptation to a high throughput compatible assay format 

Results of pilot testing with an initial set of 10 chemicals suggest that 
the life stage of fathead minnows selected for testing and the overall 
exposure format are reasonable for a high throughput capable experi
mental design. Control survival was greater than 90 % (Table 2). Water 
quality (i.e., dissolved oxygen, pH, ammonia concentrations) was 
maintained at acceptable levels for testing, even at less than half the 
volume used in the current design (Flynn et al., 2022). Additionally, 
observed treatment related toxicity was consistent with previous liter
ature values, where available. The pilot testing in the present study 
would be characterized as medium throughput rather than high 
throughput, as loading, dosing, and processing of the plates was per
formed manually. However, given the 96-well plate format, all steps, 
with the possible exception of organism loading, can be automated using 
commercial liquid handlers and automated dispensers. Automated 
dosing would not only make assay set up more rapid, but would also 
allow for randomization (e.g., Harrill et al., 2021), thereby eliminating 
spatial position on the plate as a confounding factor with concentration. 
The greatest current barrier to higher throughput is not the time 
required for the assay itself, but rather the time and labor required for 
RNA extraction and cDNA library preparation. Current HTTr with 
human cell lines eliminate these steps by employing methods that can be 
applied directly to crude cell lysates (Harrill et al., 2021). Similar, sig
nificant gains in throughput could be achieved if the downstream 
analysis methods were compatible with the use of whole-body homog
enates, rather than purified RNA. Thus, while adaptation to a 96-well 
plate compatible format represents an important first step to increase 
throughput, there is ample opportunity to improve the assay further. 

4.2. Suitability as an alternative to traditional testing 

To evaluate the overall suitability and role for a fathead minnow 
HTTr assay, tPODs were compared with biological effect concentrations 
compiled in the ECOTOX knowledgebase (Olker et al., 2022). No specific 
attempts were made to match the species, exposure duration, testing 
conditions (e.g., static versus flow through) or other design factors. Only 
filtering and sorting of the data to remove studies deemed wholly 
irrelevant to the current comparison, such as bioaccumulation or field 
studies, and broad taxonomic grouping of the data was applied. Based on 
the seven chemicals for which comparison of tPODs to either Tier 1 or 
Tier 2 fish effect concentrations from ECOTOX were possible, tPODs 
were less than the vast majority of effect concentrations from the pub
lished literature compiled in the knowledgebase. In those few cases 
where tPODs overlapped the distribution of effect concentrations in fish, 
they generally fell at the 5th percentile or lower (Fig. 1, Supplementary 
Fig. S.7). Consequently, the tPODs do appear quite protective, and thus 
could serve as reasonable lower bound toxicity estimates for initial risk- 
based screening and prioritization (e.g., similar to Paul Friedman et al., 
2020). 

The current question is whether the current tPODs (10th percentile) 
are too protective. In relation to Tier 1 effect concentrations for fish, 
there were several cases where the tPODs were over 1000 times lower (e. 
g., ZnSO4, imidacloprid; Fig. 1). Even in relation to Tier 2 fish effect 
concentrationss, the tPODs were in some cases two or more orders of 
magnitude lower than the 25th percentile of effect concentrations from 
ECOTOX (e.g., clothianidin; fluoxetine; imidacloprid; ZnSO4; Supple
mentary Fig. S.7). This level of conservativism contrasts with the results 
compiled by Pagé-Larivière et al. (2019), that found tPODs to be within 
a factor of 10 for four of the five chemicals they evaluated. However, it is 
noted that the chemicals considered by Pagé-Larivière et al. (2019) all 
act through an estrogenic mode of action, and the transcriptomic ana
lyses included in that study were generally derived from single tissues 
from adults, rather than whole body larval homogenates. Similarly, re
sults compiled in the National Toxicology Program’s approach to 
genomic dose–response modeling (National Toxicology Program, 2018) 
generally yielded transcriptomics-based points of departure (termed 
BEPOD in that document) that were within one order of magnitude of 
the most sensitive apical potency values. But once again, these data were 
from in vivo studies that applied transcriptomics to a single tissue. Ul
timately, the testing of a much larger set of chemicals will be needed to 
robustly evaluate how conservative the larval fathead minnow tPODs 
may be relative to benchmarks from traditional aquatic toxicity tests. 

A second question that we evaluated with our pilot data was whether 
fish-based tPODs would be protective for other aquatic taxa, or whether 
eco-HTTr assays with multiple representative taxa may be needed in a 
testing framework. Upon comparing the fish-based tPODs with Tier 1 
ECOTOX effect concentrations for crustaceans and insects, it was evident 
that the fish tPODs were not uniformly protective (Fig. 2). The fish tPOD 
for thiacloprid exceeded the 35th percentile of crustacean Tier 1 effect 
concentrations and the 75th percentile of Tier 1 effect concentrations for 
insects. Given that thiacloprid and other neonicotinoids were specif
ically designed for high toxicity to target insect pests, but low toxicity to 
vertebrates (Tomizawa and Casida, 2005), it might be expected that fish 
would not necessarily be as sensitive. Nonetheless, the fish tPODs for 
clothianidin and imidacloprid were protective. Somewhat surprisingly, 
the fish tPOD for paroxetine overlapped Tier 1 effect concentrations 
reported in crustacea (Fig. 2A). Based on the intended therapeutic use of 
SSRIs as antidepressants, one might assume that fish (which have a more 
complex central nervous system) would be as, if not more, sensitive to an 
SSRI than crustaceans. Nonetheless, analysis in US EPA’s Sequence 
Alignment to Predict Across Species Sensitivity tool (SeqAPASS; LaLone 
et al., 2016) suggest that orthologs for paroxetine’s target protein, solute 
carrier family 6, member 4 (slc6a4), in humans is conserved across a 
range of invertebrate taxa (Supplementary Fig. S.12). The number of 
ECOTOX records for effects of paroxetine on crustaceans was limited, 
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but overall the effect concentrations reported in ECOTOX were quite 
consistent (Fig. 2A). Ultimately, pilot testing results suggest that fish 
tPODs alone may not be protective of the full diversity of aquatic taxa, 
particularly for compounds that act through modes of action associated 
with selective sensitivity to non-vertebrate or non-animal physiology. 

4.3. Assay refinement 

In considering the development of an eco-HTTr testing protocol, 
there were several experimental design considerations that were diffi
cult to optimize in the absence of a set of concentration–response tran
scriptomic datasets. Consequently, a third major aim of the current pilot 
testing was to use the generated data to evaluate several questions 
related to assay design, optimization, and acceptability. 

One of the first questions was whether a reduced transcriptome 
approach would be viable for eco-HTTr. Human health oriented HTTr- 
based screening to date has employed the TempOSeq® assay (Yeakley 
et al., 2017; Harrill et al., 2021). TempOSeq® is a targeted approach that 
is based on hybridization and sequencing of gene-specific detector oli
gonucleotides. For humans, such detectors have been developed for 
nearly the entire transcriptome. However, for other species, the 
approach would not be viable until sizeable enough sets of detector 
oligos were developed to provide broad pathway coverage, particularly 
for pathways not well conserved with humans. Thus, a whole tran
scriptome RNAseq-based approach was employed in the current work. 

With the possibility to transition to a targeted approach in the future, 
we were interested in using the current data sets to estimate the number 
of genes that would be needed for reliable generation of tPODs. Overall, 
the current results suggest tPODs could be derived in all cases using a 
random selection of 10,000 or more transcripts (Supplementary Fig. S.8; 

Table 4). However, excluding flupyradifurone, imidacloprid, and clo
thianidin for which 10 or fewer filtered DEGs were detected overall, a 
tPOD could generally be estimated using even as few as 2,000 tran
scripts. Likewise, in cases where greater than 10 filtered DEGs were 
identified for the full data set, estimated tPODs were relatively stable 
when the evaluated number of unique transcripts exceeded 5000 (Sup
plementary Fig. S.8). Note, the present results are for completely 
random selection of transcripts. One would assume that a more strategic 
selection based on transcripts that have been previously shown to be 
differentially expressed following exposure to various stressors and/or 
known to be strongly correlated with the expression of other transcripts, 
would further enhance the utility of a more targeted sub-set for tPOD 
derivation. Indeed, that was the conceptual underpinning leading to the 
development of the Tox21 program’s sentinel gene set (S1500+; Mav 
et al., 2018). Based on these results, it is expected that once critical mass 
of whole transcriptome data has been generated, the eco-HTTr approach 
could be transitioned to a targeted, sentinel gene approach to further 
reduce costs and potentially increase throughput. 

In the near term, the largest cost-savings could potentially be ach
ieved through a reduction in the number of samples that are sequenced. 
Consequently, a second question we aimed to address through analysis 
of the pilot datasets was the viable minimum sample size that could be 
employed to estimate a tPOD with reasonable levels of variability. In 
general, the number of filtered DEGs for which a BMD could be esti
mated became more variable across the 12 random iterations of sample 
selection as the number of replicate individuals included (sample size) 
decreased (Fig. 4). However, greater variability in the number of filtered 
DEGs identified did not necessarily translate to greater variability in the 
tPOD estimates as a function of sample size (Supplementary Fig. S.9). 
This presumably reflects that the tPOD depends not only on the number 
of filtered DEGs, but the identities of the filtered DEGs in each set and 
the associated distribution of BMDs. As certain individuals are randomly 
included or excluded from the data set for various treatments, the 
overall composition of genes that have concentration-dependent 
expression and pass the various quality filters in BMD express shifts, 
resulting in a less predictable relationship between tPOD variability and 
sample size. 

Based on this interpretation, we hypothesize it would be feasible to 
reduce the number of samples sequenced at each concentration 
considerably, provided the number of individuals represented in each 
sample was increased. An example would be a pooling strategy in which 
a minimum of three pooled samples were sequenced, with each pool 
representing a minimum of three individual fish, although potentially up 
to eight or more per pool. Such an approach would reduce cost, poten
tially without increasing the variability of the tPOD, as estimated via 
iterations of random sampling. Such a pooling strategy would have an 
additional advantage of making the assay less dependent on the mass of 
RNA that can be extracted from each individual, potentially allowing use 
of RNA extraction methods that may sacrifice some extraction efficiency 
in the interest of higher throughput. 

Tentatively, three pooled replicates per treatment would be the 
minimum we would recommend (Table 4). However, inclusion of a 
fourth sample would allow for the kind of in silico subsampling applied 
here, which would allow variability of the tPODs to be assessed, which is 
important when optimizing assay design. Ideally, a boot-strapping 
approach with hundreds of random iterations would be applied. How
ever, even the less computationally costly approach of simulating a 
dozen random iterations can provide a reasonable sense of variability in 
the tPOD. Without such a subsampling or boot-strapping approach, only 
the variability associated with the curve-fitting (represented as the 
upper and lower confidence bounds of the BMD) can be estimated. Thus, 
preliminary recommendation would be a sample size of four replicate 
pooled samples per treatment, with a minimum of three individuals per 
pool (n ≥ 12 individuals exposed per treatment; Table 4). However, 
additional testing will be needed to determine whether this design truly 
improves efficiency while reducing variability as hypothesized. 

Table 4 
Assay design and acceptance recommendations based on pilot testing results.2  

Design Parameter or 
Acceptance Criterion 

Recommendation Elaboration 

Fathead minnow life 
stage 

5–6 days post 
fertilization 

Sufficient RNA; not yet 
independently feeding; advanced 
stage of organogenesis and tissue 
differentiation.  

Minimum 
transcriptome 
coverage 

10,000 unique 
transcripts 

Until sufficient data to support 
strategic design and evaluation of 
sentinel gene sets are available.  

Replicate samples per 
treatment1 

N = 4 Minimum of 3. Inclusion of 
additional sample allows for 
estimation of uncertainty using in 
silico subsampling.  

Pooled individuals 
per replicate1 

N ≥ 3 Multiple individuals across at least 
three replicate plates are needed 
for LC50 estimates and other 
phenotypic data. 
More individuals per pool expected 
to lead to reduced variability in 
final number of filtered DEGs.  

Minimum number of 
filtered DEGs 

N = 15 Average false discovery of filtered 
DEGs was 3-fold lower; all tPODs 
from pilot testing with filtered 
DEGs ≤ 10 resulted in tPODs with 
an uncertainty range exceeding 
four orders of magnitude, based on 
in silico subsampling.  

1 Experimental design recommendations based on inference from pilot study 
results. Design has not yet been tested. 

2 All recommendations subject to change as additional data are generated and 
alternative designs are evaluated. 
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A third consideration for assay refinement was whether a set of assay 
acceptance criteria could be proposed. Given that the tPOD estimate is 
based on the distribution of gene specific BMDs calculated for the 
filtered DEGs, it is intuitive that greater numbers of filtered DEGs would 
result in more confident tPOD determination (e.g., Supplementary 
Fig. S.10). In essence, the more values in the BMD distribution, the more 
confidently-one can determine the 10th percentile. Empirically, we 
found that chemicals for which less than 25 filtered DEGs were deter
mined produced highly variable tPOD estimates over 12 iterations of 
random in silico sample selection (Fig. 3). Likewise, background identi
fication of random filtered DEGs was quite low; on average, just five 
false discoveries per experiment and less than 15 false filtered DEGs in 
95 % of cases were identified (Supplementary Table S.5). Together, 
these two lines of evidence suggest that a minimum of 15 filtered DEGs 
(15 BMDs) would be reasonable as an assay acceptance criterion 
(Table 4), at least for the current assay design and analysis pipeline 
employed. Transcriptomic points of departure calculated based on less 
than 15 BMDs would be considered highly unreliable in the present 
assay. Given this consideration, our current estimates for three of the 
four neonicotinoid-related compounds should be viewed as unreliable 
estimates for fish. We would not recommend their use for risk-based 
screening and prioritization without re-running the assay over a 
refined concentration range, or with a different design, such as the 
pooled design suggested above, that would yield more filtered DEGs. 

4.4. Conclusions and next steps for Eco-HTTr 

Overall, the pilot testing of the larval fathead minnow-based eco- 
HTTr assay suggests that continued development of this assay for po
tential inclusion in a tiered hazard characterization framework is war
ranted. In its present iteration, the assay was not substantially more 
rapid than a 96 h acute toxicity test. That said, the richness of the data 
generated in terms of ability to capture not only lethal effects, but a 
broader suite of biological impacts that could lead to more subtle, 
chronic impacts on fitness is an advantage. At the same time the data 
complexity was reduced to a single point estimate that could be used in 
risk-based screening. Based on initial comparisons with traditional 
toxicity data, the method appears protective, and in that respect useful 
as an early screening and prioritization tier, but perhaps more conser
vative than might be optimal. As additional chemicals with diverse 
modes of action are tested, it will be possible to better evaluate the 
overall degree of conservatism of the eco-HTTr approach. 

It is noted that the current comparison of tPODs to ECOTOX Tier 1 
and Tier 2 effect concentrations are based on nominal concentrations in 
the eco-HTTr tests. While this is consistent with the general lack of 
exposure verification in the high throughput screening program 
(Thomas et al., 2019), it is a recognized potential source of error. Free 
concentrations in the test well may be substantially lower than nominal, 
depending on the properties of the chemical being tested (e.g., hydro
phobicity, stability, volatility, etc.) as well as the assay conditions 
(surface area to volume ratios, dissolved organic matter in the test well, 
etc.; Henneberger et al., 2021; Proença et al., 2021; Fischer et al., 2017). 
The parameterization and use of models for predicting the freely dis
solved chemical concentration in the larval fathead minnow eco-HTTr 
assay would allow for more reliable comparison to traditional toxicity 
values. Likewise, sufficient analytical exposure verification to either 
establish or reject the modeled estimates of free concentrations will also 
be needed. 

Although based on a limited number of chemicals, the present results 
suggest fish-derived tPODs are not protective for all aquatic organisms. 
Thus, the development of parallel assays for additional surrogate aquatic 
taxa, such as plants/algae and invertebrates, appears warranted. This 
adaptation is already underway (Flynn et al., 2022). Additional testing 
of a broader chemical set in eco-HTTr assays with multiple species will 
help to better inform how many different eco-HTTr assays may be 
needed in a testing battery, and will also yield datasets that can support 

selection of more targeted sentinel gene sets that could be employed in 
future testing. 

Perhaps the most critical insights gained from pilot testing of the eco- 
HTTr approach were those into assay design (Table 4). A sample size of 
n = 8 individuals (allowing for a maximum of n = 7 for subsampling) per 
treatment did not lead to reliable reductions in tPOD variability/un
certainty, as estimated via in silico subsampling, compared to smaller 
sample sizes. Instead, variations in the number and composition of the 
filtered DEGs determined for different iterations of sample composition 
were a greater determinant. Consequently, we hypothesize that vari
ability in the DEG composition could be minimized by including as many 
exposed individuals as is feasible in the sample population and pooling 
individuals into a smaller number of replicates for sequencing. We hy
pothesize that a relatively small number of pooled samples at each 
concentration would appear be sufficient for the concentration–response 
modeling needed for BMD and tPOD estimation, although these hy
potheses need to be tested. 

Finally, the pilot approach was agnostic to gene identity. All filtered 
DEGs and associated BMDs were included in the estimation of the tPOD. 
This largely limits application of the results to potency evaluation. 
However, given the richness of the transcriptomic data set, there is a 
recognized opportunity to identify pathway-specific points of departure 
(e.g., Thomas et al., 2012; Pagé-Larivière et al., 2019; Harrill et al., 
2021). Derivation of pathway-specific points of departure can facilitate 
increased mode of action insight from the data, which may support an 
additional range of risk assessment applications. With updates and 
annotation of the fathead minnow genome (Martinson et al., 2022), a 
pathway-based approach should be feasible for the present assay, pro
vided there are adequate numbers of filtered DEGs to support further 
subdivision of the BMDs into pathway groups. However, an analogous 
approach may prove more challenging for species with less developed 
genomes and/or with substantial unannotated portions of their genome 
(e.g., Colbourne et al., 2011; Lee et al., 2019). 

Overall, the current data set represents the most extensive generation 
of ecologically focused transcriptomics-based point of departure data to 
date. Significant insights were gained into testing parameters that could 
improve throughput, reduce cost, and enhance quality evaluation of the 
resulting data. Nonetheless, current conclusions regarding the overall 
utility of the approach are tentative. More robust testing of the approach 
with a larger battery of chemicals representing diverse modes of action 
are needed to draw firm conclusions about the future role of the assay as 
part of an overall approach to 21st century toxicity assessment. 
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