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Abstract

Muscle wasting is common and persistent in severely burned patients, worsened by

immobilization during treatment. In this review, we posit two major phenotypes of

muscle wasting after severe burn, cachexia and sarcopenia, each with distinguishing

characteristics to result in muscle atrophy; these characteristics are also likely present

in other critically ill populations. An online search was conducted from the PubMed

database and other available online resources and we manually extracted published

articles in a systematic mini review. We describe the current definitions and charac-

teristics of cachexia and sarcopenia and relate these to muscle wasting after severe

burn. We then discuss these putative mechanisms of muscle atrophy in this condition.

Severe burn and immobilization have distinctive patterns in mediating muscle wast-

ing and muscle atrophy. In considering these two pathological phenotypes (cachexia

and sarcopenia), we propose two independent principal causes and mechanisms of

muscle mass loss after burns: (1) inflammation-induced cachexia, leading to proteol-

ysis and protein degradation, and (2) sarcopenia/immobility that signals inhibition of

expected increases in protein synthesis in response to protein loss. Because both are

present following severe burn, these should be considered independently in devising

treatments. Discussing cachexia and sarcopenia as independentmechanisms of severe

burn–initiated muscle wasting is explored. Recognition of these associated mecha-

nismswill likely improve outcomes.
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INTRODUCTION

Severeburns are a common injurywith an occurrencerate of 5/100,000

people per year globally.1 In the United States, 486,000 patients were

burned, receiving inpatient treatment in 2015.2 Patients with severe

burns on <30% of the total body surface area (TBSA) have a pro-

nounced increase in metabolic rate that persists for years and has sig-

nificant effects onmany organ systems.3

Severe burn is associated with excessive muscle wasting and

atrophy.4 Muscle wasting is defined as unintentional weight loss of
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5%–10% of muscle mass, and severely burned patients are reported to

lose up to 25% of total body mass acutely.5 The proposed reason for

the acute muscle catabolic response is to redistribute essential nutri-

tion substrates and support organ activities and wound healing dur-

ing the acute phase. However, destructive elements are also promi-

nent. Increases inmuscle loss are associatedwith increased death after

injury, such that at a 40% loss of lean bodymass carries a 90%mortality

risk.6

In addition to the injury, clinical interventions to support recovery,

such as nutrition support and immobilization to protect skin grafts and
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provide critical care, affect outcomes related to muscle wasting and

atrophy. Although intensive efforts are made to provide for physical

and occupational rehabilitation as the standard of care, bedrest and

immobilization with splints are oftentimes clinically unavoidable and

critical for wound healing in patients who are severely burned. Fur-

thermore, patients who are severely burned are often mechanically

ventilated and on bedrest for clinical reasons. Previous clinical stud-

ies in noninjured populations described that bedrest decreases protein

synthesis.7 In a preclinical model, immobilization via hindlimb unload-

ing significantly exacerbated muscle wasting in burned rats with 40%

TBSA scald burns.8,9 From this evidence, we propose that cachexia

from inflammation associated with severe burns and immobilization

during clinical treatment should be considered when investigating

treatments to address burn-inducedmuscle wasting.

Cachexia and sarcopenia are the two major pathologic phenotypes

of muscle atrophy. Cachexia is caused by inflammation and is seen

principally in cancer and chronic metabolic conditions. Sarcopenia is a

metabolic syndrome most often associated with aging and is related

to decreased physical activity at any age. In this review, we discuss

these two conceptual phenotypes of muscle pathophysiology and the

related biologic mechanisms related to the severely injured and crit-

ically ill. These two conditions occur in parallel but are independent,

and both are likely mediators of muscle wasting in patients who are

critically ill. Severe burns and immobilization have distinctive patterns

mediating muscle wasting and atrophy, including genetic mechanisms

and pathophysiologic alterations.10 We then explore mechanistic links

of cachexia and sarcopenia in burn-inducedmuscle wasting. Finally, we

briefly discuss current treatments and potential directions for future

investigation.

Cachexia

Cachexia is a wasting syndrome characterized by severe body weight,

muscle and fat loss, fatigue, andanorexia. Approximately 50%of cancer

patients suffer from cachexia and is common in other chronic disease

processes such as cardiac cachexia, chronic renal failure, and chronic

pulmonary obstructive disease. Currently, the definition of cachexia

wasextendedas a complexmetabolic syndromeassociatedwithunder-

lying illness and was characterized by loss of muscle with or without

reduction of fat mass.11

The ubiquitin-proteolytic pathway is the most important molecular

pathway driving cachexia.12 Cytokine activity plays a central role in

its pathogenesis, as inflammatory cytokines are upregulated by reac-

tive oxygen species activated via nuclear transcription factor NF-κB.13

Other pathways such as mitochondrial dysfunction with autophagy,

endoplasmic reticulum stress, and insulin resistance also contribute to

cachexia.14

Sarcopenia/muscle disuse

Sarcopenia was originally described as the degenerative loss of

skeletal muscle mass and strength with aging, and the definition was

further extended to immobility in other chronic disease states.15 The

European Working Group on Sarcopenia in Older People (EWGSOP)

recently described sarcopenia as a muscle disease with low mus-

cle strength, low muscle quantity and quality, and/or low physical

performance.16 We can add that such a condition is not limited to older

adults, as it is found in many other conditions such as paralysis and

bedrest/immobilization.

The most prominent mechanism of sarcopenia is anabolic

resistance.17 Insensitivity to insulin signaling through mTOR/Akt

to PGC-1α18 leads to a reduction in overall muscle protein synthesis.19

In addition, fourmajor proteolytic pathways drive protein degradation,

including the ubiquitin-proteasome system, calpain, caspase pathways,

and autophagy-lysosomal pathways.20 A consequent significant reduc-

tion in muscle precursor satellite cells is associated with diminished

anabolic signals and/or inflammatory responses.21 A form of chronic

inflammation is observed in patients with sarcopenia associated with

elevatedTNF-α and IL-6.22 Oxidative stress disrupts redoxbalance and

is independently associatedwith inflammatorymediators contributing

to sarcopenia.

MECHANISMS REGULATING MUSCLE WASTING
AFTER BURNS

Systemic stress response

Muscle wasting occurs under systemic stress following severe burns.

Endocrine disturbances following severe burns are well known. Stress

hormones such as catecholamines and glucocorticoids are markedly

elevated immediately after injury and may be prolonged for years

depending on severity of the injury. These catabolic stress hormones

dominate the induction of muscle proteolysis and muscle wasting.

Meanwhile, anabolic hormones such as insulin-like growth factor (IGF-

1) and growth hormone remain depressed.

Once the innate inflammatory response is activated, profound

cytokine surges occur.23 In vitro studies provide evidence of increased

cytokine expressionwithmusclewasting through either TNF-inhibited

myogenesis24 or IL-6–stimulatedmitochondrial fragmentation.25 Mer-

ritt et al26 explored elevations in the specific inflammatory cytokines

TNF and IL-6 in patients with severe burns, and found increased pro-

tein ubiquitination throughmetabolic signals via calpain-2.

Nerve damage associated with cachexia has also been

described.27,28 Basic research reports revealed that nerve-related

impairment after severe burns contributes to muscle wasting and

atrophy through either damaged motor neurons29 or abnormal

neuromuscular junctions.30

Hypercatabolism persists with elevated resting energy expenditure

for up to 2 years following a severe burn.31 Muscle protein synthesis

remained elevated up to a year in pediatric patients32; however, the

protein breakdown catabolic response dominated, leading to a net neg-

ative protein balance.31 Meanwhile, energy homeostasis of lipid, car-

bohydrate, and other micronutrients are disrupted and thus also con-

tribute tomuscle wasting after a burn.33
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F IGURE 1 Themechanisms of muscle wasting after a burn. Severe burns are often accompanied with immobility, which havemassive systemic
responses, including the effects on the endocrine, immune, metabolism, neural system. Skeletal muscles respond at the levels of transcription
genes, subcellular organelle, and cell turnover. The complex network of signal regulation finally leads tomuscle mass reduction and function
impairment

Muscle cell turnover and intracellular mechanisms

Muscle cell turnover accelerates in response to severe burn, recapitu-

lating increased protein turnover in skeletal muscle. The principal pro-

ponentof cell death after burn is by apoptosis. Fry et al34 demonstrated

increased muscle satellite cell death in pediatric patients who were

burned, and Merritt et al further confirmed that burn serum reduced

differentiated myotube fusion signals and myogenin expression, indi-

cating impairedmyogenic differentiation following burn injury.35

A group of hormone-like proteins, termed myokines, are constitu-

tively expressed in muscle tissue and participate in local and distant

organ responses with both beneficial and detrimental effects. IL-6 has

a binary effect in both supportingmuscle growth and inhibiting skeletal

myogenesis duringmuscle wasting.36

Mitochondria are key intracellular organelles regulating cachexia

in patients who are burned.33 Studies of mitochondrial genetics,37

morphologic changes,25 and function38 show mitochondrial destruc-

tion following a severe burn including autophagy or mitophagy rele-

vant to inflammation. Deletion of the muscle-specific autophagy gene

Atg7 results in severe muscle atrophy with abnormal mitochondrial

accumulation.39

The systemic response to injurywas described at the transcriptional

level by the Glue Grant group, suggesting that 80% of gene pathways

in circulating cells are significantly influenced by burns or blunt

trauma.40 Padfield et al41 summarized four functional gene categories

disturbed in response to direct burn injury. These four categories

include the inflammatory response, protein synthesis and degradation,

mitochondrial-related energy metabolism, and muscle development

(Figure 1).

Cachexia, sarcopenia, and muscle atrophy after burn

Based on the similar phenotypic responses, we speculate that burn-

induced muscle mass loss has characteristics of both cachexia and sar-

copenia. Themain crux of cachexia is inflammatory cytokine activation

of the ubiquitin-proteolytic pathway leading tomuscle catabolism; this

results inmusclewasting.During recovery, the condition is confounded

by comorbidities such as inhalation injury and sepsis as well as clini-

cal treatments such as immobilization/disuse. Among these factors is

the unavoidable consequence of bed rest in severe burns, resulting in

sarcopenia in addition to cachexia. The mechanisms of sarcopenia are

impairment of signals that stimulatemuscle growth and relative inhibi-

tion of protein synthesis,whichworsens protein breakdownassociated

with cachexia.

Burn-induced muscle wasting is most likely initiated in the acute

stage by cachexia and extends through convalescence42 as is seen

in other chronic diseases. Cachexia is then inflammation-induced

protein degradation and increased cell death in muscle associ-

ated with the indigenous response to injury. Massive increases in

inflammatory cytokines, in response to burn, have been reported lead-

ing to cachexia.43
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F IGURE 2 Mechanistic proposal of cachexia- and
sarcopenia-accommodatedmuscle wasting after a burn. A severe burn
caused hyperinflammation, leading to predominant protein
degradation, which is similar to cachexia, and immobility, which is
closely related to sarcopenia by inhibiting protein synthesis and cell
growth. Immobility extends the severity of muscle wasting and
function impairment after a burn

Muscle wasting occurs through the stress hormone independent

atrogenes atrogin-1 and MuRF-1, and expression of polyUb,44 as does

muscle atrophy associatedwithmitochondrial dysfunction in response

to severe burn. Abnormal mitochondria are also observed in those

with cachexia due to cancer45 with decreased oxidative capacity in

mitochondria.46

Cachectic symptoms such as weight/fat loss, anemia, and anorexia

are observed in burn patients as well. In addition, significantly

decreased fat body mass was found at day 14 in burned rats,47 and

anorexia was reported in patients who were burned long ago.48 Dys-

functional neurotransmitters are also noted; acetylcholine receptors

were upregulated and associated with hyperkaliemia after a severe

burn, which persists with infection and immobilization.49

Beginning with the acute phase after a burn injury, cachexia asso-

ciated with hypercatabolism is combined with sarcopenia associated

with immobilization/disuse. Ferrando et al50 showed that prolonged

bed rest decreases protein synthesis by 50% in human participants.

Preclinical data showed that the additive effect of both conditions,

burn and disuse, resulted in vastly more substantial muscle mass loss

and function impairment.9,51 So, it is not only cachexia associated with

injury and inflammation, but the effects of immobilization in clinical

treatment that must be considered. Differing from cachexia alone, the

principal component of burn-related muscle wasting is relative inhibi-

tion of protein synthesis with bed rest rather than increased protein

degradation (Figure 2).

Cachexia and sarcopenia are both associatedwith inactivity, and the

complex interactions of the associated molecular mechanisms likely

overlap. Mitochondrial damage is probably related to increased oxida-

tive stress both from the injury and immobility, and thus mitochon-

dria are likely a significant contributor regulating the skeletomuscu-

lar pathophysiological response. Recent studies and reviews provide

some insights into this notion,52 though molecular mechanisms have

not been distinguished in detail.

Current interventions and future direction

Current treatment for severe burns is directed to ameliorate

catabolism and muscle wasting as early as possible. Treatment

includes aggressive wound closure, appropriate critical care, and

nutrition management53; however, these are still challenged.54 These

are mostly directed at ameliorating cachexia but do not address

sarcopenia directly. Mobilization and exercise training are the first

choices to counteract muscle wasting with sarcopenia, though this

is not often implemented during initial treatment of injury because

of clinical concerns. Improvements in sarcopenia have been shown

after both aerobic55 and resistance exercise,56 so either will likely

suffice. Exercise alleviates oxidative stress and improves protein

synthesis, which may occur through improved mitochondrial res-

piration function with increased complex I and II substrates.57 We

advocate for exercise training to be aggressively implemented as part

of standard treatment following a severe burn; if aggressive therapy

is limited by the patient’s clinical condition,57 alternative treatments

such as whole-body vibration58 or electric acupuncture59 might be

considered.

Therapeutic pharmaceutical agents such as insulin, oxandrolone,

and other anabolic agents improve muscle mass and function in burn

patients. Giving insulin prevents cell death, decreases proteolysis,60

and positively affects muscle protein synthesis via the protein kinase

B (Akt) pathway.61 Regarding sarcopenia, considerations are directed

more towards increases in muscle regrowth. Oxandrolone treatment

has been studied with induction of net protein synthesis and is in

common use both in burns62–65 and in older adults.66 A recent

genetic study showed that only Forkhead Box O1 (FOXO1) increased

in cachexia/sarcopenic conditions,67 and therapeutic development of

FOXO1 inhibitionmay have a role in preventingmusclewasting follow-

ing severe burn.

In cachectic states such as severe burn, nutrition support is of ben-

efit to prevent nutrition complications associated with underfeeding

that could compound muscle wasting and atrophy due to cachexia and

sarcopenia. In patients who are burned, nutrition evaluation by dieti-

tians and medical providers is the standard of care.68 Providing nutri-

tion substrate andmicronutrients such as vitamins andminerals is vital,

and aggressive replacement is also the standard of care.68 Metabolic

changes after severe burn are dynamic and in response, nutrition com-

ponents and volumes should be titrated to maintain sufficient support.

Of course, injury severity and populations such as older adults, peo-

ple who are obese, and people with severe medical pre-existing con-

ditions should also be considered. This review explored theoretical

mechanisms that influence the dynamic changes in metabolism affect-

ing nutrition provision following severe burn, at least partly. However,

nutrition support in patients who are severely burned are not specif-

ically directed at either cachexia or sarcopenia in the current critical

care environment. Future studies are warranted to understand and
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define the dynamics of nutrition support, which are likely to change

across time as conditions change.

Systemic stem cell injections have been tested in older adults

who would be considered sarcopenic69 and might be considered in

those who are severely injured. A recent summary of wasting dis-

orders described the updated preclinical and clinical therapies for

cachexia and sarcopenia. Specific treatments were proposed, target-

ing genes such as Fn14 and MuRF1 and mitochondrial dynamics.70

Though these were developed for cachexia and sarcopenia specifically,

similar approaches might be beneficial in patients who are severely

burned.

CONCLUSION

Muscle wasting and atrophy following severe burn is the result of mus-

cle protein degradation in excess of protein synthesis. A principal com-

ponent is activation of the ubiquitin/proteasome pathway with severe

inflammation, leading to increased cell death and cachexia; however,

these are not alone in defining the cause—considerations for effects of

sarcopenia from disuse must also be taken into account. Furthermore,

nutrition therapies alone are insufficient in alleviating muscle wasting

in this condition. Strategies for treatmentmight be focusedon themus-

cle wasting from burn-induced cachexia in the acute phase, whereas

the effects of sarcopenia might take precedence in the rehabilitation

phase.

Severe burns are an excellent model to study for both cachexia and

sarcopenia,which can likely be generalized toothermedical conditions.

Cachexia and sarcopenia investigated in connection to burn research

will likely clarify mechanisms leading the muscle wasting in patients

who are severely injured and/or critically ill, and aid in developing ther-

apeutic strategies. Consideration of both mechanisms of muscle loss is

particularly critical in the elder population with poorer prognosis after

severe burn injury and may be of benefit in the study of other chronic

disease-relatedmuscle atrophy.
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