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RNA m6A modification
orchestrates the rhythm of
immune cell development from
hematopoietic stem cells to
T and B cells
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School of Medicine, Jiangsu University, Zhenjiang, China
RNA, one of the major building blocks of the cell, participates in many essential

life processes. RNA stability is well-established to be closely related to various

RNA modifications. To date, hundreds of different RNA modifications have

been identified. N6-methyladenosine (m6A) is one of the most important RNA

modifications in mammalian cells. An increasing body of evidence from

recently published studies suggests that m6A modification is a novel immune

system regulator of the generation and differentiation of hematopoietic stem

cells (HSCs) and immune cells. In this review, we introduce the process and

relevant regulatory mechanisms of m6A modification; summarize recent

findings of m6A in controlling HSC generation and self-renewal, and the

development and differentiation of T and B lymphocytes from HSCs; and

discuss the potential mechanisms involved.
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1 Introduction

RNA is widely acknowledged to play an extremely important role in living organisms.

RNA stability largely depends on its modification, one of the most important post-

transcriptional regulations (1). To date, more than 100 RNA modifications have been

identified in eukaryotes (2). Among them, RNA methylation is one of the predominant

forms, accounting for more than 60% of RNA modifications (2). N6-methyladenosine

(m6A), a modification occurring at the 6th position of adenine (A) bases, is the most
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prevalent internal RNA modification (3). The first report about

m6A was published in 1974 (4). However, due to the lack of

m6A-mapping methods, research on m6A has been in the initial

stage for a long time. Until 2012, m6A-specific methylated RNA

immunoprecipitation with next-generation sequencing (MeRIP-

seq) was established and an extensive study of m6A modification

was conducted by transcriptome analysis (5, 6). Since then, a

mounting number of studies have substantiated m6A

modification in various cell types, unveiling the mystery of

m6A in a wide range of physiological and pathological

processes, such as stem cell differentiation (7), the

maintenance of pluripotency in embryonic development (8), X

chromosome inactivation (9), virus replication (10), and the

generation, development, invasion, metastasis, and drug

resistance of cancer cells (11).

Overwhelming evidence substantiates that RNA m6A

modification represents a significant role in the immune

system. Here, we introduce the process and molecular

mechanism involved in RNA m6A modification and

summarize recent investigations highlighting the crucial

regulatory role of RNA m6A modification in hematopoietic

stem cell (HSC) generation and self-renewal, T and B

lymphocyte development, and differentiation from HSCs,

which provides novel insights into the role of m6A as a critical

regulator of the immune system.
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2 The process, hub regulators, and
the mechanism of m6A modification

Studies have uncovered that the motifs of m6A

modification in RNA sequences are widespread and highly

conserved in eukaryotes, mainly occurring on the following

consensus sequence: RRACH (R∶G or A; H=A, C, or U)

(12, 13). In pre-mRNA, m6A modification motifs are highly

enriched near the splicing sites and the last exon, while in

mature mRNA, they are mainly distributed in the translation

start sites, coding sequences (CDS), and 3’-untranslated region

(3’UTR), especially near the stop codon and within internal

long exons (5, 6). There are three kinds of pivotal protein

factors involved in m6A methylation, including methyl-

transferases (writers) , demethylases (erasers) , and

methylation binding protein (readers) (14) (Figure 1).
2.1 Methyl-transferases, the m6A writers,
mark the RNA with the methyl group

The first protein that catalyzes the methylation of adenosine

on RNA is a methyl-transferase complex (15). It has been
FIGURE 1

The dynamic process of m6A methylation in mRNA. The m6A methylation is installed by methyltransferases (“writers”), including METTL3,
METTL14, WTAP, METTL16, ZC3H13, RBM15/15B, and KIAA1429. It is removed by demethylases (“Erasers”), including FTO, ALKBH5, and ALKBH3.
Moreover, the fate of m6A-modification RNA is determined by RNA-binding proteins (“readers”), including YTHDF1, YTHDF2, YTHDF3, YTHDC1,
YTHDC2, IGF2BPs, HNRNP A2/B1, and eIF3.
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established that methyl-transferase-like 3 (METTL3), methyl-

transferase-like 14 (METTL14), and Wilms tumor 1-associated

protein (WTAP) are the core components of the methyl-

transferase complex that promote the incorporation of the m6A

methylated group into RNA (16–18) (Figure 1). In addition to the

core components, many other proteins, including METTL5 (19)

and METTL16 (20), Zinc Finger CCHC-Type Containing 4

(ZCCHC4) (21), Zinc Finger CCCH-Type Containing 13

(ZC3H13) (22, 23), KIAA1429 (24), and RBM15 (and its

homolog RBM15B) (9), have been found to participate in the

formation of the methyl-transferase complex, playing different

roles in methylation modifications of human pre-mRNAs and

various non-coding RNAs (25, 26).

METTL3 and METTL14 form a 1:1 stable heterodimer

complex in the nucleus (27). METTL3 is a molecule with

catalytic activity, while METTL14 is a binding protein that

acts as a scaffold for mRNA binding (28). METTL3 could

modify adenosine196 (A196) in the 5’-external transcribed

spacer of 47S pre-rRNA, leading to decreased rates of pre-

rRNA maturation (29). In the nucleus, the METTL3/14

heterodimer interacts with WTAP. It has been reported that

WTAP has no methyl-transferase activity, regulates the binding

of METTL3/14 complex to transcription sites, and recruits the

heterodimers to nuclear speckles (18, 27). Knockdown of WTAP

results in attenuation of the interaction between the METTL3/

METTL14 complex and mRNA and reduced localization of the

complex on the subcellular organelle nuclear plaques of mRNA

alternative splicing and ribonucleoprotein assembly (18). WTAP

also recruits other related factors, such as RBM15 and

KIAA0853, to the methyl-transferase complex, regulating the

methylation activity (30). These pieces of evidence indicate that

WTAP is critical for m6A methylation activation.

It has been shown that METTL5 forms a heterodimeric

complex with the methyl-transferase activator TRMT112

through the formation of a parallel b-zipper between the main

chain atoms and is responsible for installing m6A at A1832 on 18S

rRNA, thus regulating the translation process (19). METTL16

can reportedly act as a triple-stranded RNA binding protein and

support the formation of lncRNA triple helices (20). In addition,

under S-adenosylmethionine (SAM)-limiting conditions,

METTL16 occupancy on the hairpin (hp1) of the MAT2A 3’-

UTR is increased, thus promoting MAT2A splicing (25).

ZCCHC4 accumulates in the nucleolus, and the methyl-

transferase (MTase) domain of ZCCHC4 is packed against N-

terminal GRF-type and C2H2 zinc finger domains and a C-

terminal CCHC domain, creating an integrated RNA-binding

surface (31). Then, ZCCHC4 deposited m6A at A4220 of human

28S rRNA, which impacts ribosome subunit distribution and

global translation (19, 21). In the nucleus, ZCCHC13 was

reportedly essential for nuclear localization of WATP,

KIAA1429, and HAKAI to facilitate m6A methylation of

mRNA (23).
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2.2 M6A erasers remove the methyl
groups from RNA by oxidative
demethylation

The modification of m6A is a dynamic reversible process, and

the m6A methylated groups on RNA can be removed by

demethylase. Till now, three kinds of m6A demethylases, Fat

mass and obesity-associated protein (FTO), ALKB homolog 5

(ALKBH5), and ALKB homolog 3 (ALKBH3), have been

identified (32, 33) (Figure 1). All of them belong to the ferrous

iron and a-ketoglutarate (aKG)-dependent dioxygenase ALKB

family. However, the expression and cellular localization of FTO

and ALKBH5 are different in diverse tissues, indicating that they

possess many biological functions. FTO was the first identified

m6A demethylase in 2011 (32). FTO knockdown with siRNA in

HeLa and 293FT cells resulted in increased methylation levels in

vitro, while the m6A level of mRNA was decreased by FTO

overexpression using a mammalian expression vector in HeLa

cells (32).

Varying subcellular localization of FTO is associated with

different catalytic substrates. FTO located in the nucleus has

been reported to catalyze the mRNA demethylation of m6A,

while FTO located in the cytoplasm preferentially demethylates

the m2 isoform m6Am (N6-2’-O-dimethyladenosine) of mRNA

(34). In addition, cytoplasm FTO demethylates m6A in U6 RNA

and m6Am in snRNAs. FTO mediates m1A demethylation in

tRNA (34). Interestingly, FTO can reportedly oxidize m6A to

form two intermediates, N6-hydroxymethyladenosine (hm6A)

and N6-formyladenosine (fm6A), with a half-life of 3 h in the

nucleus, which may dynamically modulate RNA–protein

interactions (35).

Another demethylase ALKBH5 specifically and directly

catalyzes the demethylation of m6A without any intermediate

(35, 36). According to a recent study in 2013, ALKB homolog 3

(ALKBH3) is also an m6A demethylase (33). However, ALKBH3

preferentially modifies tRNA, not mRNA or rRNA, to enhance

protein translation efficiency by extending tRNA’s half-life (37).

Whether other ALKB protein family members possess

demethylase activity remains poorly understood, warranting

further clarification.
2.3 M6A readers determine the fate of
m6A-modified RNA

The third most important factor of m6A modification is the

RNA-binding proteins called “readers”. They properly decode the

m6A RNA methylation information in cells by recognizing and

binding m6A-modified RNA. Moreover, they are involved in the

regulation of RNA processing and metabolism (Figure 1), such as

RNA degradation (38), alternative splicing (39), and translation

(40). The earliest identified readers were the YT521-B homology
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(YTH) domain family proteins in the mammals, consisting of the

YTH domain family (YTHDF) and the YTH domain-containing

protein (YTHDC) subsets, including YTHDF1, YTHDF2,

YTHDF3 (38), YTHDC1, and YTHDC2 (41).

YTHDF subtypes are mainly found in the cytoplasm (42).

Different YTHDF readers have different biological effects

through dissimilar pathways. YTHDF1 improves the efficiency

of m6A-containing mRNA translation by interacting with

eukaryotic initiation factor 3 (eIF3) and contributing to

ribosome occupancy of target mRNA (40), while YTHDF2

catalyzes mRNA degradation by shortening the half-life of

mRNA in the cytoplasm (43). Two different research teams

have confirmed that YTHDF3 interacting with YTHDF1 and

YTHDF2 enhanced the YTHDF1-facilitated translation of

methylated mRNA and promoted YTHDF2-mediated mRNA

decay (44, 45). This finding suggests that these three YTHDF

proteins work synergistically in the regulation m6A-modified

mRNA modulation (44, 45). Moreover, it may also imply that

YTHDF2 promotes genes expression in the short term while

shortening the subsequent effects, which may benefit the cell

response to the environment under stress conditions. However,

Du et al. discovered that these three types of YTHDF proteins

function similarly on mRNA degradation (43), probably because

of their high homology. Intriguingly, the YTHDF2 protein has

been reported to promote cap-independent mRNA translation

in MEF cells in response to heat shock stress, since YTHDF2

transferred from cytoplasm to nucleus was found to compete

with FTO in preserving 5’-UTR methylation of stress-induced

mRNA (46). The 5’-UTR translation initiation codon is known

to mediate the initiation of translation of eukaryotic mRNA (47).

Moreover, it has been shown that YTHDF2 binds directly to 5-

methylcytosine in rRNA and modulated the maturation of

rRNA (48).

YTDHC1 has been established to be only located in the

nucleus, regulating mRNA expression levels (39) and mRNA

exporting from the nucleus by influencing alternative splicing

(49). In addition, YTDHC1 is required for sufficient rRNA

synthesis via regulating the scaffold function of long

interspersed nuclear element-1 (LINE1) RNA (50). YTDHC2

exists in the nucleus and cytoplasm, which improves the

translation efficiency of target mRNA in mice spermatogenesis

(51), supporting its testicular special function. However, gene

database analysis revealed that YTDHC2 is moderately

expressed in immune cells, which indicates potential existence

of an undocumented role in immune cells (52).

Several researchers have reported that some additional

RNA-binding proteins, such as eIF3, HNRNP family proteins

(including HNRNP A2/B1, HNRNP C, HNRNP G), and insulin-

like growth factor 2 mRNA-binding proteins (IGF2BPs,

including IGF2BP1, IGF2BP2, and IGF2BP3), also function as

“readers” to decode the m6A RNA methylation information.

EIF3 binds to mRNA in the 5’-UTR region and mediates the

initiation of mRNA translation (53). HNRNP A2/B1 was
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reportedly involved in alternative splicing of mRNA and

processing of precursor miRNAs in the nucleus (54, 55).

However, HNRNP C preferentially bound to m6A-modified

sites, weakening the capability of mRNAs and long non-

coding RNAs (lncRNAs) to form local secondary structures in

the nucleus (56). Little is known about HNRNP G and its role in

m6A modification. IGF2BPs have been reported to promote the

stability and storage of their target mRNAs in an m6A-

dependent manner, thus enhancing target mRNA expression

in the nucleus and cytoplasm (57). In recent years, new writer

and reader proteins involved in m6A modification are continued

to be discovered, suggesting that the biological effects and

significance in potentially regulating the m6A modification

remain poorly understood, leaving a broad area of research

to explore.
3 Techniques for m6A detection
in RNA

M6Amodifications have been found in mRNA as early as the

1970s (4, 58). However, due to technical limitations, researchers

could not detect m6A, especially quantify m6A levels, and let

alone identify m6A from the single base level, which retarded the

progress of scientific studies in this field for a long time. With the

rapid development of next-generation sequencing (NGS)

technologies and the improvement of liquid chromatography

sensitivity (6), scientists have developed various m6A

detection methods.

At present, to detect m6A, high-throughput sequencing is

used, such as methylated RNA immunoprecipitation with next-

generation sequencing (MeRIP-seq), m6A individual-

nucleotide-resolution cross-linking and immunoprecipitation

with sequencing (miCLIP-seq), ligation-assisted extraction and

thin-layer chromatography (SCARLET), and liquid

chromatography-mass spectrometry (LC-MS/MS). MeRIP-seq

enables qualitative analysis of the hypermethylated mRNA

region, while single-base resolution is not feasible (5).

However, miCLIP-seq and SCARLET have been reported to

accurately locate m6A loci in the whole transcriptome at a single-

nucleotide resolution level (59, 60), while LC-MS/MS could

detect the overall m6A level of mRNA (61).
4 The Role of m6A modification
in the hematopoietic stem cells, and
T and B lymphocytes

HSCs are multipotent cells with the lifelong ability to self-renew

and can differentiate into all of the cells of the blood and immune

system. In vertebrates, HSCs are derived from hematopoietic

endothelial cells (HECs) through endothelial-to-hematopoietic
frontiersin.org

https://doi.org/10.3389/fimmu.2022.839291
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.839291
transition (EHT) in the aorta-gonad-mesonephros (AGM) region

during the embryonic development stage. Subsequently, HSCs

migrate to the fetal liver for massive amplification and transfer to

bone marrow (BM) after birth (62). In the BM, HSCs give rise to

multipotent progenitor cells (MPPs), consisting of common

myeloid progenitors (CMPs, with myeloid, erythroid and

megakaryocytic potential) and common lymphoid progenitors

(CLPs, with only lymphoid potential) (63). CMPs eventually

differentiate into neutrophils, macrophages, eosinophils, basophils,

erythroid cells, and monocytes, whereas CLPs subsequently develop

and differentiate into T lymphocytes, B lymphocytes, and natural

killer cells (NK cells) (63). Recent studies have shown that m6A-

mediated various RNA metabolic processes are involved in the

stepwise differentiation process (Figure 2). The following sub-

chapters introduce more specific details of the role of the RNA

m6Amodification and its associated regulatory proteins in the HSC

generation and self-renewal, cell development, and differentiation of

T and B lymphocytes from HSCs.
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4.1 The m6A modification in
hematopoietic stem cells

4.1.1 M6A modification promotes HSC
generation via degrading Notch1a

In 2017, researchers found that METTL3 was abundantly

expressed in endothelial cells and HECs in zebrafish, indicating

that the function of METTL3 was closely related to EHT (7).

Previous studies have elucidated that the inhibition of Notch

signaling in endothelial cells promotes EHT and the generation

of HSCs (64, 65). Once METTL3 was deleted in the embryos of

zebrafish with the CRISPR-Cas9 system or in the endothelial

cells of mice AGM region using the Cre/Loxp system, the mRNA

level of Notch1a was significantly increased, leading to activation

of Notch signaling, thus significantly repressing the EHT process

and hindering the generating of HSCs (7, 66) (Figure 2). The

aforementioned phenomenon could be reversed by forcing

METTL3 expression in endothelial cells (7). METTL14 is a
FIGURE 2

The regulatory role of m6A modification in HSCs, and T and B lymphocytes. In the HSCs, METTL3 and YTHDF2 promote endothelial-to-
hematopoietic transition (EHT) via Notch1a leading to HSC generation. METTL3 and METTL14 enhance the ability of HSC self-renewal through
MYC, whereas YTHDF2 inhibits HSC self-renewal by promoting the decay of mRNA encoding transcription factors, including TAL1, GATA2,
RUNX1, and STAT5. MPP, multipotent progenitor cells; CMP, common myeloid progenitors; CLP, common lymphoid progenitors. In CD4+ T
cells, METTL3 and METTL14 promote naive CD4+ T-cell proliferation by the IL-7/STAT5/SOCS pathway. Meanwhile, METTL3 promotes the
differentiation of Th1 and Tfh cells, but represses Th2 and Th17 cell differentiation. METTL14 promotes Tregs differentiation, and METTL3/14 is
essential for the suppressive function of Tregs. However, the exact roles of m6A modification in CD8+ T cells is unknown. In B cells, YTHDF2
and RBM15 promote pro-B-to-large-pre-B transition, and METTL14 promotes the transition from large pre-B cells to small pre-B cells via
increasing chromatin accessibility of key transcription factors loci (Ikzf3, Irf4, Spib, and Bcl6). However, loss of METTL14 did not affect IgH
recombination, but might impair the expression of recombined IgH. IGF2BPs promote the differentiation of MZB and FoB by enhancing the
stability of B-cell regulators Pax5 and Arid3a mRNA. Pro-B, progenitor B cells; Large Pre-B, large precursor B cells; Small Pre-B, small precursor
B cells; MZB, marginal zone B cells; FoB, follicular B cells.
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heterologous partner of METTL3 (27), implying the importance

and role of METTL14 in hematopoiesis. Furthermore, the

YTHDF2 recognizes the m6A peak near the stop codon of

Notch1 mRNA (7, 66) and mediates Notch1a mRNA decay

(67). Interestingly, the YTHDF2 morphants in zebrafish and

mice conferred a similar phenotype in METTL3-deficient

embryos via mediating Notch1a mRNA decay (7). In

summary, the regulation of m6A on HSC specification is

evolutionally conserved during EHT in vertebrates and mainly

influences the stability of Notch1a.

4.1.2 M6A modification regulates self-renewal
and lineage differentiation of HSCs by affecting
the half-life or translation of MYC mRNA

HSCs are well-characterized with the ability for self-renewal

and multi-lineage differentiation. Recent evidence has revealed

that m6A modification at the mRNA level is a new way to

regulate HSC self-renewal and differentiation. The transcripts of

m6A “writers”METTL3 and METTL14 were abundant in mouse

HSCs and significantly downregulated in more mature

committed CMPs, especially in myeloid cells (68–70).

METTL3 governed the abundance of MYC in HSCs at a

decision point that dictates the choice between self-renewal

versus differentiation (71). The deletion of METTL3 with

Mx1-cre downregulated MYC expression via regulating

mRNA translation rather than changes in MYC transcript

levels, contributing to an accumulation of HSCs in the BM

and a marked reduction of reconstitution potential due to a

symmetrical differentiation defects in vivo (70, 71). However,

short hairpin RNA (shRNA)-mediated depletion of METTL3 in

human umbilical cord blood (hUCB)-derived HSCs and human

myeloid leukemia cell line (68) or knocking down of METTL14

in primary leukemic blasts (CD34+) resulted in myeloid

differentiation with increasing phosphorylated AKT levels and

the inhibition of cell growth with the reduction of colony

formation in vitro (68, 69). It is well-recognized that the

development and differentiation of HSCs in vivo are not only

regulated by cell-intrinsic genes, but also affected by external

factors, such as hematopoietic microenvironment. A study

revealed that the self-renewal ability of HSCs predominantly

depends on METTL3, not on METTL14 (72). In addition,

METTL3 depletion in HSCs did not affect apoptosis (68),

whereas knocking down of METTL14 induced acute myeloid

leukemia (AML) cell apoptosis and promoted myeloid

differentiation of normal HSCs via the SPI1–METTL14–MYB/

MYC signaling axis (69).

RBM15 is another important component of m6A “writers”,

originally found to be involved in hematopoiesis. RBM15 has

been shown to exhibit high expression in HSCs. The deletion of

RBM15 increased the number of HSCs in RBM15flox/null Mx1-

Cre BM, and RBM15-deficent HSCs showed a shift in progenitor

fate toward granulocyte differentiat ion or favored

megakaryocyte development with abnormally small and low-
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ploidy megakaryocytes via downregulation of c-MYC (73, 74).

Furthermore, RBM15 knockdown with RNA interference in

32DWT18 myeloid precursor cell line enhanced myeloid

differentiation via a mechanism mediated by Notch signaling

stimulation via altering recombination signal-binding protein

for immunoglobulin kappa J region (RBP Jk) and hairy and

enhancer of split homolog-1 (HES1) promoter activity (75).

Furthermore, one research team used Mx1-Cre mice to

achieve m6A “reader” YTHDF2 conditional knockout mice

and observed that deletion of YTHDF2 in HSCs led to a

significant increase in the absolute numbers as well as the

frequency of functional HSCs with normal lineage

differentiation in vivo via the activation of WNT signaling

downstream targets including MYC, CCND1, and AXIN2

(76). In addition, another study revealed that lentivirus

mediated-knockdown of YTHDF2 in human CD34+ HSCs

resulted in expansion ex vivo. However, in molecular

mechanism, YTHDF2 deficiency promotes the decay of

mRNAs that encode transcription factors involved in stem cell

self-renewal, including TAL1, GATA2, RUNX1, and STAT5 (76,

77). However, there was no significant difference in the absolute

number of progenitors (such as MPPs, CMPs, and CLPs), as well

as myeloid cells, B cells, and T cells (76, 77). In a nutshell, the

above studies corroborated that MYC is a critical target of m6A

modification in HSCs. M6A modification-related proteins can

regulate the self-renewal and differentiation of HSCs by affecting

the half-life or translation of MYC mRNA.

HSC transplantation is widely used to treat a broad spectrum

of disorders, such as hematologic diseases, immune disorders,

and cancer. However, the inability to expand HSCs in vitro

hampers their potential clinical application. Accordingly, the

expansion of HSCs remains a conundrum, warranting further

investigation. Recent studies have clarified that m6A

modification regulates the self-renewal of HSCs. Thus, the self-

renewal and induced expansion of HSCs in vitro after treatment

with specific inhibitors or activators of m6A are widely believed

to provide an adequate source for the clinical application of

HSCs in the future.
4.2 The m6A modification in T cells

HSCs can differentiate into CLPs in the BM, then migrate

into the thymus through blood circulation in which they

undergo gene rearrangement to express diverse TCR and

become mature CD4+ or CD8+ naive T cells through negative

and positive selections (78). After that, naive T cells are driven

into peripheral immune organs where naive CD4+ T cells,

activated by antigens, eventually differentiate into distinct

effector T cells sub-populations (Th1, Th2, Th17, Treg, and

Tfh) or memory T cells. At the same time, the naive CD8+ T cells

develop to cytotoxic T cells (CTL) after recognizing the antigens

by antigen-presenting cells (79).
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4.2.1 M6A modification plays a dispensable role
in the development of T cells and promotes
T-cell proliferation via the IL-7/STAT5/
SOCS pathway

Most recent studies have revealed that m6A methylation is

critical in the development, proliferation, and functional

performance of CD4+ T cells. The numbers of naive T cells

were increased in the spleen and lymph nodes but not in the

thymus in CD4-Cre conditional mice with CD4+ T cell-specific

deletion of the writer protein METTL3 or METTL14 (80).

However, METTL3-/- or METTL14-/- naive T cells remained in

the naive “progenitor” state for more than 4 weeks (80).

Similarly, the development of T cells was not affected in the

thymus and peripheral lymphoid tissues of CD4+ T cell-specific

eraser protein ALKBH5-deficient mice in the steady state (81),

suggesting a dispensable role for m6A in the development of T

cells (Figure 2).

The mRNA level of ALKBH5 was upregulated after

activation of T-cell receptor (TCR) signaling, while the

expression of FTO mRNA exhibited no evident change (81).

Interestingly, it was puzzling that lack of ALKBH5 did not affect

the activation, proliferation, apoptosis, and cytokine secretion of

T cells in vivo (81). It is well established that elevated levels of IL-

7 can induce proliferation of naive T cells in lymphocytopenia

mice after adoptive transfer (82), and SOCS proteins can repress

IL-7/JAK/STAT signaling and play an important role in T-cell

proliferation and differentiation (83–87). The mRNA 3’-UTR

and 5’-UTR of suppressor of cytokine signaling (SOCS) family

genes (SOCS1, SOCS3, and CISH) have specific m6A peaks, with

a conservative sequence of GG/AACA/U (80, 88). Loss of

METTL3 increased the expression of SOCS, especially SOCS1,

via increasing the mRNA half-life and decreasing m6A-mediated

degradation, leading to the inactivation of the IL-7/STAT5/

SOCS pathway (80). Hence, researchers found that T cells

lacking METTL3 or METTL14 failed to proliferate using the

adoptive transfer model in vivo (80, 89). In summary, m6A

modification promotes T-cell proliferation via the IL-7/STAT5/

SOCS pathway.

4.2.2 The effect of m6A modification on the
differentiation of Th1, Th2, and Th17 cells

Naive T cells can differentiate into distinct T helper effector

cell subsets and perform different functions after stimulation by

cytokines in vitro and various antigens in vivo. Recent studies

have illustrated that m6A methylation plays a crucial regulatory

role in T-cell differentiation. The deletion of METTL3 in the

CD4+ T cells reinforced Th2 cell differentiation (80) but

repressed Th1 and Th17 cell differentiation (80, 90). However,

METTL3 deficiency did not affect Th2 cell differentiation

following keyhole limpet hemocyanin (KLH) immunization in

METTL3-deficient mice (90). Moreover, mice with specific

deletion of METTL14 in CD4+ T cells developed spontaneous
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colitis, characterized by increased inflammatory cell infiltration

along with a marked increase of Th1 cytokines (IFN-g and TNF-
a) and Th17 cytokines (IL-17a and IL-17c) in colonic epithelial

(91). In contrast, the level of IL-25 produced by Th2 cells was

dramatically reduced, while IL-13 levels did not change (91).

Moreover, researchers uncovered that the expression of

ALKBH5 mRNA was increased, and there were no evident

changes in the expression of FTO mRNA in Th1, Th2, Th17,

and regulatory T cells (Tregs) compared to naive CD4+ T cells

(81). Mice with CD4+ T cell-specific deletion of ALKBH5 were

resistant to autoimmune colitis and experimental autoimmune

encephalomyelitis (EAE) induction with diminished recruitment

of neutrophils into the central nervous system. This

phenomenon was explained by the fact that ALKBH5 ablation

decreased the mRNA stability of CXCL2 and IFN-g by

enhancing RNA decay and promoted CD4+ T-cel l

pathogenicity (81). Unlike ALKBH5, ablation of FTO did not

impair T-cell development or promote EAE pathogenesis (81).

One possibility can be advanced that lack of FTO may result in

compensation response by other epigenetic regulation.

4.2.3 M6A modification regulates the
immunosuppressive function of Tregs via
SOCS-IL-2/STAT5 signaling

Tregs, the critical specialized T cell subset, are involved in

reducing inflammation and immunosuppression by producing

anti-inflammatory cytokines such as IL-10 and TGF-b,
regulating the activity of various immune cells, and eventually

suppressing the immune response and guarding against

autoimmune diseases (92). The results from three research

groups substantiated that METTL3 had no significant

regulatory effect on directing Treg cell differentiation (80, 88, 89)

(Figure 2). Similar to METTL3, loss of YTHDF1 yielded no

significant difference in the number of Tregs (93). However,

mice lacking METTL3 in CD4+ T cells and Tregs developed

chronic intestinal inflammation and alopecia, respectively. These

severe autoimmune diseases were attributed to an absolute lack

of immunosuppressive function for Tregs (80, 88). The IL-2/

STAT5 pathway was crucial for Tregs function and stability (94).

The researchers used m6A irCLIP-Sep technology (a UV-C

crosslinking and immunoprecipitation platform) and revealed

that m6A modifications were indeed enriched at 3’-UTR and 5’-

UTR regions of SOCS genes, with a conservative sequence of

GG/AACA/U (88). It has been elicited that deletion of METTL3

increased the levels of SOCS proteins by enhancing SOCS

mRNA stability (80, 88), thereby suppressing the IL-2/STAT5

signaling pathway (80, 88). Additionally, deficiency of another

methyl-transferase METTL14 in mice blocked the differentiation

of naive T cells into induced Tregs and resulted in

Tregs dysfunction with loss of suppressive capacity, which

was supported by the fact that the METTL14-deficient Tregs

were unable to suppress naive T cell-induced colonic
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inflammation (91). However, m6A demethylase ALKBH5

deficiency in Tregs exerted no effect on immunosuppressive

function (81). The role of RNA binding proteins in Tregs has not

been reported, which could be future directions for investigation.

4.2.4 M6A modification promotes Tfh cell
differentiation via the METTL3–TCF-1 axis

T follicular helper (Tfh) cells, a specialized subset of CD4+ T

cell located within germinal centers (GC) of lymph nodes, are

involved in the development of humoral immunity by

controlling the GC formation and B-cell responses, especially

in the differentiation of B cells into plasma cells, antibody

production, and Ig class switch (95). T cell-special

transcription factor 1 (TCF-1), a crucial transcription factor

for Tfh cells differentiation, is encoded by the Tcf7 gene (96, 97).

Tcf7 is a bona fide m6A target. METTL3 directly binds to the 3’-

UTR region of TCF-1 mRNA to slow down the degradation and

enhance its stability, ensuring TCF-1 protein expression (90).

Therefore, the knocking down of METTL3 or METTL14, rather

than ALKBH5, with shRNA in CD4+ T cells could promote Tfh

cell development after lymphocytic choriomeningitis virus

(LCMV) infection (89). However, conflicting findings were

reported by Yao et al. that the conditional deletion of

METTL3 with CD4-cre in CD4+ T cells severely impaired Tfh

cell differentiation in a cell-intrinsic manner after LCMV

infection (90). This inconsistency may be accounted for by the

heterogeneity in experimental systems. Meanwhile, METTL3

deficiency in CD4+ T cells reduced the frequency and cell

numbers of GC B cells and plasma cells and METTL3-/- mice

exhibited a significantly lower concentration of the LCMV-

specific IgG, indicating that the function of Tfh cells was

impaired (90).

To sum up, the METTL3–TCF-1 axis functions as an

important regulator to initiate and ensure the differentiation of

Tfh cells post-transcriptionally. Further efforts are needed to

investigate whether other m6A modified proteins are involved in

Tfh cell differentiation.
4.3 The m6A modification in B cells

B-cell development represents a highly ordered process that

involves sequential immunoglobulin gene recombination. In the

BM, CLPs give rise to immature B cells that undergo stepwise

differentiation stages from progenitor B cells (pro-B cells) to

precursor B cells (pre-B cells), and to immature B cells.

Subsequently, the immature B cells further mature in the

spleen (98, 99). Pre-B cells can be divided into two subsets: the

immature, actively dividing large pre-B cells and the more

mature, quiescent small pre-B cells (100). These stages are

defined by rea r rang ing the gene ’ s loc i encod ing

immunoglobulin (H and L chain) and the expression of
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differentiation-specific molecules on the cell surface. Pro-B

cells undergo VDJ gene recombination mediated by

recombination activating genes (RAG) and express surface

molecules such as CD19. Once the m heavy chain (Igm) is

expressed, the cell becomes a pre-B cell. Pre-B cells express a

set of B lineage-specific genes called l5 (CD179b) and VpreB

(CD179a), which form an IgL chain-like structure known as the

surrogate light chain (SLC) to pair with the Igm heavy chain to

combine to form a functional pre-B cell receptor (pre-BCR)

(101, 102). Furthermore, IL7 is a pre-B cell stimulant (103), and

pre-BCR enhances the reactivity of pre-B cells to IL-7 and

promotes clonal expansion along with IL-7R (100). Then, the

complete IgM molecule (BCR) formed by V to J rearrangements

at the k and l light chain gene loci is expressed on the cell

surface, indicating that the cells have developed into immature B

cells. Lastly, immature B cells migrate into the spleen to mature

and become transitional type 1 and type 2 B lymphocyte subsets

(T1 and T2) (104). T2 B cells have been established to

differentiate into follicular B cells (FoB) or marginal zone B

cells (MZB) (104). Upon encountering antigen, mature B cells

are activated and enter the GC, undergoing rapid growth and

proliferation. Furthermore, GC B cells differentiate into either

antibody-secreting plasma cells or long-lived memory B

cells (105).

4.3.1 M6A modification controls early
B cell development

More recently, it has been demonstrated that RNA m6A

modification plays a pivotal regulatory role during early B-cell

development. Two recent studies reported that there were no

major defects in the BM B cells after poly I:C treatment-induced

METTL3 deletion, which might be explained by two hypotheses:

deletion of METTL3 was incomplete, or METTL3 was

dispensable for the maintenance and survival of B cells (70,

71). However, METTL14 deficiency has been shown to block the

transition from large pre-B cells to small pre-B cells in vivo and

in vitro (106). Moreover, METTL14 deficiency did not affect IgH

recombination but might impair the expression of recombined

IgH (106). METTL14-deficient B cells showed limited ability to

rearrange Igk or downregulate the pre-BCR component VpreB

(106). Meanwhile, deletion of YTHDF2 resulted in a significant

block between the pro-B stage and the late large pre-B stage in

vivo (106) (Figure 2). However, YTHDF1 is not essential for B-

cell development (106). These developmental defects were

attributed to the decreased chromatin accessibility of key

transcription factors loci (Ikzf3, Irf4, Spib, and BCL6)

mediating the large-pre-B-to-small-pre-B transition and BCR

recombination components (Rag1 and Rag2), thus resulting in

the fact that these key transcription factors could not be

transcribed (106). RBM15flox/null Mx1-Cre mice treated with

polyinosinic-polycytidylic acid (PIC) showed a dramatic

decrease in peripheral B cells due to a block in pro/pre-B
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differentiation (73). However, the percentages of IgM+ IgD+ and

IgM- IgD+ B cells were maintained in peripheral blood, which

suggested that RBM15 is not essential for B cells in the GC (73)

(Figure 2). Additionally, IGF2BP3 forced expression with

transduction of FH-IGF2BP3-RV in HSCs increased the

frequency of MZB and FoB by enhancing the stability of B-cell

regulators Pax5 and Arid3a mRNA (107).

CD40 (also called TNFRSF5) is a member of the tumor

necrosis factor receptor (TNFR) superfamily with essential roles

in B-cell development, activation, GC formation, and class-

switched antibodies (108, 109). Notably, the m6A writer

WTAP and the m6A reader YTHDF2 are key suppressors of

CD40 (110). However, little is known about the role of WTAP in

B cell development.
4.3.2 The effect of m6A on B cell activation
and proliferation

Furthermore, IL-7 induces the proliferation and differentiation

of pro-B cells to pre-B cells (103). After IL-7 stimulation, loss of

METTL14 impaired pro-B-cell proliferation and cell size

enlargement in vitro and led to significantly lower proliferation

rates in pro-B cells and the early large pre-B cells in vivo, consistent

with the observation in the YTHDF2-deficient B cells in vitro (106).

These findings strongly suggest that the mRNAm6Amethylation is

important for the IL-7-induced pro-B-cell proliferation by

promoting the decay of a group of YTHDF2-bound transcripts

(106). Diffuse large B-cell lymphoma (DLBCL) is themost common

lymphoid malignancy derived from germinal center B cells with

malignant proliferation (111). Cheng et al. revealed that METTL3

expression was increased both in lymph nodes from DLBCL

patients and in DLBCL cell lines, including SU-DHL4, OCILy10,

Farage, U2932, and HBL1. Silencing METTL3 using lentivirus-

mediated shRNA in cell lines inhibited cell proliferation by abating

the total mRNA level of pigment epithelium-derived factors

(PEDF), which was usually regarded as a canonical WNT

signaling inhibitor. However, WNT/b-catenin signaling was not

activated as a result (112). These findings suggest that MEETL3

may be involved in B-cell proliferation.

Taken together, we conclude that m6A modification controls

early B-cell development and IL-7-induced pro-B-cell

proliferation. Impairment of m6A modification hinders B-cell

proliferation, development, and maturation.
5 Conclusion

The physiological and pathological function of m6A

modification has become an emerging field of investigation

since discovering m6A modification on RNA. Over the

past decade, ample evidence has corroborated that m6A
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modification is involved in the development, differentiation,

and function of many immune cells. In this review, we

summarize the components of m6A regulators (Figure 1) and

recent findings of m6A modification from HSCs to T and

B lymphocytes.

We provided a comprehensive overview that m6A

modification regulates the generation, self-renewal, and lineage

differentiation of HSCs; governs CD4+ T-cell development,

activation and clonal proliferation, differentiation, and

subsequent effector functions; and controls B cells’ early

development, activation, and proliferation through different

mechanisms. Moreover, we summarize the molecular

mechanisms involved in m6A modification in HSCs, T and B

lymphocyte development. These molecules are recognized by the

RNA methylation readers and are degraded or translated

subsequently. Nevertheless, it remains unknown how m6A

modification functions precisely in some special T-cell and B-

cell subset, such as Th9 cells, memory CD4+ T cells, Breg cells,

plasma cells, and memory B cells, nor is it clear whether m6A

modifications regulate the development and function of CD8+ T

cells, warranting additional investigation (Figure 2).

Current studies have merely revealed m6A modifications on

mRNA in immune cells and overlooked the effect of m6A

modification on tRNA and rRNA. M6A modification may

regulate the synthesis of proteins that play an important role

in the development of immune cells by influencing ribosome

occupancy and translation efficiency. Overall, m6A methylation

in immune cells is a new research hotspot with more exciting

discoveries expected in the future. Indeed, m6A methylation

modification could be a novel therapeutic target in alleviating

immune cell-related inflammatory diseases and infections and

promoting cancer immunotherapy. For example, m6A small-

molecule drugs are used to treat HSCs to enhance the self-

renewal ability of HSCs and can yield a large number of HSCs in

vitro , which provide sufficient HSCs for stem cell

transplantation. Moreover, it should be borne in mind that

selective deletion of m6A in tumor-infiltrated Tregs may abate

the inhibitory function, thereby recovering the tumor-killing

functions of CD8+ T cells. Furthermore, the deficiency of m6A in

Tfh cells and the enhancement of m6A in Tregs reduce the

number of plasma cells and the production of autoantibodies

and increase immunosuppressive function for Tregs,

representing a promising therapeutic strategy against

autoimmune diseases.
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