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Abstract: Background: The number of patients with fragility fracture has been increasing. Although
the increasing number of patients with fragility fracture increased the rate of fracture (refracture),
the causes of refracture are multifactorial, and its predictors are still not clarified. In this issue, we
collected a registry-based longitudinal dataset that contained more than 7000 patients with fragility
fractures treated surgically to detect potential predictors for clinical refracture. Methods: Based on
the fact that machine learning algorithms are often used for the analysis of a large-scale dataset,
we developed automatic prediction models and clarified the relevant features for patients with
clinical refracture. Formats of input data containing perioperative clinical information were table
data. Clinical refracture was documented as the primary outcome if the diagnosis of fracture was
made at postoperative outpatient care. A decision-tree-based model, LightGBM, had moderate
accuracy for the prediction in the test and the independent dataset, whereas the other models had
poor accuracy or worse. Results: From a clinical perspective, rheumatoid arthritis (RA) and chronic
kidney disease (CKD) were noted as the relevant features for patients with clinical refracture, both of
which were associated with secondary osteoporosis. Conclusion: The decision-tree-based algorithm
showed the precise prediction of clinical refracture, in which RA and CKD were detected as the
potential predictors. Understanding these predictors may improve the management of patients with
fragility fractures.

Keywords: machine learning algorithms; fragility fracture; clinical refracture; LightGBM; rheumatoid
arthritis; chronic kidney disease

1. Introduction

Fragility fractures are associated with increased morbidity and an economic burden.
In 1990, the number of fragility fractures was 1.7 million worldwide, which is estimated to
rise to 6.3 million by 2050 [1]. This would surely induce an economic burden [2–4]. Scoring
models for fragility fractures have been reported to precisely manage patients with risk
factors [5]. Among these factors, patients with fragility fractures are at an increased risk of
sustaining another fracture (refracture) [6]. To prevent refractures, fracture liaison services
have been established, and risk factors for refractures have been investigated [5,7]. Recent
studies have reported that patients with rheumatoid arthritis (RA), multiple fractures
history, and old aged women are at an increased risk of fracture [6,8,9]. Although those
predictors for refracture were crucial when managing patients with fragility fracture, no
literature has reported on prediction models by machine learning algorithms for clinical
refractures, to our knowledge.
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Machine learning algorithms use large-scale clinical data and learn patterns to assess
outcomes [10]. In the medical field, automatic prediction of cancer recurrence has been
reported using artificial neural networks (ANNs) [10–12]. While ANNs are biologically
based on studies of the nervous system, they aim for nonlinear regression of classification,
and are not biologically realistic in their details [13]. The system comprises several layers
of a computational unit (artificial neuron), in which connections of each unit are highly
non-linear. Convolutional neural networks (CNNs), a class of ANNs, typically have specific
layers: convolution layers and pooling layers. The two layers efficiently function as feature
extractions for digital images [14]. In fact, CNNs are applied to make diagnoses based
on images such as computed tomography, magnetic resonance imaging, radiography,
ultrasound images, and pathological images [15–20].

In contrast, there is another algorithm, a decision tree model [21–23]. The main
components of the model are nodes and branches, and an important step in building a
model is splitting. As only input variables related to the target variables are used to split
a parent node and make branches into child nodes, this algorithm is also based on non-
parametric evaluation [24]. Previous studies have reported the effective use of the decision
tree model for table data by extracting optimal features [25–27]. In practice, clinical data
contain table data and/or images; thus, an appropriate model should be applied.

We previously investigated the refracture rates using the longitudinal cohort data of
patients treated surgically for fragility fractures [28]. The number of registered patients
was over 7000 and the format was table data, which allowed us to hypothesize that the
prediction models would be built using decision-tree-based algorithms, ANN, or other
popular models. The aims of this current study were (1) to compare the accuracy of machine
learning algorithms that predict clinical refracture after fragility fracture treated surgically,
and (2) to clarify the relevant features for patients with clinical refracture.

2. Materials and Methods
2.1. Study Design and Patients

This study was designed as a registry-based study approved by the local ethics
committee of Hokkaido University Hospital (017-0448). Informed consent was obtained
from all patients prior to inclusion. Figure 1 shows the flow chart of the data sets; the
patients with non-vertebral fragility fractures treated surgically were registered. Among
them, patients with two or more missing input data were excluded from the analysis.
An independent dataset was created by randomly choosing one hospital. The remaining
patients were also randomly subdivided into training (75%) and test (25%) datasets.

Input data were in table data format, which were collected as the following: sex; age;
body mass index (BMI); primary fracture site (proximal part of the femur, proximal part
of the humerus, and distal part of the radius); date of surgery; comorbidities including
RA, diabetes mellitus, chronic kidney disease (CKD), and chronic obstructive pulmonary
disease; presence of malignant tumor; warfarin use; glucocorticoid use; and pre- and
post-operative treatments for osteoporosis (bisphosphonate, selective estrogen receptor
modulator, teriparatide, and denosumab). We also investigated whether the durations of
follow-ups were more than 24 months. In the case that the patients had symptoms such as
pain at the postoperative outpatient follow-up, radiographs were taken and the diagnoses
of clinical refracture were made.

2.2. Prepared Models
2.2.1. Decision Tree Model

LightGBM was used as a decision-tree-based ensemble learning algorithm designed
by Microsoft Research Asia [21]. Gradient boosting is a member of the ensemble learning
paradigm. The learning procedure consecutively fits new models to provide a more accurate
estimate. This is aimed to construct multiple weak learners to establish a more accurate and
stronger model [24]. Although this ensemble part generates highly accurate models, there
are several limitations, such as the unsatisfactorily long training time and scalability [29].
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To solve some of these problems, LightGBM adopts a histogram algorithm and leaf-
wise tree growth, which identifies the best leaf with the highest gain and only splits the best
leaf, resulting in an asymmetrical tree [24]. This structure successfully decreased memory
occupancy and improved accuracy compared with other variants [24,30]. In medical fields,
this model has been applied successfully to assess each outcome [26,27].

2.2.2. Feature Selection and Relative Importance

Feature selection was applied according to the implementation of LightGBM to detect
the relevant features among the input data for clinical refracture. This is employed to
remove redundant and irrelevant features to select the optimal feature subset [24,30].
Zhang stated that two kinds of importance types are contained in the LightGBM: one is
“split”, and the other is “gain” [28]. “Split” contains the number of times the feature is used
in a model, whereas “gain” reflects the total gains of splits which use the feature. Different
from the “split,” the “gain” measures the actual decrease in node impurity. The feature
rankings of gain-based importance can be obtained after LightGBM fitting [31,32], in which
gain-based feature selection was adopted and relative importance was calculated.

2.2.3. ANN: Artificial Neural Network Model

We implemented an ANN model that consists of dense layers, also known as fully
connected layers, and activation layers with dropout layers. As the details of the ANN
model are shown in Figure 2, each dropout layer was set to discard its value with a
probability of 0.2. The sigmoid was adopted as the final activation layer. This model was
modified from a previous study in the medical fields [10].
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2.2.4. SVM: Support Vector Machine Model

The SVM algorithm was originally proposed to construct a linear classifier in 1963
by Vapnik [33]. This algorithm aims to create a decision boundary between two classes
that enables the prediction of labels from one or more feature vectors [34]. It enhances
classification accuracy by plotting a multidimensional hyperplane that divides classes and
increases the margins between classes [10,35]. In the medical field, it has been applied to
colon cancer tissue classification using selected sequence data [36].

2.2.5. Implementation Details

The experiments were performed on a computer comprising CPU® RyzenTM 9 5950X
@3.4 GHz, Advanced Micro Devices, Inc., Santa Clara, CA, USA; RAM 64 GB; and GPU
NVIDIA® GeForce RTXTM 3090, NVIDIA Corporation, Santa Clara, CA, USA.

2.3. Statistical Analysis

Categorical variables were evaluated using the chi-square test, while continuous
variables (age and BMI) were analyzed using the Mann−Whitney U test since they were
not regarded as corresponding with the normal distribution using the Shapiro−Wilk test.
Statistical analyses were conducted using a logistic regression model with JMP Pro version
14 (SAS Institute, Inc., Cary, NC, USA). The significance level was set at p < 0.05.
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3. Results
3.1. Study Characteristics

Table 1 shows that the enrolled patients with a mean age of 77.2 years and the ratio
of females was approximately 79.7%. As the main site of fragility fractures, 73.7% of the
patients had fractures at the proximal femur. Post-operatively, 28.6% of the patients had
postoperative treatments for osteoporosis (bisphosphonate, selective estrogen receptor
modulator, teriparatide, and denosumab). In the cohort, the duration of follow-up for more
than 24 months was 39.2%, and the incidence of clinical refracture was estimated to be 4.4%.

Table 1. Demographic data of the enrolled patients.

Variables

Sex (female) 79.7%
Age 77.2 ± 0.15

Body Mass Index 21.7 ± 0.06
Primary fracture site

Proximal part of the femur 73.7%
Proximal part of the humerus 6.3%

Distal part of the radius 20.0%
Diabetes 19.1%

Chronic kidney disease 21.6%
Rheumatoid arthritis 2.6%

Chronic obstructive pulmonary disease 3.9%
Presence of malignant tumor 12.1%

Glucocorticoid use 2.8%
Warfarin use 5.2%

Pre-operative Ca or Vit. D 6.2%
Pre-operative treatments for osteoporosis 7.9%

Post-operative Ca or Vit. D 12.7%
Post-operative treatments for osteoporosis 28.6%

Follow-ups more than 24 months 39.2%
Data presented as mean (standard error of the mean). Ca: calcium; Vit. D: vitamin D3.

3.2. Comparison of the Models

There were no significant differences in patient demographic data, including the
incidence of clinical refractures between the training and test sets, as shown in Table 2.
LightGBM had an area under the curve (AUC) of 0.75 in the test dataset, as well as an AUC
of 0.90 in the training dataset, whereas the ANN had an AUC of less than 0.60 in either set,
as shown in Figure 3. Because the training was not successfully conducted by the SVM,
this model could not describe the receiver operating curve.
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Table 2. Comparison of demographic data between the training and test sets.

Variables Training Set Test Set p-Value

Sex (female) 79.6% 79.9% 0.584
Age 77.2 ± 0.18 77.2 ± 0.28 0.834

Body Mass Index 21.6 ± 0.06 21.8 ± 0.13 0.975
Primary fracture site

Proximal part of the femur 73.6% 73.9% 0.837
Proximal part of the humerus 6.3% 6.1% 0.895

Distal part of the radius 19.9% 20.1% 0.758
Diabetes 19.6% 18.8% 0.459

Chronic kidney disease 21.6% 21.5% 0.915
Rheumatoid arthritis 2.7% 2.5% 0.785

Chronic obstructive pulmonary disease 3.8% 4.1% 0.588
Presence of malignant tumor 12.5% 11.1% 0.077

Glucocorticoid use 2.8% 2.7% 0.758
Warfarin use 5.0% 5.5% 0.333

Pre-operative Ca or Vit. D 6.0% 6.7% 0.262
Pre-operative treatments for osteoporosis 7.9% 8.0% 0.803

Post-operative Ca or Vit. D 12.9% 12.4% 0.63
Post-operative treatments for osteoporosis 28.7% 28.6% 0.92

Follow-ups more than 24 months 39.3% 39.0% 0.781

Data presented as mean (standard error of the mean). Ca: calcium; Vit. D: vitamin D3.

3.3. Relevant Features by the LightGBM

LightGBM captured the relevant features of patients with clinical refracture during
training. The higher relative importance of clinical refractures compared with no post-
operative treatment, which tended to be associated with the incidence of refracture in our
previous study [28], included CKD, RA, presence of malignant tumor, primary fracture site:
proximal part of humerus, and warfarin use (Table 3). Glucocorticoid use scored 19.3 as rela-
tive importance, which was low compared with CKD, RA, or no post-operative treatments.

Table 3. Relative importance of the top six features among the categorical variables.

Feature Names Relative Importance

Chronic kidney disease 52.1
Rheumatoid arthritis 31.4

Presence of malignant tumor 28.4
Primary fracture site: proximal part of humerus 27.8

Warfarin use 27.2
No post-operative treatments for osteoporosis 26.3

3.4. Assessments in the Independent Dataset

Figure 4 shows that LightGBM had an AUC of 0.74 in the independent dataset.
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4. Discussion

We suggested a prediction model for clinical refracture after fragility fracture, which
was performed using LightGBM, the decision-tree-based model. This model had an AUC
of approximately 0.75 for prediction in the test dataset or independent dataset, whereas
the other models had an AUC of less than 0.60 or worse. Considering that assessment
models with an AUC of 0.70−0.90 are regarded as moderate [37], our model had moderate
accuracy. In addition, RA and CKD were noted as the relative features of patients with
clinical refracture.

When considering the clinical application of machine learning, appropriate algorithms
should be selected to ensure an acceptable outcome. Two- or three-dimensional images
have been accurately analyzed by CNN, a type of ANN [13–17]. Our report revealed,
however, that the ANN had poor accuracy, whereas the decision-tree-based model showed
satisfactory performance. The input data of our study were table data, and previous reports
stated the effective use of the decision tree model for the table data [22]. Hence, our results
are in accordance with this previous report.

Although machine learning algorithms assess the clinical outcome precisely, there
is still a gap for clinical application; the black box covers the process until the output.
In short, how do we understand the decisions suggested by machine learning [38]? To
overcome this challenge, the concept of explainable artificial intelligence has been proposed.
This field is concerned with the development of new methods that explain and interpret
machine learning models [39]. In this study, for example, LightGBM was able to reveal the
basis of the assessment according to feature importance. Similarly, feature importance and
explainable artificial intelligence are linked [39].

Feature importance in our study showed the several potential predictors for clinical
refractures, which can be divided into two groups. First, a group contained the items
already detected by previous reports [9,28]. RA and no post-operative treatments for
osteoporosis correspond to this. In another perspective, our model appeared reasonable
since these items were detected as the top ranked features. In contrast, the other group
contained unreported factors, such as CKD.

Control of phosphorus accumulation is crucial to prevent secondary osteoporosis [40].
Decreased glomerular filtration of phosphorus and hyperphosphatemia result in abnormal
bone turnover and mineralization [41]. In fact, osteoporosis is more frequent in patients
with CKD than those without CKD. To prevent fragility fracture in patients with CKD,
adding vitamin D, reducing phosphate intake, and evaluating whether parathyroidectomy
is essential is especially important [41]. In our study, CKD was detected as the top relevant
feature of clinical refracture. As this is a well-known factor for secondary osteoporosis,
further investigation is needed to verify the association with refracture.

RA was also detected as a relevant feature for clinical refracture, and RA is known
to be a risk factor for refracture as well as fracture [7,9]. Osteoclasts are the main cell
population responsible for bone loss in patients with RA [42]. For their differentiation, they
require the intervention of macrophage colony-stimulating factor and the receptor activator
of nuclear factor kappa B (RANK). As an osteoporosis treatment, denosumab inhibits
osteoclast activity by targeting the RANK ligand [43]. Bisphosphonates also promote
the apoptosis of osteoclasts, resulting in the suppression of bone turnover [44]. These
mechanisms also support that no postoperative treatments for osteoporosis were detected
as relevant features.

Previous studies showed the effectiveness of the medical intervention for refrac-
ture [45]; our previous report using part of the data in this study also showed the effective-
ness of post-operative treatments for osteoporosis using the general statistics [28]. Thus,
this study introduced the potential predictors, the relative importance of which scored
equal to or greater than no post-operative treatments for the osteoporosis. Intriguingly,
glucocorticoid use scored less than no post-operative treatments. Mono-variate analysis
in our original data revealed that the patients with glucocorticoid use were significantly
associated with RA, as well as clinical refractures (data not shown). This indicated the
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possibility of RA as a confounding factor. Further analyses should be conducted to clarify
the roles of glucocorticoid according to duration or accumulation.

We devised an automatic prediction model for clinical refracture after a fragility frac-
ture. The top relevant features of the refractures were involved in secondary osteoporosis.
The precise prediction and understanding of the relevant features can lead to improved
individual activity and avoidance of social burden.

This study had several limitations. First, the duration of follow-up was irregular
among the enrolled patients. Second, this study was conducted only in Japan. Literature
about fragility fracture in Japan also revealed female dominance among the population of
fragility fracture [46]. Third, the enrolled patients were patients with non-vertebral fragility
fractures who were treated with surgery alone. Fourth, cardiovascular diseases among
the enrolled patients were not evaluated. Instead, we analyzed a related item—warfarin—
which works against vitamin K, improving bone homeostasis and increasing bone mineral
density [47,48]. Fifth, the long-term cohort (maximum: 10-year period) might have resulted
in the fragility fracture and clinical refracture being less correlated.

5. Conclusions

We presented a prediction model with moderate accuracy for clinical refractures after
fragility fractures using LightGBM, a decision-tree-based algorithm. Our report showed
the effective use of this decision-tree-based algorithm for the table data format. From
a clinical perspective, RA and CKD were noted as relevant features for patients with
clinical refracture.
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