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There are multiple diseases or conditions such as hereditary hemochromatosis,
hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can
cause iron overload in the human body. These diseases or conditions are frequently
associated with osteoarthritic phenotypes, such as progressive cartilage degradation,
alterations in the microarchitecture and biomechanics of the subchondral bone, persistent
joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest
that the conditions of pathological iron overload are associated with these osteoarthritic
phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron
overload-related diseases and conditions. This review aims to summarize the findings and
observations made in the field of iron overload-related OA while conducting clinical and
basic research works. OA is a whole-joint disease that affects the articular cartilage lining
surfaces of bones, subchondral bones, and synovial tissues in the joint cavity.
Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the
disease. In this review, we will elucidate the cellular and molecular mechanisms associated
with iron overload and the negative influence that iron overload has on joint homeostasis.
The promising value of interrupting the pathologic effects of iron overload is also well
discussed for the development of improved therapeutics that can be used in the field
of OA.
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1 INTRODUCTION

Osteoarthritis (OA) is a common degenerative and progressive joint disease that is the primary cause
of joint pain, joint dysfunction and deformity, and limb disability. This disease negatively affects the
quality of life. (Hunter et al., 2020). The term OA is used to define inflammatory diseases that occur
in the joint and surrounding tissues of the human body and are caused by joint biomechanics,
degeneration, trauma, or other multiple metabolic factors (Xia et al., 2014). However, complicated
mechanisms involved in the pathogenesis of OA significantly limit the development of biological
disease-modifying OA drugs (Van Spil et al., 2019).

Studies reported in the past decades have revealed the association between iron homeostasis and
OA. Diseases or conditions with diverse etiologies can result in iron overload (Jeney, 2017). Iron
overload is also associated with OA of the joints in patients suffering from diseases associated with
iron overload (such as hereditary hemochromatosis (HH), thalassemia, hemophilia, sickle cell
disease (SCD)). Iron overload can also result in aging and estrogen deficiency (Dallos et al., 2013;
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Chehade and Adams, 2019; Simão and Cancela, 2021). HH is the
leading case of primary iron overload (Powell et al., 2005), while
secondary iron overload is usually caused by the introduction of
excess iron in the body. Excess iron can result in iron overload
anemia (thalassemia, congenital anemia, and myelodysplastic
syndrome, etc.), and blood transfusion may be needed under
these conditions (Heimpel et al., 2003; Meerpohl et al., 2014;
Taher and Saliba, 2017; Hoeks et al., 2018). Excessive circulating
iron exceeds the buffering capacity of transferrin (Tf). This results
in cellular and tissue oxidative damage and organ dysfunction
(Abraham and Kappas, 2005). It was found that the level of iron
ions was significantly high in the synovial fluid (Yazar et al.,
2005), and there was an accumulation of hemosiderin on the
synovium of OA patients (Ogilvie-Harris and Fornaiser, 1980). It
was also observed that the level of serum ferritin in patients
suffering from OA could be positively correlated with the degree
of damage of knee cartilage (Kennish et al., 2014). Iron overload
represents the situation where an excess of iron accumulates in
the body. This can potentially cause damage to cells. Cell damage
can be attributed to peroxide stress, and pathological changes of
various tissues may occur under these conditions (Brissot et al.,
2019). Therefore, it is important to understand the role of iron in
the development of OA under conditions of iron overload.

This review presents the relationship between iron overload
and OA progression. Herein, the progress made in the field has
also been presented. We have also discussed the clinical
significance and cellular mechanisms of iron

overload-associated OA to determine novel prophylactics,
therapies, and predictive values that can be used for the
treatment of OA (Figure 1).

2 DETRIMENTAL ROLE OF IRON
OVERLOAD ON JOINT HOMEOSTASIS AND
FUNCTION
Clinical observations revealed that osteoarthritic phenotypes such
as progressive cartilage degradation, altered microarchitecture
and biomechanics of subchondral bone, persistent joint
inflammation, proliferative synovitis, and synovial pannus are
the common characteristics associated with iron overload
(Nieuwenhuizen et al., 2013; Tchetina et al., 2016; Mobasheri
et al., 2017). The osteoarthritic phenotypes have been found in
multiple animal models used to study iron overload (Carroll,
2006; Burton et al., 2020). This indicated the adverse effects of
excess iron on joint homeostasis and joint function. Much work
has been done to understand the effect of iron overload on the
progression of OA (Simão et al., 2019; Jing et al., 2020), but the
specific relationship between iron overload and progression of
OA is yet to be completely understood. The clinical significance of
iron overload and the cellular mechanisms involved with OA
associated with iron overload should also be researched further.
In this section, we have discussed the observations made during
the study of iron overload-associated OA. The results obtained by

FIGURE 1 | Overview of iron overload etiologies and osteoarthritic phenotypes. Diseases/conditions with diverse etiology, such as hereditary hemochromatosis,
hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency could lead to iron overload in the human body. Changes that affect iron overload in the joint
increase the susceptibility to developing osteoarthritic phenotypes, including progressive cartilage degradation, altered microarchitecture and biomechanics of
subchondral bone, and persistent joint inflammation, proliferative synovitis, and synovial pannus.
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conducting clinical research and studying animal models have
been presented.

2.1 Clinical Findings
2.1.1 Osteoarthritic Joint Complications in Hereditary
Hemochromatosis
The term hemochromatosis encompasses a group of disorders
caused by iron overload. HH is the most common disorder
belonging to this group that is caused by the mutation of the
homeostatic iron regulator (HFE) gene (Alqanatish et al., 2021).
Most patients suffering from HH in northern Europe are
homozygous. In these cases, missense mutations can be
observed at position 282 of the HFE protein (C282Y)
(McLaren and Gordeuk, 2009). Another type of HFE gene
mutation results in a change in the 63 amino acids (H63D)
(Milman et al., 2004; Gunel-Ozcan et al., 2009). It has also been
observed that other subtypes of HH can be caused by mutations
in the hepcidin antimicrobial peptide (HAMP) gene-encoding
hepcidin or the main inducer genes (such as HFE, transferrin
receptor-2 gene (TfR2), and hemojuvelin gene (HJV)) associated
with hepcidin expression (Camaschella et al., 2000; Roetto et al.,
2003; Papanikolaou et al., 2004).

HFE gene mutations are primarily characterized by systemic
iron overload in multiple tissues, such as the tissues in the liver,
heart, and kidney (Wagner et al., 2019). It has been recently
reported that the iron content increased consistently in patients
suffering from HH (Kent et al., 2015), However, the researchers
did not explore the relationship between iron levels and the
severity of the arthritic disease. Ferritin is currently considered
the “gold standard” for iron contents (Abtahi et al., 2019). Ferritin
levels in the synovial fluid under conditions of HFE gene
mutation in patients suffering from OA were found to be
higher than the ferritin levels recorded in HFE wild-type OA
patients (Carroll et al., 2010). Additionally, high levels of serum
ferritin indicated that HH was characterized by a clinically
definable arthropathy that could be attributed to iron
overload. It was also revealed that iron overload was likely to
be a critical determinant of joint disease in patients suffering from
HH (homozygosity for C282Y) (Carroll et al., 2011). Recently,
results obtained from a case-control study revealed that patients
with HH were at a higher risk of suffering from OA than the
members belonging to the control groups (50.5 vs 28.9%).
Specifically, relative to controls, HH patients were at a higher
risk of needing knee and hip replacement prostheses. The degree
of iron overload (ferritin concentration >1000 μg/L) influenced
OA progression. This suggested that severe joint complications
could be observed in patients with substantially elevated ferritin
levels (Richette et al., 2010).

2.1.2 Arthritic Manifestations of Thalassemia
Iron overload-linked anemia is characterized by ineffective
erythropoiesis that causes hepcidin inhibition. This, in turn,
results in a high degree of absorption of dietary iron and
secondary iron overload (Gupta et al., 2018). A typical case is
β-thalassemia caused by the abnormal β-globin formation and
the subsequent apoptosis of mature erythrocytes (Manolova et al.,
2019). Consequently, this stimulates the production of

erythropoietin in the human body, and an increase in the
levels of immature erythroid precursors can also be observed.
It has also been observed that erythropoiesis is ineffective, and the
degree of continues to increase (Ribeil et al., 2013). An increase in
the number of erythroid precursors results in an increase in the
secretion of erythroid regulatory factors. This results in the
inhibition of hepcidin and an increase in the iron levels that
promotes the production of erythrocytes, resulting in increased
levels of iron absorption (Kautz et al., 2015; Liu et al., 2019). In
addition, regular blood transfusion therapy is required for
thalassemia major patients to maintain adequate hemoglobin
concentrations (Viprakasit and Ekwattanakit, 2018). The
ability of the human body to actively excrete excess iron is
limited. Hence, long-term blood transfusion could result in
iron overload, despite the use of iron chelators during the
process of blood transfusion (Shah et al., 2010; Al-Hakeim
et al., 2020). This results in excess iron deposits in various
organs (especially in the pancreas, liver, and heart) and
sometimes in the joints (Altinoz et al., 2012).

Thalassemia-associated arthritic manifestations are one of the
most common co-morbidities in thalassemia patients
(Noureldine et al., 2018). It has also been observed that iron
overload is one of the primary manifestations of thalassemia,
which to a large extent leads to the occurrence of terminal organ
joint complications in thalassemia patients. A study conducted as
early as the 1970s involved the examination of arthropathy in
50 transfusion-dependent β-thalassemia patients of European
descent (Gratwick et al., 1978). Among these participates, 18
patients developed mild joint pain (after exercise) that lasted
several days. Four patients suffered from severe symptoms lasting
for at least 3 months, and they were not capable of walking to
school or work frequently. Pain in the joints of calves, ankles, or
forefeet was reported. Bone histomorphometry revealed
microfractures, osteomalacia, and increased intercellular spaces
between osteoblasts and osteoclasts in lesions of
osteoarthropathy. Interestingly, iron deposits were detected
along the calcification front and cement lines, with possible
contributions from iron overload to the pathophysiology of
the joint disease. In the late 20th century, prior to the
invention of iron-chelating drugs, ankle OA in patients with
thalassemia was frequently reported. Bone marrow dilatation,
iron deposition in the joint microenvironment, or
hypoparathyroidism, which together led to OA, were often
observed in these patients (Noureldine et al., 2018; Dhawan
et al., 2020; Quarta et al., 2020).

2.1.3 Sickle Cell Disease- and Hemophilia- Associated
Osteoarthritis
SCD is one of the most common autosomal recessive blood
hereditary diseases, affecting approximately 300,000 newborns
every year (Abraham et al., 2016). Single nucleotide mutation in
the Hb β-chain coding gene is responsible for the molecular
mechanism of this disease occurrence (Dever et al., 2016; Kato
et al., 2018). SCD-associated OA is generally multiarticular and
symmetrical and tends to occur in large joints and lower
extremities. Radiographs reveal reduced periarticular bone
mass, joint space narrowing, and synovial inflammation
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(Vanderhave et al., 2018). Clinical findings have revealed that the
iron levels of SCD patients could not be accurately determined.
Some researchers have linked SCD to iron overload, while others
have observed iron deficiency in SCD patients (Koduri, 2003;
Koren et al., 2010). Interestingly, this phenomenon could be
partly explained by the fact that the level of iron deposition varied
significantly from patient to patient. The variations could be
observed by conducting an autopsy (Natta et al., 1985).
Nevertheless, results from recent clinical retrospective research
works revealed that approximately 70% of patients suffering from
SCD and exhibiting high serum iron levels had a relatively low
bone mass, indicating that iron overload (observed under these
conditions) may have an adverse effect on osteochondral
homeostasis (Sadat-Ali et al., 2011).

Although clinical findings have revealed that osteoarthritic
phenotypes are one of the common complications in patients
with hemophilia (Braner, 2018), related pathogenesis and
mechanisms of disease progression are yet to be fully understood.
Despite this, the frequent occurrence of OA in patients suffering
from hemophilia has led to a growing curiosity about the role of iron
in promoting OA. Repeated bleeding from the same joint leads to
progressive joint damage and the development of hemophilic
arthropathy. This results in joint pain, deformity, and disability
(Yoo et al., 2009). Iron overload-mediated pathogenesis of
hemophilic arthropathy is associated with multifactorial
pathological processes. Hemophiliac arthropathy is a type of
secondary OA. The deposition of iron in the joints can directly
lead to the degeneration of synovium, cartilage, and subchondral
components. Von Drygalski et al. established the relationship
between cartilage hemosiderin in hemophilic joints and joint
deterioration using the innovative joint-specific MRI T2*
sequences (von Drygalski et al., 2019). Moreover, besides the
accumulation of iron in joints (a critical factor that influences the
process of cartilage degradation), bone structure bleeding,
hemosiderin deposition, and angiogenesis in subchondral cysts
were also observed in 78% of the joints of the patients suffering
from hemophilia (Zhou J. Y. et al., 2021).

2.1.4 Aging- and Estrogen Deficiency- Induced
Osteoarthritis
Although age, mechanical load, and joint injury are the primary
risk factors, pathophysiology and internal mechanisms associated
with OA have not been fully explored (Shane Anderson and
Loeser, 2010; Courties et al., 2015). During the aging process, iron
accumulates in various tissues and organs due to the lack of the
main mechanism of iron excretion in the human body (Mangan,
2021). Thus, it is speculated that the degenerative cartilage
changes in middle-aged and elderly patients with OA may be
related to iron overload in the joints. It is believed that the level of
iron significantly influences age-related diseases because iron can
promote the generation of free radicals. Multiple independent
clinical studies have been conducted, and the results have
indicated that elderly patients with high ferritin content have a
four-fold increased risk of suffering from OA than patients with
low ferritin content in their bodies. It has also been observed that
the ferritin content has a positive association with the severity of
joint through imaging analyses (Park et al., 2012; Jing et al., 2021a;

Ke et al., 2021). Moreover, studies indicated that the incidence of
high iron storage was higher in the elderly compared with
populations of other ages, and this transition was more
pronounced in older women than in men (Chen et al., 2015).
This phenomenon may be related to estrogen deficiency in aged
women under post-menopausal conditions (Ko and Kim, 2020).

Estrogen deficiency, observed during menopause, is currently
considered a critical cause of menopausal manifestations and
symptoms (Kim and Kim, 2019). During menopause, significant
changes in metabolism occur in the human body. In addition to
multiple endocrine and hormonal changes, changes in the process
of iron metabolism are also observed during the complex and
delicate process of the menopausal transition (Trenti et al., 2018;
Shin et al., 2020). The serum ferritin concentrations in
postmenopausal women were two-to three-fold higher than
the ferritin concentrations in women not in their menopausal
stage. The levels are roughly similar to the reduced levels of
estrogen (Park et al., 2012; Ke et al., 2021). It has been widely
reported that besides a significant reduction in estrogen
production, an excessive increase in iron or ferritin levels can
also pose health risks in postmenopausal women (Liu et al., 2006;
Kim et al., 2012; Feldbrin et al., 2016). Thus, the relatively higher
incidence and susceptibility of old women toward OA compared
to men could be explained, and this could also be attributed to
iron overload (Zhang et al., 2001). To some extent, the cessation
in reproductive function also decreases iron loss associated with
menstruation or pregnancy (Breymann, 2015; Pedlar et al., 2018).
The researchers presented clinical evidence that increased
systemic iron can potentially be an independent adverse factor
in the progression of OA in postmenopausal women.

2.1.5 Comparison in Term of Iron Metabolism and
Osteoarthritis Severity
Iron metabolism and homeostasis dysregulation are commonly
observed in multiple inherited blood diseases. These are also
observed in the elderly and patients suffering from estrogen
deficiency. However, there may exist more commonalities or
non-commonalities in the changes in iron metabolism and its
subsequent influence and the manifestation or progression of OA
caused by these different diseases. In terms of iron metabolism
regulation, HH, aging, and estrogen deficiency are characterized by
abnormal processes of iron acquisition and efflux. This dysregulation
is largely attributed to the involvement of the hepcidin-ferroportin
(FPN) axis. HH results in inappropriately low hepcidin levels and
unregulated FPN activity. Under these conditions, the inability to
inhibit the absorption of iron from the diet and the release of iron
from macrophages are also observed. This results in the
accumulation of iron in various tissues (Papanikolaou et al.,
2004). In patients suffering from thalassemia, hepcidin is
inhibited to increase the availability of iron due to ineffective
erythropoiesis, resulting in excessive iron absorption and iron
overload (Camaschella and Nai, 2016). It has also been reported
that estrogen regulates iron homeostasis by regulating the expression
of hepatic hepcidin via an estrogen response element (Hou Y. et al.,
2012). Iron overload observed under conditions of hemophilia is
responsible for erythrocyte lysis-derived iron. This results in
uncontrolled intra-articular capillary bleeding in hemophilic
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patients post exercise (Cooke et al., 2018). Blood transfusion (also the
reason for thalassemia-related iron overload) plays a prominent role
in the management of patients with SCD, but causes significant iron
overload (Porter, 2009). It has been inferred that changes in the
pathobiological iron overload are triggered by multiple diseases or
conditions. However, the progression and severity of joint
deterioration have not been studied in detail, and these fields
should be explored further.

2.2 Animal Models
Osteoarthritic phenotypes have been noticed in multiple animal
models subjected to conditions of iron overload. This indicated
the adverse effect of iron overload on the development and
progression of OA. Firstly, osteoarthritic phenotypes were
studied in some genetic iron overload animal models.
Camacho et al. used Hfe knockout (KO) mice suffering from
HH and explored the progression of OA inmice under conditions
of iron overload. The results suggested that iron overload
accelerated the progression of OA (Camacho et al., 2016). In
another study, researchers investigated the effect of high iron
content on the articular chondrocytes isolated from Hfe KOmice
and compared the results with the results obtained by studying
wild-type mice (Simão et al., 2019). The results indicated that
primary chondrocytes from both sources, when exposed to
excessive exogenous iron, exhibited a cellular phenotype
similar to OA. Increased metalloproteinase contents and
decreased extracellular matrix protein levels were observed.
Hfe-KO chondrocytes revealed a favored expression of iron
metabolism markers (such as Tf), indicating increased
sensitivity to intracellular iron contents (Simão et al., 2019). In
summary, the presence of excessive iron affects the process of
chondrocyte homeostasis under conditions of Hfe -KO. These
samples are more likely to exhibit a cell phenotype similar to that
observed in samples subjected to conditions of OA.

To elucidate the direct effect of iron overload on osteoarthritic
phenotypes, iron-overload mouse models were developed by
injecting iron dextran. Lindsey et al. established a close
relationship between iron overload and OA by injecting iron
dextran into guinea pigs characterized by a low incidence of OA
(Burton et al., 2020). Excessive iron exposure exacerbated the
severity of knee OA, and this was validated by the results obtained
by analyzing micro-CT and conducting histological assessments.
The association between iron overload and OAwas demonstrated
by the study conducted by Jing et al., who used iron overloaded
mice for their studies. Severe cartilage destruction, increased
expression of matrix metalloproteinase-13 (MMP13),
disintegrin and metalloproteinase with thrombospondin motifs
5 (ADAMTS5), and increased iron levels in the circulating blood
were observed in iron-overloaded mice (Jing et al., 2020).

3 CELLULAR AND MOLECULAR
MECHANISMS OF IRON OVERLOAD
INVOLVED IN OSTEOARTHRITIS
In the previous chapter, we focused on the findings of iron
overload-related OA in animal models, and the results

suggested that iron overload was closely related to the
occurrence and progression of OA. The question to be asked
is, “At the cellular level, which cell types are affected by iron
overload that promotes OA progression?” Research works in the
field of the pathophysiology of OA have focused on articular
cartilage. It is being increasingly believed that OA affects the
whole joint tissues, including the subchondral bone and synovial
lining of the articular cavity (Egloff et al., 2012). During the
occurrence of OA, cartilage and subchondral bone damage results
in the disruption of the anabolic/catabolic metabolism of
chondrocytes. The imbalance between osteoclasts and
osteoblasts involved in abnormal subchondral bone
remodeling is also observed in these conditions (Yu et al.,
2016). Inflammatory “synovitis” in OA encompasses various
abnormalities, such as synovial lining hyperplasia, infiltration
of macrophages, pannus formation, and fibrosis (Wei and Bai,
2016). Under conditions of iron overload, the effects of iron on
chondrocytes, osteoclasts, osteoblasts, and the cells in the synovial
lining have been recently investigated in vitro. The results will be
discussed in this chapter (Figure 2; Table 1).

3.1 Effects of Iron Overload on Chondrocyte
Dysfunction and Cartilage Degradation
In articular cartilage, chondrocytes are the sole cell types that
participate in the processes of synthesis and renewal of the
extracellular matrix. They also help in the maintenance of
matrix integrity (Musumeci et al., 2015; Yao et al., 2021).
Impairment and function of chondrocytes result in progressive
damage of the articular cartilage (Hwang and Kim, 2015;
Musumeci et al., 2015). Chondrocyte apoptosis is one of the
pathological factors that cause degenerative changes in articular
cartilage. It has also been observed that the imbalance of cartilage
metabolism in chondrocytes results in the secretion of matrix-
degrading enzymes such as MMPs and ADAMTS, thus
compromising the integrity of the cartilage matrix (Verma and
Dalal, 2011; Mehana et al., 2019). MMP-13 is one of the most
important enzymes in MMPs targeting cartilage degradation.
Clinical studies have shown that the chondrocytes in OA
patients with articular cartilage injury greatly express MMP-13
(Salerno et al., 2020). A variety of cytokines can also affect the
progression of OA by affecting chondrocyte metabolism.
Inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α) and interleukin-1β (IL-1β), also play a vital role in
the development of OA (Wojdasiewicz et al., 2014; Wang and He,
2018). IL-1β is one of the most important pro-inflammatory
factors, which can significantly upregulate the expressions of
MMPs and accelerate cartilage degeneration under conditions
of OA (Jenei-Lanzl et al., 2019).

A large number of observations suggest that an excess of iron
facilitates chondrocyte apoptosis and promotes the upregulation
of the expression of matrix-degrading enzymes. Jing et al. used
ferric ammonium citrate (FAC) to establish an excess iron
condition, and they reported that the presence of excess iron
accelerated chondrocyte apoptosis, resulting in the expression of
matrix-degrading enzymes such as MMP-3 and MMP-13 (Jing
et al., 2020). Results have also revealed that chondrocytes from
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Hfe-KOmice were more likely to develop OA-related phenotypic
characteristics, such as upregulation of MMPs expression,
decreased production of extracellular matrix, and decreased
expression of aggrecan. Hfe-KO chondrocytes promoted the

upregulation of key proteins associated with iron metabolism
(such as Tf), suggesting an increased sensitivity to the process of
iron deposition (Simão et al., 2019). Furthermore, an excess of
iron affected chondrocyte homeostasis in models subjected to Hfe

FIGURE 2 | Cellular and molecular mechanisms of iron overload involved in OA. Cellular and molecular mechanisms of iron overload involved in OA include the
effects of iron overload on chondrocyte dysfunction and cartilage degradation (A) subchondral bone remodeling process which osteoclasts and osteoblasts
coordinately regulate (B), and manifestations of synovial lesions mediated by macrophages, fibroblast-like synoviocytes, and neutrophils (C).

TABLE 1 | Cellular and molecular mechanisms underlying the interplay between iron overload and OA.

Osteoarthritic
phenotypes

Cells Mechanisms References

Cartilage degradation Chondrocytes Promote lipid peroxidation and stimulate ferroptosis Sun et al. (2020)
Mediate mitochondrial dysfunction through ROS production and oxidative stress response Jing et al. (2021a)

Subchondral bone
destruction

Osteoclasts Promote mitochondrial respiration and oxidative stress, and thus facilitate osteoclast
differentiation

Ishii et al. (2009)

Facilitate osteoclastogenesis by promoting the secretion of apoptotic osteocyte-derived
RANKL

Yang et al. (2020)

Osteoblasts Inhibit osteogenic differentiation of BMSCs through ROS-mediated Runx2 suppression Jing et al. (2019)
Induce osteoblast autophagy and apoptosis by upregulating the level of DMT1 Liu et al. (2017)
Promote osteoblast apoptosis by inducing ROS production and oxidative stress injury He et al. (2013)
Lead to G1 phase arrest and autophagy by inhibiting PI3K/AKT and JAK/STAT3 signaling and
promoting p38 signaling

Cen et al. (2018)

Synovitis Macrophages Induce M1 polarization by increasing ROS-stimulated p300/CBP acetyltransferase activity
and p53 acetylation

Zhou et al. (2018)

Neutrophils Promote the accumulation of neutrophils and regulate matrix-degrading enzymes production Heiland et al. (2010)
Fibroblast-like
synoviocytes

Promote cell proliferation by activating key genes c-myc and mdm2 Hakobyan et al.
(2004)
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gene KO which were more likely to exhibit a cell phenotype
similar to that observed under conditions of OA (Simão et al.,
2019). Iron overload facilitated the oxidative stress response of
chondrocytes. Moreover, when the amount of intracellular iron
was in excess, hydroxyl free radicals were produced under
conditions of the Fenton reaction. Under the reaction
conditions, lipid peroxidation was promoted, and ferroptosis, a
new form of programmed cell death, was induced (Sun et al.,
2020). Ferroptosis is a process of cell death that occurs when an
excess of iron and reactive oxygen species (ROS) accumulate. The
process is triggered by the inactivation of the cellular glutathione-
dependent antioxidant defense system (Hirschhorn and
Stockwell, 2019). Yao et al. reported that chondrocytes readily
underwent ferroptosis in the environment of inflammation and
excess iron (Yao et al., 2021). They used IL-1β and FAC to
establish the inflammatory environment and generate conditions
of iron overload for chondrocytes, respectively. Increased levels of
lipid ROS and upregulated ferroptosis-related protein expression,
which further led to an increase in the type collagen II expression
and a decrease in the MMP-13 expression, were also observed
under these conditions. Furthermore, surgically treated OA mice
exhibited a reduced protein expression of GPX4 in articular
cartilage. Additionally, intra-articular administration of
ferrostatin-1 (a ferroptosis-specific inhibitor) in mice induced
with OA rescued the protein expression of GPX4 and type
collagen II. This resulted in improved cartilage erosion (Yao
et al., 2021). However, the molecular mechanisms of ferroptosis
in chondrocytes are not well defined. Recently, HIF-2α was
reported to augment lipid storage and lipid peroxide
accumulation. It was also reported that HIF-2α promoted
CPT1A-mediated β-oxidation, and therefore it was identified
as the central mediator of the ferroptosis of chondrocytes.
Furthermore, overexpression of HIF-2α in chondrocytes
attenuated the expression of GPX4 and exacerbated cartilage
degeneration. These findings implied that ferroptosis could be
potentially associated with the progression of OA (Zhou X. et al.,
2021).

Recently, the role of oxidative stress and mitochondrial
dysfunction in OA development has gradually attracted the
attention of researchers (Wang F.-S. et al., 2020). However,
the effect of mitochondrial dysfunction on chondrocyte
metabolism under conditions of excess iron remains to be
explored. Another study by Jing et al. revealed that excess
iron-mediated mitochondrial dysfunction in chondrocytes had
a close association with oxidative stress. The association was
established via the process of ROS generation, which in turn
promoted the expression of OA-related catabolic markers (Jing
et al., 2021a). The iron chelation method further confirmed the
vital role of iron in chondrocyte dysfunction. Calcium chelator,
which can repress the influx of iron by regulating the extent of
internalization realized for the transferrin receptor (TfR), is
emerging as an effective drug for treating iron overload-related
diseases. Based on the theory that iron overload promotes OA by
inducing ROS production and mitochondrial dysfunction, Han
et al. further revealed that the calcium chelator, BAPTA-AM,
suppressed the influx of iron into chondrocytes and effectively
restrained iron overload-mediated ROS accumulation and

mitochondrial dysfunction. This suggested that calcium
chelators played important roles during the treatment of iron
metabolism-related OA (Jing et al., 2021b).

3.2 Effects of Iron Overload on Subchondral
Bone Remodeling
Although cartilage loss is considered the primary cause of OA, an
increasing number of research works have revealed that the
integrity of the subchondral bone structure and subchondral
bone homeostasis play indispensable roles in the occurrence
and development of OA (Hu et al., 2020). Under normal
conditions, subchondral bone undergoes a dynamic
remodeling process in which osteoclasts and osteoblasts jointly
regulate and maintain the process equilibrium (Tian et al., 2021).
Under conditions of abnormal mechanical stress, the extent of
differentiation and activation of subchondral bone osteoclast
precursors was realized, and the subchondral bone resorption
activities significantly increased (Fang et al., 2021). Under these
conditions, the subchondral bone shows osteoporotic changes
(such as decreased bone mass, increased trabecular space, and
thinning of the subchondral bone plate). These changes put a
greater stress load on the upper hyaline articular cartilage,
resulting in the progression of OA.

Osteoclasts are multinucleated giant cells differentiated from
mononuclear macrophages. They participate in the process of
bone absorption (Kylmaoja et al., 2016). Numerous researchers
have reported that abnormal iron metabolism is closely related to
osteoclast formation and differentiation. Jia et al. reported that
FAC facilitated receptor activator of nuclear factor-kappa B
ligand (RANKL)-mediated osteoclastogenesis in RAW264.7
cells and bone marrow-derived macrophages (BMMs).
Oxidative stress, resulting from excessive ROS production,
hindered the process of homeostasis by stimulating
osteoclastogenesis and inhibiting the functions of osteoblasts
(Jia et al., 2012). It has been recently reported that iron
overload can potentially cause an increase in the extent of
mitochondrial respiration and induce an oxidative stress
response in osteoclasts (Ishii et al., 2009). The process of iron
chelation was conducted, and the results further confirmed the
critical role of iron in the process of osteoclast maturation. Results
from a recent in vitro study illustrated that lactoferrin, an iron-
binding glycoprotein, effectively suppressed the process of
osteoclast differentiation of monocytes and significantly
increased the extent of bone formation in adult mice (Cornish
et al., 2004). The RANKL to osteoprotegerin (OPG) ratio is a
critical factor determining osteoclast differentiation. In addition,
iron overload conditions usually resulted in an elevated RANKL/
OPG ratio. Hou et al. reported that the iron-chelating lactoferrin
could improve bone density by increasing the extent of OPG
generation (Hou J.-m. et al., 2012). Iron uptake of Tf-bound Fe3+
is facilitated via TfR1. Ishii et al. reported the relationship
between the expression of TfR1 and osteoclast differentiation.
They reported that TfR1-mediated iron influx promoted
osteoclastogenesis and bone-resorbing capacity, and iron
chelator deferoxamine (DFO) hindered this process in a dose-
dependent fashion (Ishii et al., 2009). Further research indicated
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that DFO directly suppressed iron overload-induced
osteoclastogenesis by negatively regulating the mitogen-
activated protein kinase (MAPK) signaling pathway, which
was independent of the process of ROS activation (Zhang
et al., 2019). Interestingly, osteocytes were also found to
participate in the process of bone homeostasis by regulating
the activities of osteoclasts and osteoblasts in the bone
microenvironment. Yang et al. were the first to report that an
excess of iron indirectly regulated the process of osteoclast
differentiation by regulating osteocyte activity. The results
reported by Yang et al. indicated that the process of osteocyte
apoptosis induced by iron overload effectively facilitated
osteoclastogenesis by promoting the secretion of osteocyte-
derived RANKL (Yang et al., 2020).

Bonemarrowmesenchymal stem cells (BMSCs) are adult stem
cells present in the bone marrow cavity. They are capable of self-
renewal and multidirectional differentiation and significantly
affect human development, the onset of aging, and the
occurrence of diseases (Baker et al., 2015). Osteogenic
differentiation of multipotent BMSCs also plays a crucial role
in the process of subchondral bone remodeling (Wang J. et al.,
2020). Iron negatively influences the process of bone homeostasis
and disrupts the proliferation capacity and differentiation balance
of BMSCs. Results from current studies suggest that an excess of
iron hinders the process of osteoblast differentiation and activity,
and impaired extracellular matrix mineralization is realized
under these conditions. Balogh et al. studied the effect of iron
and ferritin on the process of osteoblast differentiation of BMSCs.
The results revealed that iron and exogenous ferritin significantly
inhibited the process of osteoblast differentiation of BMSCs
(Balogh et al., 2016). The relationship between increased
ferritin and downregulated expression of runt-related
transcription factor 2 (Runx2) in compact bone
osteoprogenitor cells was studied in mice under conditions of
iron overload (Balogh et al., 2016). Liu et al. reported that excess
iron-induced osteoblast autophagy and apoptosis by upregulating
the levels of divalent metal transporter 1 (DMT1), an iron
transporter (Liu et al., 2017). It was also reported that an
excess of iron interfered with the normal metabolism of
osteoblasts by inducing oxidative stress response under
conditions of increased intracellular iron levels. An excess of
ROS was generated under conditions of iron overload (following
Fenton reaction). The balance of cellular antioxidant and oxidant
levels was lost, and this damaged DNA, protein, and lipid
structures inducing osteoblast apoptosis (He et al., 2013). In
addition, existing results have shown that iron overload results
in the generation of ROS. The phosphatidylinositol 3-kinase
(PI3K)/AKT and Janus kinase (JAK)/signal transducer and
activator of transcription 3 (STAT3) signaling pathways were
hindered, and the p38-MAPK pathway was promoted under
these conditions, resulting in G1 phase arrest and autophagy
in the osteoblast cell line MC3T3-E1 (Cen et al., 2018). The above
findings indicated that excessive bone resorption and abnormal
bone formation might be involved in the underlying mechanisms
associated with iron overload-related subchondral bone
instability.

3.3 Effects of Iron Overload on
Manifestations of Synovial Lesions
Mediated by Various Cell Types
OA is a degenerative inflammatory disease, leading to multiple joint
and peri-joint damage (Robinson et al., 2016). Inflammatory
“synovitis” in OA (a form of periarticular tissue damage)
encompasses various abnormalities, such as synovial lining
hyperplasia, infiltration of macrophages, pannus formation, and
fibrosis (Sellam and Berenbaum, 2010). These manifestations of
synovial lesions are mediated by various cell types in the synovial
lining of the joint cavity (Scanzello and Goldring, 2012). In iron
overload conditions, cells (such as macrophages, fibroblast-like
synoviocytes (FLSs), and neutrophils) present in the synovial
lining exhibit pathological features.

An in vivo study of hemophilia indicated that iron-overloaded
synovial tissue released pro-inflammatory cytokines (such as IL-
1β and TNF-α) that stimulated catabolic activities in
chondrocytes and accelerated the degenerative pathological
changes in cartilages associated with OA (Nieuwenhuizen
et al., 2013). The inflammatory response produced by articular
and periarticular tissue, one of the major factors accelerating the
process of OA progression, is predominantly the skew of the
macrophage polarization towards the M1 phenotype (Mahon
et al., 2020). Macrophages are derived from monocytes and are
widely present in the synovial tissues of joints (Zhang et al., 2020).
Polarized M1 macrophages could induce synovial inflammation,
affecting chondrocyte metabolism and resulting in the
degradation of the cartilage matrix (Wu et al., 2020). Zhou
et al. reported that the process of iron-mediated ROS
production promoted the process of M1 macrophage
polarization by increasing the p300/CBP acetyltransferase
activity and facilitating the process of p53 acetylation (Zhou
et al., 2018).

Chen et al. qualitatively compared rheumatoid arthritis (RA),
OA, and HH tissues and found that neutrophil invasion was
significantly high under conditions of HH-related arthropathy.
This was pronounced in joints containing high levels of iron
deposits. These results suggested that the accumulation of
neutrophils could potentially regulate the production of
stromal enzymes, resulting in cartilage degradation and rapid
progression of joint injury (Heiland et al., 2010). Moreover, iron
participates in the initiation of the growth of synovial pannus
(Mendonça et al., 2016). OA is a degenerative inflammatory
disease characterized by pannus tissues consisting of FLSs,
macrophages, and lymphocytes (Duc et al., 2008). Among
these cells, FLSs are special types of cells present in
hyperplastic synovial pannus tissues. These cells cause articular
damage by secreting cytokines, chemokines, and matrix-
degrading proteins (Chang et al., 2010; Raychaudhuri et al.,
2018). However, little information about iron overload in FLSs
is available. Hakobyan et al. reported that iron promoted the
process of cell proliferation in human and mouse synovial tissues,
and the expression of key genes such as c-myc and mdm2 were
responsible for the proliferation of synovial cells. Under these
conditions, the occurrence and development of vascular synovitis
were also promoted (Hakobyan et al., 2004).
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4 POTENTIAL CLINICAL INTERVENTIONS
AND VALUE OF IRON OVERLOAD IN
OSTEOARTHRITIS
4.1 Predictive Biomarker
As reported in the literature, diverse pathologies or conditions,
such as HH, hemophilia, thalassemia, SCD, aging, and estrogen
deficiency, could result in iron overload in the human body.
Changes that result in iron overload in the joints increase the
chances of developing osteoarthritic phenotypes. These results
revealed the significance of iron overload on the process of OA
onset. Richette et al. observed that patients suffering from HH
had a higher chance of suffering fromOA than patients belonging
to the control group (Richette et al., 2010). Patients with HH had
a higher risk of needing knee and hip replacement compared to
patients belonging to the control groups. The results from the
case-control study strongly suggested that joint damage could be
more severe in patients with increased ferritin levels (Richette
et al., 2010). Results from clinical studies also revealed that the
risk of suffering fromOA increased 4-fold in the elderly with high
ferritin contents in the serum compared to patients belonging to
other age groups. The results from imaging experiments revealed
that the level of serum ferritin correlated positively with the
severity of joint damage (Park et al., 2012; Ke et al., 2021). Thus,
further studies on serum iron parameters that can be used for
predicting OA should be conducted. The results can potentially
help in predicting the progression of OA.

4.2 Prophylactic Intervention
As iron overload accelerates the progression of OA under
various conditions, early reduction of iron intake (such as
diet adjustment) or the daily temperate promotion of iron
excretion can potentially be a prophylactic intervention.
Under conditions of aging, HH, hemophilia, etc., iron
promotes the progression of OA as the presence of iron
triggers the production of free radicals (Emerit et al., 2001;
Jomova and Valko, 2011). It has been observed that serum
ferritin concentrations increase by two-to three-fold in
postmenopausal women. This reflects a drop in the estrogen
levels (Milman and Kirchhoff, 1992; Zacharski et al., 2000). In
postmenopausal women, increased total iron contents in the
body could accelerate the development of OA. Thus, the elderly,
as well as the patients exhibiting mild OA symptoms, or people
with a family history of HH or hemophilia could be studied for
monitoring the serum iron parameters and realizing
prophylactic intervention. However, the process is a potential
double-edged sword. Iron is an indispensable nutritional
element present in the body and a part of many important
macromolecules involved in energy production, respiration,
DNA synthesis, and metabolism (Anderson and Frazer, 2017;
Gao et al., 2019). Maintaining proper “free iron” levels is a key
part of achieving a balanced iron metabolism (Gulec et al., 2014;
Muhoberac and Vidal, 2019). Due to this dual nature of iron,
serum iron contents need to be monitored regularly for
ensuring normal iron levels in the body while realizing
preventive intervention methods to address the problem of
iron overload.

4.3 Therapeutic Strategy
Iron chelation therapy can potentially be an effective method of
treating patients with systemic iron overload (Gordeuk et al.,
1994). The effectiveness of iron chelators (such as DFO,
deferiprone, and deferasirox) has been widely validated in iron
overload diseases in patients requiring long-term transfusions
and suffering from HH, SCD, and thalassemia (Borgna-Pignatti
et al., 1998; Lal et al., 2013; Ballas et al., 2018). Although the
pathogenesis of OA in patients with iron overload has not been
fully explained, the adverse effects of iron overload on cells
present in the joint and the progression of OA has been
extensively reported (Depierreux et al., 1988; Barg et al., 2011;
Jing et al., 2021a). Therefore, the process of iron chelation therapy
can be potentially used to shed light on the process of the
prevention or treatment of iron overload-related OA. In
addition, we have found evidence by conducting cellular-level
studies and using animal models that the process of iron chelation
can be used to effectively maintain joint homeostasis. The process
can also help alleviate the progression of OA. Oxidative stress and
mitochondrial dysfunction induced by iron overload result in
chondrocyte apoptosis and metalloproteinase upregulation. The
iron chelator DFO could significantly inhibit these processes (Jing
et al., 2021a). An in vitro study was conducted recently, and the
results revealed that the protein levels of MMP-3 and -13 in
primary chondrocytes increased significantly following IL-1β
treatment. Pretreatment with iron-chelating DFO effectively
reversed the process of upregulation (Jing et al., 2020). These
results suggest that the process of iron chelation can potentially
help in preventing the apoptosis of chondrocytes and the
destruction of the cartilage extracellular matrix. It has also
been reported that calcium chelators can be potentially used
for treating iron overload-related diseases as they help inhibit the
influx of iron by regulating the process of TfR1 internalization
(Cui et al., 2019). Jing et al. reported that the calcium chelator
BAPTA-AM could decrease the extent of iron influx realized into
chondrocytes. This helped inhibit iron overload-stimulated ROS
accumulation and mitochondrial dysfunction (Jing et al., 2021b).
In addition, D-mannose exerted a chondroprotective effect by
attenuating the sensitivity of chondrocytes toward ferroptosis and
alleviating OA progression. D-mannose protects chondrocytes
from ferroptosis by preventing the accumulation of lipid and lipid
peroxide. It was also observed that D-mannose enhanced
CPT1A-mediated β-oxidation to increase the extent of lipid
droplet accumulation realized (Zhou X. et al., 2021).

Subchondral bone integrity and bone remodeling also played
important roles in the physiopathology of OA. Iron chelation
therapy for abnormal subchondral bone remodeling under iron
overload conditions can also be an effective therapeutic strategy.
Cornish et al. demonstrated that iron-binding lactoferrin
effectively suppressed osteoclast differentiation of monocytes
and significantly increased the extent of bone formation in
adult mice (Cornish et al., 2004). Iron overload conditions
usually resulted in an elevated RANKL/OPG ratio. Hou et al.
indicated that the iron-chelating lactoferrin could repair bone
density by reducing the RANKL to OPG ratio (Hou J.-m. et al.,
2012). It has also been observed that DFO directly suppressed
iron-uptake-activated osteoclast formation by negatively
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regulating the MAPK signaling pathway. The negative effect was
not ROS-dependent (Zhang et al., 2019). Some anti-oxidation
drugs are being studied to reduce oxidative stress and hinder the
apoptosis of osteoblasts that is induced under conditions of iron
overload. For example, melatonin dampens the promoting effect
of iron overload on the process of osteogenic differentiation
dysfunction and senescence by inhibiting the processes of ROS
generation and p53/ERK/p38 activation (Yang et al., 2017).
Icariin could promote the process of osteoblast survival and
reverse the downregulation of the expression of Runx2,
alkaline phosphatase (ALP), and osteopontin (OPN) (induced
by iron overload), and this effect could be attributed to the
protection against mitochondrial membrane potential
dysfunction and ROS production (Jing et al., 2019).

We discuss further literature from the perspective of
therapeutic measures in iron metabolic kinetics. Systemic iron
homeostasis is maintained by delicately regulating the process of
iron acquisition, storage, and export (Bogdan et al., 2016). These
processes should be effectively controlled to avoid excess iron-
induced detrimental effects. Hepcidin, produced by the liver, is a
vital regulator of the process of iron homeostasis. It has been
previously reported that the inhibition of hepcidin increases the
extent of iron uptake in bone and liver, resulting in increased
osteoclast and reduced osteoblast activities (Xu et al., 2017). Jiang
et al. reported that hepcidin could also address the problems
posed by impaired bone formation caused by FAC treatment by
regulating the process of iron absorption (Jiang et al., 2019)
(Figure 3; Table 2). Therefore, the development of hepcidin

agonists should be studied to better understand the treatment
prospects of iron overload-induced OA.

5 PROSPECT

Results from clinical and basic studies reveal that iron overload
significantly influences the progression of OA. Results from in
vivo experiments reveal that an excess of iron is directly
associated with the pathological processes associated with the
tissues present in the joints in iron-loaded models. In this review,
apart from the discussion on the relationship between hereditary
blood diseases and iron overload-induced OA, we have also
discussed the recent findings reported on aging- and estrogen
deficiency-associated OA. We have attempted to understand and
uncover the mechanism associated with iron overload. OA is a
heterogeneous disorder with different etiologies and is
characterized by various subtypes. Further research should be
conducted to explore the role of iron overload on the progression
of different types of OA. The origin of iron overload and its
relation with inflammation, mechanical stress, and energy
metabolism should also be studied. It is yet to be ascertained
if an increase in the iron level is the only factor that results in
pathological arthropathies in patients suffering from OA.
Therefore, the influence of other contributing factors such as
mechanical loading, altered metabolism, and oxidative stress
should also be considered.

Apart from descriptive investigations, cellular andmechanistic
explorations are required to help translate the results into
strategies for OA treatment. The articular cartage, subchondral
bone, and synovial lining of the joint cavity were also studied
(Kon et al., 2016; Mathiessen and Conaghan, 2017; Simon and
Jackson, 2018). Under conditions of iron overload, excess iron
disturbs the process of the anabolic/catabolic metabolism of
chondrocytes. The balance between osteoclasts and osteoblasts
involved in subchondral bone remodeling was affected under
these conditions, and it was observed that iron overload
compromises synovial homeostasis coordinated by synovial
lining hyperplasia. Infiltration of macrophages and
lymphocytes, pannus formation, and fibrosis were also affected
under conditions of iron overload (Zhang et al., 2011; Ganz, 2016;
Li et al., 2018; Jing et al., 2020). Moreover, OA is characterized by
the phenotype of osteophyte formation, cartilage degradation,
synovitis, and subchondral bone remodeling (Lieben, 2016). The
influence of iron overload on the process of osteophyte formation
is unknown and is worthy of further study. Iron overload
compromises cellular homeostasis, triggering adverse events
(such as oxidative stress, mitochondrial dysfunction, and
apoptosis or autophagy), which ultimately results in articular
cartilage degeneration, abnormal subchondral bone remodeling,
and synovial inflammation. Accumulation of free iron is also a
key initiator of ferroptosis, and ferroptosis might be involved in
the progression of OA. However, the role of ferroptosis in OA is
not well understood. Understanding the process of ferroptosis
can potentially open a new area for researchers and help develop a
potential target for the treatment of OA.

FIGURE 3 | Potential clinical interventions and value associated with iron
overload used for predicting, preventing, treating OA. Based on the principles
for iron overload-modulated OA pathogenesis that we have discussed,
potential clinical interventions and value for OA include predictive
biomarker, prophylactic intervention, and therapeutic strategy.
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6 CONCLUSION

OA refers to inflammatory diseases that occur in the joint and
surrounding tissues of the human body and are caused by
inflammation, degeneration, trauma, or other metabolic
factors (Bijlsma et al., 2011). The clinical manifestations of
arthritis are joint dysfunction and deformity, which seriously
affect the quality of life of patients (Taruc-Uy and Lynch,
2013). Iron overload refers to the accumulation of excess iron
in the circulatory system and tissues. This can potentially
damage the cells through the generation of peroxide stress.
Iron overload can cause pathological changes in various tissues
and organs (Calişkan et al., 2011; Yu et al., 2020). The
condition of iron overload is frequently associated with the
osteoarthritic phenotypes (such as progressive cartilage
erosion, altered subchondral bone microarchitecture, and
biomechanics, persistent joint inflammation, proliferative
synovitis, and synovial pannus) (Heiland et al., 2010; Simão
et al., 2019). Evidence from clinical studies and animal models
suggests that iron overload is associated with OA (Husar-
Memmer et al., 2014; Kiely, 2018; Simão and Cancela, 2021).
At present, iron chelators can be used in the field of first-line
therapeutic therapy to eliminate iron overload in vital organs,
and osteochondral tissue, and synovium (Rao, 2013; Jansová
and Šimůnek, 2019). The relationship between iron
metabolism and OA development is to be elucidated. Due
to the complexity of the molecular mechanism of iron
metabolism and the involvement of multi-category cells,
there is a lack of information on the mechanism and signal
molecules associated with osteochondral and synovium
damage attributable to iron overload. Further research

needs to be conducted to understand the exact mechanisms
resulting in joint damage, and new strategies should be
developed to address the problems.
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GLOSSARY

SCD sickle cell disease

OA osteoarthritis

HH hereditary hemochromatosis

HFE homeostatic iron regulator

HAMP hepcidin antimicrobial peptide

Tf transferrin

TfR2 transferrin receptor-2

HJV hemojuvelin

MMP13 matrix metalloproteinase-13

ADAMTS5 a disintegrin and metalloproteinase with thrombospondin
motifs 5

KO knockout

TNF-α tumor necrosis factor-α

IL-1β interleukin-1β

FAC ferric ammonium citrate

ROS reactive oxygen species

TfR transferrin receptor

BMSCs bone marrow mesenchymal stem cells

RANKL receptor activator of nuclear factor-kappa B ligand

BMMs bone marrow-derived macrophages

OPG osteoprotegerin

DFO deferoxamine

MAPK mitogen-activated protein kinase

Runx2 runt-related transcription factor 2

DMT1 divalent metal transporter 1

PI3K phosphatidylinositol 3-kinase

JAK janus kinase

STAT3 signal transducer and activator of transcription 3

FLSs fibroblast-like synoviocytes

RA rheumatoid arthritis

ALP alkaline phosphatase

OPN osteopontin.
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