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Abstract

The earliest models for how morphogen gradients guide embryonic patterning failed to

account for experimental observations of temporal refinement in gene expression domains.

Following theoretical and experimental work in this area, dynamic positional information has

emerged as a conceptual framework to discuss how cells process spatiotemporal inputs

into downstream patterns. Here, we show that diffusion determines the mathematical

means by which bistable gene expression boundaries shift over time, and therefore how

cells interpret positional information conferred from morphogen concentration. First, we

introduce a metric for assessing reproducibility in boundary placement or precision in sys-

tems where gene products do not diffuse, but where morphogen concentrations are permit-

ted to change in time. We show that the dynamics of the gradient affect the sensitivity of the

final pattern to variation in initial conditions, with slower gradients reducing the sensitivity.

Second, we allow gene products to diffuse and consider gene expression boundaries as

propagating wavefronts with velocity modulated by local morphogen concentration. We har-

ness this perspective to approximate a PDE model as an ODE that captures the position of

the boundary in time, and demonstrate the approach with a preexisting model for Hunch-

back patterning in fruit fly embryos. We then propose a design that employs antiparallel

morphogen gradients to achieve accurate boundary placement that is robust to scaling.

Throughout our work we draw attention to tradeoffs among initial conditions, boundary posi-

tioning, and the relative timescales of network and gradient evolution. We conclude by sug-

gesting that mathematical theory should serve to clarify not just our quantitative, but also our

intuitive understanding of patterning processes.

Author Summary

In many developmental systems, cells interpret spatial gradients of chemical morphogens

to produce gene expression boundaries in exact positions. The simplest mathematical

models for positional information rely on threshold detection, but such models are not
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robust to variations in the morphogen gradient or initial protein concentrations. Further-

more, these models fail to account for experimental results showing dynamic shifts in

boundary placement and increased boundary precision over time. Here, we argue that

dynamic positional information is interpreted differently by a bistable patterning system

depending upon whether gene expression products diffuse. We explore two mathematical

methods to analyze pattern refinement with and without diffusion, and discuss design

tradeoffs among precision, placement, accuracy, and timescale. We suggest that future

research into dynamic positional information would benefit from perspectives that link

local (cellular) and global (patterning) behaviors, as well as from mathematical theory that

builds our intuitive understanding alongside more data-driven approaches.

Introduction

Spatial patterning of gene expression, especially during embryonic development, has fasci-

nated theoretical and experimental researchers throughout the past century. A central question

involves how an initial pattern is interpreted by cells in a tissue to produce sharp boundaries

between spatial domains expressing distinct sets of genes [1, 2]. Significant evidence indicates

that concentration gradients of chemical morphogens provide the necessary positional infor-
mation for accurate boundary formation in various contexts ranging from axis orientation [3–

6] to neurogenesis [7, 8]. In early studies, cells were proposed to interpret positional informa-

tion through a thresholding mechanism, whereby a cell expresses a certain gene only if the

morphogen concentration in that cell exceeds a certain level [9]. Subsequent research has com-

plicated this hypothesis, with experimental evidence indicating that features such as the slope

or temporal evolution of a morphogen gradient may also transfer positional information to

target cells [10–16].

The recent concept of dynamic positional information posits that positional information is

not conferred through a static reading out of morphogen concentration, but rather through a

dynamic process of interplay between morphogen concentration and the genetic networks

that interpret it [17]. Dynamic positional information has been inspired in part by two obser-

vations. First, the precision (regularity) of boundaries increases over time, which in combina-

tion with domain shifting leads to evolution of patterns from an initial messy form to a refined

final form that cannot be directly predicted from the concentrations of underlying signals [18–

20]. Second, gene expression domains shift over time, as indicated by experimental evidence

from fruit flies [18, 21–25], scuttle flies [26], and vertebrate neural tube [27]. To explain these

observed behaviors, researchers have investigated stochastic influences [28, 29], the structure

of biochemical networks [30], protein diffusion [20], biomechanical forces including cell sort-

ing or aggregation [31–33], and the temporal evolution of upstream patterns [15].

Dynamical systems analysis—in which differential equations describe how chemical con-

centrations evolve in time—underlies most efforts to understand dynamic positional infor-

mation. In a dynamical systems model, morphogen concentration typically acts as a spatially

varying bifurcation parameter that modulates the number and stability of the steady states

attainable by a genetic network (and therefore by a cell located at a particular point in space).

The morphogen modulates gene expression rates such that cells destined for one side of a

gene expression boundary favor one stable state and cells on the other side favor another sta-

ble state. Many models neglect the diffusion of gene expression products so as to simplify

simulation and analysis without completely compromising qualitative theoretical-to-empiri-

cal fit [15, 21, 30, 34, 35]. However, diffusion is known to be a potential determinant of
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patterning in chemical and biological systems alike—as demonstrated by Turing’s famous

observation [36]—and theoretical and experimental research supports the idea that such

intercellular signaling may reduce noisy influences or correct patterning defects in develop-

mental systems [20, 37, 38].

While many studies focus on specific experimental systems, some recent research into

dynamical positional information has leveraged a bottom-up approach by examining a simple,

generic model—the bistable genetic network (toggle switch)—and generalizing the conceptual

or mathematical insights thereafter. For example, the authors of [39] classified the qualitative

behaviors of attractors and trajectories in toggle switches with time-dependent (morphogen)

inputs and subsequently used these classifications to describe the dynamic behavior of the gap

gene network in fruit flies [15]. Similarly, the authors of [29] found that stochastic gene expres-

sion could result in boundary refinement over specific timescales, and confirmed the effect

experimentally in a larger network [27]. Such approaches leverage a thorough understanding

of simple models to make sense of more complex cases, enabling researchers to generate new

insights, predictions, and perspectives along the way.

Here, we use a simple deterministic bistable network to exemplify how the diffusion of gene

expression products determines the mathematical mechanisms behind transient boundary

positioning, and therefore how cells may be considered to interpret positional information

from morphogen concentration. Without diffusion, morphogen concentration drives individ-

ual cell trajectories directly, such that boundaries shift indirectly as a result of many coordi-

nated but isolated behaviors considered together (e.g., [29]). With diffusion, local morphogen

concentrations alone do not dictate individual cell behaviors, but can instead be understood to

determine the speed of movement of the entire gene expression boundary in a predictable

way. For each case we suggest a scheme to improve the reproducibility of boundary placement

when initial conditions may vary across embryos; in the system without diffusion, this scheme

is identical to one that improves the precision of a boundary when initial conditions vary

among cells. We are guided throughout by the belief that exploring the constraints and affor-

dances of hypothetical designs can facilitate our understanding of extant living systems as well

as our ability to engineer them.

The paper is broken into two complementary parts. The first part concerns systems where

gene products do not diffuse and in which morphogen gradients emerge or disappear over

time. As a consequence of morphogen dynamics, bifurcation points across the tissue shift in

space, which influences both the transient placement of boundaries and the precision (in a sin-

gle embryo) or reproducibility (across embryos) of a final pattern. We introduce a metric for

assessing boundary precision (reproducibility) as the width of the region in which cells receiv-

ing the same concentration of morphogen do not approach the same steady state (adopt the

same fate). We use the metric to analyze a design for enhancing precision during or after

boundary formation. This design relies on temporal decrease in morphogen concentration to

sweep cells in imprecise bistable regions into monostable regions where gene expression is uni-

form for cells sharing the same morphogen concentration. Central to this discussion is the role

of initial conditions and the relative rates of network and gradient evolution in determining

precision, with relatively slower gradients and longer times to readout generally producing

more precise outcomes.

In systems where gene products diffuse, an individual cell’s dynamics are no longer deter-

mined solely by its morphogen concentration. In the second part of this paper, we analyze dif-

fusion-driven boundary shifting by introducing a mathematical approximation for predicting

the propagation of a generic bistable wavefront when bifurcation parameters vary in space.

This approximation allows us to reduce a full PDE simulation to the simulation of a single-

variable ODE once fronts have formed in bistable regions. We apply this approximation to
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biological patterning systems in which morphogen concentration determines the local propa-

gation velocity of a gene expression boundary. We argue the perspective is relevant to current

thinking about patterning by examining an existing model for the formation of the Hunchback

(Hb) boundary in early Drosophila [40], which exhibits both spatial and temporal variation in

the underlying Bicoid (Bcd) morphogen gradient. We note constraints such as the transience

of the pattern and the issue of scaling in the absence of corrective mechanisms to the gradient

or initial conditions. Next, we show how an understanding of propagating wavefronts enables

us to develop new designs, including a robust mechanism for accurate steady-state boundary

placement even from homogeneous initial conditions.

Our analysis throughout this work highlights how temporally varying inputs and cell-to-

cell coupling can regulate design tradeoffs among boundary precision, accuracy of place-

ment, and the necessity for accurate initial conditions. We propose a subtle shift in focus

from individual cell trajectories to the evolution of entire gene expression boundaries in

order to derive a more complete picture for the regulation and interpretation of dynamic

positional information on local and global scales. Most importantly, we aim to illustrate how

a change in perspective can facilitate intuitive understanding of bistable patterning systems,

which may inspire further thinking about potential designs in natural contexts and for syn-

thetic applications.

Results

Boundary positioning and precision: Reliance on initial conditions

The simplest models for dynamic patterning assume static morphogen gradients. Experimen-

tally, however, these gradients have been observed to change in time [18, 41–43]. In particular,

temporal decreases in gradient amplitude have been suggested to play an essential role in prop-

erly positioning gene expression boundaries [15]. Here, we show that time-varying morphogen

gradients may not only modulate boundary position, but simultaneously increase robustness

of patterning outcomes to variation in initial conditions. First, we introduce a metric to assess

boundary precision or reproducibility in placement in the context of an emerging morphogen

gradient acting simultaneously with the genetic network. We next apply the metric to hypothe-

size that allowing morphogen concentrations in an existing gradient to decrease over time

could enhance boundary precision (reproducibility) by increasing robustness to variation in

initial conditions that would otherwise cause neighboring trajectories to diverge to different

stable steady states. In both cases we note the design tradeoffs among precision, time to read-

out, and the relative rates of gene network and morphogen dynamics.

In this and the following section, we will approximate a tissue as a continuum, with dynam-

ical behaviors varying along a coordinate x. For the sake of discussion we will take x to be the

anterior-posterior axis of a model embryo. Assuming for now that parameters are static (not

time-varying), we consider chemical reactions (without diffusion) governed by equations of

the form

duðt; xÞ
dt

¼ f ðx; uðt; xÞÞ ð1Þ

where u(t, x) are chemical concentrations at time t and coordinate x, and f incorporates the

production and degradation rates of the chemicals. The whole system is presumed to be

mono- or bistable at all points on the axis. For example, in this section we will consider a

chemical toggle switch in which there are two mutually repressive species u1 and u2. The spe-

cies u1 is activated by morphogen α, which is expressed in a gradient along x with length
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constant λ:

aðxÞ ¼ be� xl: ð2Þ

For simplicity, we also lump transcription and translation into a single step. The governing

equations are then

du1ðt;xÞ
dt ¼ a1haðaðxÞÞhrðu2ðt; xÞÞ � bu1ðt; xÞ

du2ðt;xÞ
dt ¼ a2hrðu1ðt; xÞÞ � bu2ðt; xÞ

8
<

:
ð3Þ

where

haðyÞ ¼
y
Ka

� �na

1þ
y
Ka

� �na ; hrðyÞ ¼
1

1þ
y
Kr

� �nr ð4Þ

are activating and repressing Hill functions with coefficients na, nr and concentration to half

maximum Ka, Kr respectively.

To consider morphogen gradients that are not static, we modify the governing equation Eq

(1) to be time dependent:

duðt; xÞ
dt

¼ gðt; x; uðt; xÞÞ: ð5Þ

The same genetic network can thus respond differently to the same concentrations of u1 and

u2 depending upon the x-coordinate at which the cell is located and the time at which the con-

centrations are measured. We refer to cell behavior at a particular location x as local and at a

particular time t as instantaneous.
An instantaneous phase portrait corresponding to a fixed time t is derived from the equa-

tion

d~uðt; xÞ
dt

¼ gðt; x; ~uðt; xÞÞ; ð6Þ

where the only difference from Eq (5) is that g is fixed in time. For our purposes, this equation

is derived by taking the morphogen profile at a time t from Eq (5) and creating a new system

in which the morphogen is static with that profile for all times τ, the integration variable in the

hypothetical system (6). For a more general discussion of instantaneous phase portraits, see

[15, 39].

Although we will use a morphogen gradient as an example, we note that the intuitive ideas

discussed here apply to other spatial gradients that are monotonic but not necessarily expo-

nentially decaying in space (e.g., gene expression boundaries) or that evolve monotonically but

not necessarily exponentially in time.

Boundary formation during gradient emergence. We begin by investigating boundary

placement and precision in a network with a morphogen gradient α(t, x) that grows from 0 at

t = 0 to a final profile aðt !1; xÞ ¼ a1ðxÞ ¼ be�
x
l with length constant λ, modeled as

aðt; xÞ ¼ be� xl 1 � e� gtð Þ: ð7Þ

The conclusions discussed below generalize to other functional forms, but we choose an expo-

nential to make γ, the rate of approach to the final profile, explicit.

Suppose that initial conditions are uniform (identical across all cells). At each point x along

the embryo, the initial conditions fall into the basin of attraction of high u�
1
, low u�

2
(to the
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anterior) or low u�
1
, high u�

2
(to the posterior). The location of the boundary is determined by

the coordinate x� where the initial conditions cross from one basin of attraction to the other.

Embryo-to-embryo variability in the morphogen profile compromises the reproducibility of

boundary placement by shifting x�. Similarly, if individual embryos have uniform initial condi-

tions but those conditions vary across embryos, then the position of the boundary may also

vary by embryo even if the gradient is identical across embryos. The degree of variation

depends on the embryo-to-embryo variability in initial conditions: If they all fall within the

same basin of attraction across the entire bistable region, then boundary placement will be

identical across embryos. Otherwise boundary placement will vary across some width less than

or equal to the width of the bistable region, based on the spread in initial conditions.

Mathematically, the question of how much embryo-to-embryo variability in initial condi-

tions propagates to variability in boundary placement is similar to the question of boundary

precision within a single two-dimensional embryo where initial conditions vary across cells at

the same coordinates on the A-P axis. Such variation in initial conditions despite deterministic

governing dynamics may emerge, for example, when the network of interest is more tightly

regulated than preceding processes. A precise boundary is achieved when initial conditions for

all cells with coordinates x< x� fall within the basin of attraction of the state with high u�
1

and

all those with coordinates x> x� fall within the basin of attraction of the state with low u�
1

(and

0< x� < L, the embryo length). If the system is everywhere monostable at α1(x) and transi-

tions from high to low u�
1

with increasing x, the boundary will be precise regardless of initial

conditions though the boundary may not be very sharp. Otherwise, some region of the embryo

is bistable as t!1, and precision is determined by the relationship between initial conditions

and the basins of attraction for the two states in this region (Fig 1).

Let xa mark the anterior end of the bistable region and xp mark the posterior end as t!1.

We denote the basin of attraction for high u�
1

at coordinate x by Bx. For the gradient (7), x1 <

x2 implies α(t, x1)�α(t, x2) at all points t. Since higher concentrations of morphogen bias the

system in favor of high u�
1
, any initial condition that can achieve high u�

1
for a certain concen-

tration of morphogen will also achieve that state for higher concentrations of morphogen; i.e.,

all initial conditions ending in high u�
1

at x2 will also end in high u�
1

for x1, but not vice versa. In

other words, Bx2
is a subset of Bx1

.

Assume we are given a set of initial conditions not knowing how they may be distributed

across x. If there exists an ~xa between xa and xp such that B~xa
contains all the initial conditions,

then the maximum such ~xa determines the guaranteed boundary between the region of high

u�
1

and a possibly irregular region. Similarly, if there exists an ~xp between xa and xp such that

B~xp
contains none of the initial conditions, then the minimum such ~xp determines the guaran-

teed boundary between the irregular region and the region of low u�
1
. Thus, the ratio

R ¼
~xp � ~xa
xp � xa

ð8Þ

captures the fraction of the final bistable region which may be irregular, with R = 0 indicating

no irregularity (boundary is precise and located at ~xa ¼ ~xp). Otherwise, there are no guaran-

tees for precision without further information about the spatial distribution of the initial con-

ditions. We note that if instead of cell-to-cell variation in a single embryo, we took the initial

conditions to represent embryo-to-embryo variation in uniform starting concentrations, R is a

measure of reproducibility that captures the fraction of the maximum possible variation in

boundary placement that is actually observed among the embryos.
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The basins of attraction depend crucially on the relative rates of gradient formation and

gene network dynamics. As a general guidepost, we evaluate the relative rates using the ratio

k ¼
g

s
; ð9Þ

where σ is the minimum rate of convergence to a stable steady state across all bistable coordi-

nates x when t!1 (see S1 Appendix). κ< 1 indicates that the dynamics of the network are

generally faster than those of the gradient, while κ> 1 indicates the dynamics of the gradient

are generally faster than those of the network. When κ = 0 we may assume the network equili-

brates instantly to any changes in the gradient, so the trajectories traversed by the network are

Fig 1. (a) A bistable toggle switch can produce a gene expression boundary from a morphogen gradient. Top, the

morphogen (gray) induces expression of u1 (gold), which is mutually repressive with species u2 (blue). The morphogen

concentration causes the anterior (left) of the boundary to be monostable in favor of high u1 and the posterior (right)

to be monostable in favor of high u2. In the bistable region of the boundary itself, the initial conditions determine

whether cells express high u1 or high u2 at steady state. Middle, a bifurcation diagram indicates the value of the steady

states, with solid lines indicating stability and dashed lines, instability. Bottom, a heat map of u1 concentration at steady

state showcases how variation in initial conditions among rows may result in an imprecise boundary in the bistable

region. (b) Phase portraits at different x coordinates along the embryo predict how trajectories evolve over time.

Gray arrows indicate the direction in which a trajectory will travel. Solid dots indicate stable steady states favoring high

u1 (gold) or high u2 (blue). The unstable middle point in the bistable region is denoted by a red ×. Black lines are

example trajectories corresponding to the cells labeled above. (c) The boundaries of the imprecise region are

determined by the basins of attraction that bound the initial conditions. Red shaded regions beneath each red curve

denote the sets of initial conditions that will converge to the state with high u�
1

at a fixed coordinate x. Black × denote

the initial conditions of all cells in the bistable region. The distance between the lowest and highest x that most tightly

bounds these conditions (here, xa = 0.50 and xp = 0.70) is the most conservative estimate of the width of the imprecise

region. The actual distribution of initial conditions may cause the actual width of the region to be smaller; for example,

here, the initial conditions for the anteriormost cells within the bistable region (cyan4) are upper bounded by a

higher x than are the black ×.

https://doi.org/10.1371/journal.pcbi.1008589.g001
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approximated by the trajectories of the instantaneous steady states. In the opposite case κ� 1,

the dynamics of the genetic network are well approximated by those of an equivalent system

with static gradient α1(x). Note that if the system is monostable at t = 0, then κ = 0 guarantees

precision in the resulting boundary. All other schemes depend on establishing proper initial

conditions to achieve precision.

Fig 2 illustrates simulations for varying κ (achieved by varying γ) with the same set of ran-

domly generated initial conditions clustered near (0, 0). At κ� 1,the network equilibrates to

the single steady state available from t = 0 so that by the time the bistable region emerges the

variation in initial conditions has effectively been washed out. All cells at the same coordinate

x then follow the same trajectory, resulting in a precise final boundary. As κ increases, the

imprecision (R) also tends to increase (the slight improvement in precision for κ!1 relative

to κ = 10 is an artifact of the particular set of initial conditions chosen for this example). Even

with relatively slow gradient emergence, the formation of the boundary lags the movement of

the bistable region and appears to track its movement from anterior to posterior. For moderate

κ, the region of high u�
1

expression becomes more uniform as bistable regions toward the ante-

rior become monostable, causing initially divergent trajectories to redirect toward the same

single steady state. The net effect is that precision (in the sense of similarity in expression levels

among neighboring cells) qualitatively appears to increase over time across the anterior of the

embryo. Hence, both boundary positioning and precision can result from the same underlying

dynamic process of gradient formation.

Although we have considered here the case where a gradient grows from an initially homo-

geneous, monostable regime, there is no mathematical reason that α(t = 0, x) must be uniform,

nor that the gradient itself must stabilize as t!1. The next section will explore an example

Fig 2. The precision of a gene expression boundary forming atop a dynamically growing gradient depends on the

relative rates at which the network and the gradient evolve. The control (static gradient) corresponds to κ =1. Top,

time lapses illustrating the concentration of u1 across a whole embryo. Assuming the gradient emerges from a

uniformly monostable state (here with α(t = 0, x) = 0), then the slower the gradient emerges, the more precise the

resulting boundary will be. Boundary formation lags the movement of the bistable region from anterior to posterior.

Bottom, the width of the imprecise region can be predicted from the basins of attraction at each coordinate x; see Fig 1.

R quantifies the maximum width of the imprecise region (which depends on the initial conditions) relative to the

width of the bistable region, with lower R indicating higher precision. That R is higher for κ = 10 relative to κ =1 is an

artifact of the particular choice of initial conditions, which are shared across all simulations pictured here.

https://doi.org/10.1371/journal.pcbi.1008589.g002
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in which a gradient already exists at time t = 0. A minor adjustment to the metric allows preci-

sion to be evaluated at finite t and does not fundamentally depend upon whether morphogen

concentration increases or decreases in time.

Precision enhancement after gradient emergence. We hypothesize that temporal

decrease in morphogen concentration in an established gradient can increase precision (equiv-

alently reproducibility in placement across embryos) by “sweeping away” boundary irregulari-

ties regardless of the prior process that produced them. To describe the intuition behind the

idea, we will first assume that the gradient has remained static long enough for the genetic net-

work in all cells to have reached a steady state. We assume that as we proceed along the x coor-

dinate, the system transitions from monostable favoring u1 to bistable to monostable favoring

u2, as in Fig 1A. At time t = 0, the morphogen concentration begins to decrease exponentially

in time, taking the form

aðt; xÞ ¼ be� xl� gt ð10Þ

at coordinate x and time t. Such temporal decrease might arise from increased degradation of

morphogen or from a reduction in morphogen production, both of which have been observed

for the Bcd gradient in fruit flies. The molecular mechanism could determine, for example,

whether the morphogen profile stabilizes in the shape of a gradient with a lower concentration

(as might be expected from increased degradation) or becomes completely flat (as might be

expected from decreased production) [44]. Both cases may be handled in our framework,

though for this example we have structured the gradient to approach 0 everywhere as t!1.

Introducing temporal decrease in α causes the transitions between monostable and bistable

regions to shift anteriorly (toward low x) over time, such that parts of the initially monostable

region for high u1 will become bistable, and part or whole of the initially bistable region will

become monostable for low u1. Cells with high u1 at t = 0 remain at high u1 even if the region

where they are located becomes bistable. At the same time, the initially bistable region becomes

monostable for low u1, thereby “sweeping away” irregularities introduced by the initial bist-

ability. The result is that an imprecise boundary can be made precise through the dynamics of

the morphogen gradient (Fig 3A). Maximum precision is achieved once the initially irregular

region has become entirely monostable. A side effect of this scheme is that the placement of

the boundary, as determined by the locations of the bifurcation points, also shifts anteriorly.

(Note that a similar effect could be observed but with a posterior shift if the morphogen con-

centration were increasing in time across the domain.).

Although we have assumed the genetic network in all cells has reached a steady state before

time t = 0, intuitively we might expect that, if the temporal decrease in α is slow enough relative

to system dynamics, trajectories in the anteriormost region could still converge to high u�
1

even

if they do not begin at that steady state. We might therefore ask for what set of initial condi-

tions (at time t = 0) a trajectory at a given x coordinate will converge to high u�
1
. Similarly,

given an arbitrary set of initial conditions, we might ask how much irregularity we expect to

persist despite decay in the gradient; that is, how much we expect temporal decrease in mor-

phogen concentration to enhance precision relative to a control with no decrease.

To investigate these questions, we first note that in the current model the morphogen con-

centration will decay to zero and only the monostable state for high u�
2

will remain. For the

boundary to be maintained we require some mechanism to stabilize the gradient or for a read-

out (cell fate decision) to be made at some finite time tf before the gradient vanishes. Such a

readout could be rendered by, for example, the activation of a second set of regulatory ele-

ments for the relevant proteins. In the interest of defining a metric that is compatible with
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stabilization as well as independent of the readout mechanism (which might itself introduce

error amplification or correction), we will assess the degree of precision enhancement as

follows:

1. Let morphogen concentration decrease from time 0 to time tf.

2. At time tf, maintain the current morphogen profile and allow the network within each cell

to approach steady state (let t!1).

3. Calculate R as in Eq (8), the fraction of the final bistable region which may be irregular.

Although R is defined with respect to the width of the bistable region at infinite time (equiv-

alently t = tf), from it we can calculate the relative width of the irregular region to the width of

the bistable region at any time t for which it exists, as

Rt ¼
xpðtf Þ � xaðtf Þ
xpðtÞ � xaðtÞ

R; ð11Þ

where xp(t) (xa(t)) is the posterior (anterior) boundary of the bistable region at time t. This is

equivalent to comparing the width of the irregular region when the gradient is dynamic to a

control with static gradient equal to the dynamic gradient at time t.
There is a tradeoff between the precision enhancement and the shift in the boundary, with

greater boundary shifts resulting from longer times to readout. For a relatively slow gradient

(small κ) there are clear improvements in precision (decrease in R), but high κ does not gener-

ally reduce precision and may even exacerbate it to a small degree (Fig 3B). Combined with

observations from Fig 2, these results suggest that precision enhancement mechanisms are

most effective when network dynamics are more rapid than input dynamics. See also S1

Appendix for an illustration of this effect using a 2D autonomous model. We reiterate here

Fig 3. (a) Temporal decrease in the morphogen concentration at every point in space can “sweep away”

imprecision in the expression boundary. Decrease in morphogen concentration causes the bistable region (solid gray

line) to shift anteriorly over time. Thus, cells to the anterior are initially monostable for high u�
1

and remain there as

they become bistable, whereas cells in the initially bistable region become monostable for high u�
2
. The initial

conditions here are derived from the steady-state solution to a system with a static gradient equivalent to that of the

dynamic gradient at t = 0; see Fig 2 with κ =1. (b) Slower gradient dynamics are more effective at increasing

precision. Lines are mean, error bars are standard deviation across N = 10 simulations with different initial conditions

at different values of κ (light to dark red), the ratio between rate of gradient decay and rate of convergence to steady

state. R quantifies the maximum width of the imprecise region relative to the width of the bistable region at the time tf
by which the boundary has shifted by a fixed amount from its initial location. Lower R corresponds to greater precision

(see text). Slower-decaying gradients produce more precise boundaries for the same total shift than do faster-decaying

gradients, but take longer to achieve these gains.

https://doi.org/10.1371/journal.pcbi.1008589.g003
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that the equivalence of R to a metric of reproducibility when the initial conditions instead cor-

respond to individual embryos shows that the precision enhancement mechanism could also

reduce population variability in boundary placement.

We have chosen to focus this example on the case where the system transitions from mono-

stable high u�
1

to bistable to monostable low u�
1
. This is not a requirement, however, to carry

out the same type of analysis for precision demonstrated here and in the preceding section.

We also note that we can generalize this approach to other networks with time-varying bifur-

cation parameters other than morphogen concentration provided that (a) those parameters

are independent of the concentrations in the explicitly modeled genetic network (i.e., all feed-

back loops must be included in the model, not as time-varying inputs), and (b) the temporal

evolution of the bifurcation parameters is such that there is a monotonic progression from

monostable high (low) to bistable and/or from bistable to monostable low (high), as in the case

of the simple gradient explored above. Finally, while we have used random initial conditions

in our example, the methodology and metric apply equally well when initial conditions are

structured, and from a design standpoint may be employed to impose constraints on initial

conditions if systems are to achieve a desired end result.

Boundary shifts as propagating fronts

Diffusion of protein products is one way to average out stochastic variations between neigh-

boring cells or nuclei, but it also permits classes of dynamic behaviors that are not observed in

systems without diffusion. For example, it is well known that bistable systems with diffusion

and spatially homogeneous parameters admit traveling wavefront solutions; biological exam-

ples include axonal propagation [45], population genetics [46], cell polarization [47], and Fgf8/

RA gradient formation [48]. The speed and direction of front propagation depend on which of

the two stable steady states has a larger basin of attraction.

Here, we propose that spatial variation in bifurcation parameters can be understood to

modulate the local front velocity in bistable regimes, providing a quantitative approximation

for how a front, once formed, will propagate along a domain. Local stability properties allow

us to qualitatively predict where fronts emerge in response to arbitrary initial conditions. In

this way, transient patterning behaviors can be analyzed apart from the behavior of individual

cells, with diffusion providing the link between local and global dynamics. The approach is

similar in spirit to previous work suggesting that expression domains can be predicted to

expand or shrink based on terms arising from local field approximations [49], but the mathe-

matical details and conceptual treatment differ.

In this section, we will consider the counterpart to Eq (1) with diffusion:

@uðt; xÞ
@t

¼ f ðx; uðt; xÞÞ þ D
@

2uðt; xÞ
@x2

ð12Þ

where D contains the diffusivities of gene expression products. We will continue to refer to the

local mono- or bistability of this system as the solutions at a particular coordinate x to the cor-

responding system without diffusion, though local phase portraits do not predict individual

cell trajectories when cell-to-cell coupling is present. At each coordinate we will also assign a

local front velocity c(x), which is the velocity of a traveling front solution to

@~uðt; xÞ
@t

¼ f ðx; ~uðt; xÞÞ þ D
@

2
~uðt; xÞ
@x

2
ð13Þ

where x is fixed and ξ is a dummy spatial coordinate. In other words, the local front velocity

captures the speed and direction that a traveling front would propagate if the parameters were
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spatially homogeneous at the values they assume at point x in Eq (12) (Fig 4A). Throughout

this section, we will use the phrase propagating front to distinguish solutions to Eq (12) from

traveling front solutions to Eq (13), which are translation invariant (i.e., their shape does not

vary as they propagate); that is, for a propagating front, one or more of the bifurcation

Fig 4. (a) In the posterior of the embryo, the Hb boundary behaves as a bistable propagating wavefront. Simulations (left, middle) and bifurcation diagrams (right)

of the Hb patterning system with a static Bcd gradient show that the Hb gene expression boundary becomes a propagating bistable wavefront toward the posterior of the

embryo (gray shaded region) and would continue to propagate slowly thereafter (thin lines) if not for external influences such as downstream genetic networks,

cellularization, or gastrulation. Blue indicates wild-type (WT) and gold, stau- mutant. Right, the Bcd gradient for stau- (gold dotted line) has lower amplitude than that of

the WT Bcd gradient (blue dotted line), which shifts the bifurcation (critical) point anteriorly. The local front velocity calculated from Eq (13) rapidly decreases posterior

to the critical point but remains strictly positive, indicating that a bistable gene expression boundary will propagate posteriorly. The Bcd1.0 bifurcation diagram (see (b))

is almost identical to that of stau-. Top insets compare boundary location from PDE simulations (solid black) to the location from an ODE approximation (red dashed)

derived from the local front velocities, with � equal to a quarter of the boundary width. Simulation start t = 0 is 10 min before the beginning of nc14. (b) Decay in the Bcd

gradient shifts the bistable region anteriorly over time, causing boundaries to stabilize at slightly anterior positions. Bottom, there is a greater discrepancy between

boundaries forming over dynamic (solid lines) vs. static (dash-dot line) in the WT (blue) and Bcd1.0 (red) mutant than the stau- (gold) mutant due to differences in front

emergence. Specifically, homogeneous initial conditions below the maximum value of the unstable steady state cause the boundary in the stau- mutant to appear within

the bistable region, such that boundary propagation continues at roughly the same speed regardless of gradient dynamics. In contrast, in WT and Bcd1.0 the boundary is

preinduced anterior to the critical point. A decrease in morphogen concentration in time causes the boundary to reach the critical point sooner, but also reduces the total

time spent by the boundary in the region of rapid propagation, resulting in more anterior placement relative to the static case. All parameters are as given in [40].

https://doi.org/10.1371/journal.pcbi.1008589.g004
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parameters may vary in space along the domain, whereas for a traveling front these parameters

are spatially homogeneous.

Given the local front velocities c(x) at coordinates x, within a bistable regime it is possible to

approximate the position of a propagating front w(t) at time t using the following ODE:

dwðtÞ
dt
¼ cðwðtÞ þ �Þ; ð14Þ

where c depends on f and D, and � is a constant correction term that improves accuracy. This

is to the best of our knowledge the first explicit such approximation applied in the biological

literature. We compare the ODE approximation to full PDE simulation results for the two bio-

logical examples provided in this section; S2 Appendix illustrates an application to a 1D model

where analytical solutions are available for c.
Conveniently for our applications, the front velocity can be calculated as a function of bifur-

cation parameters and then mapped to x coordinates based on the spatial profile of those

parameters. Thus, for each example in this section, we perform a one-time calculation of veloc-

ity as a function of morphogen concentration and use this relationship to deduce c(x) for spe-

cific morphogen profiles. The front velocity at different diffusivities can be recovered by

appropriately normalizing the x coordinate. Increasing diffusivity increases propagation speed

and also causes boundaries to become wider (S2 Appendix).

Analogously to the relationship between the time-independent dynamical system Eq (1)

and the time-dependent one Eq (5), we can also add time dependence to Eq (12) by replac-

ing f(x, u) with some time-varying function g(t, x, u). In this case, the local front velocity

is also instantaneous to a fixed time τ (corresponding to solutions to Eq (13) with

f ðx; ~uðt; xÞÞ ¼ gðt; x; ~uðt; xÞÞ).

The following subsection builds intuition about propagating wavefronts using an example

from the developmental biology literature with one morphogen and one expressed gene. After

introducing key concepts we apply our understanding of propagating fronts to a two-gene tog-

gle switch that achieves scale invariant boundary placement with two opposing morphogen

gradients.

Example: Hb patterning over Bcd gradient in embryonic fruit flies. In a recent paper,

Yang et al. quantified the anterior-to-posterior shift in the Hb boundary in wild-type, stau−

mutant, and half-Bcd dosage (Bcd1.0) mutant Drosophila melanogaster embryos [40]. Here,

we analyze their model to reveal that the Hb patterning system is split between a locally mono-

stable anterior and a locally bistable posterior with an extremely low front velocity. Our pur-

pose in this section is not to make new predictions about patterning in the living embryo, but

rather to develop mathematical intuition behind propagating fronts in an explicitly biological

context. In doing so we clarify the theoretical grounds for behavioral differences between the

authors’ models, and propose an alternative to temporal decreases in morphogen concentra-

tion to explain some of their experimental observations.

Hb patterning is modeled as a one-dimensional reaction-diffusion system with no-flux

boundary conditions:

@hðt; xÞ
@t

¼ f ðbðt; xÞ; hðt; xÞÞ � bhðt; xÞ þ D
@

2hðt; xÞ
@x2

ð15Þ

where h(t, x) and b(t, x) are the concentrations of Hb and Bcd respectively at A-P axis coordi-

nate x and time t, β is the decay rate of Hb, and D is the diffusion constant of Hb. The
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regulatory function

f ðb; hÞ ¼
ab

b
b0

� �nb
þ ah

h
h0

� �nh

1þ b
b0

� �nb
þ h

h0

� �nh ð16Þ

describes the activation of Hb expression by Bcd and Hb.

Consider the following dynamical system corresponding to Eq (15) without diffusion:

d�hðxÞ
dt
¼ f ðbðt; xÞ; �hðt; xÞÞ � b�hðt; xÞ: ð17Þ

Further suppose that b(t, x) = b(x) is fixed in time. Then the Bcd concentration b(x) acts as a

bifurcation parameter determining the local mono- or bistability of the corresponding reac-

tion-diffusion system Eq (15). Specifically, with all other parameters as given in [40], then with

b(x) = 0 the system Eq (17) is bistable, while for b(x) > bcrit = 0.07 the system is instead mono-

stable for high Hb. An earlier model of Hb patterning also implicated Bcd in modulating bist-

ability across the length of the embryo [50].

Returning to the full model (15), the Bcd gradient is described by

bðt; xÞ ¼ bme�
x
l
� o0ðmaxðt;t0Þ� t0Þ ð18Þ

where bm controls the amplitude of the gradient, the length constant λ determines the dropoff,

and w0 is the rate of decrease in Bcd concentration starting at time t0. At all times t during

nc14, a transition from locally monostable toward the anterior of the embryo and locally bis-

table toward the posterior occurs at the coordinate xcrit where b(t, xcrit) = bcrit. The bifurcation

diagram reveals that the values of the high and low stable states in the bistable region are rela-

tively constant some short distance from xcrit owing to the low absolute change in b(x) as the

gradient decays in space (Fig 4A).

First, we use our knowledge of local dynamical properties to examine how initial conditions

develop into propagating gene expression boundaries. Specifically, chemical concentrations at

a coordinate x will approach whichever steady state has a basin of attraction containing the ini-

tial condition at x. Hence, boundaries form at transitions from monostable to bistable regions,

or where initial conditions cross from one basin of attraction to another. In WT and Bcd1.0,

the initial condition is itself a boundary (with reduced magnitude) in the locally monostable

anterior of the embryo. This initial boundary decays toward the value of the low stable state

within the bistable region, such that in the absence of diffusion, the steady-state Hb in this

region would remain at 0. A propagating front is initiated by the diffusion of Hb produced in

the monostable anterior into the bistable posterior. Halving Bcd concentration to produce

Bcd1.0 shifts xcrit to the anterior, thereby hastening the approach of the front to the locally bis-

table region where propagation is slow.

In contrast, in stau− mutants the initial condition is homogeneous in space and falls just

within the basin of attraction of the low stable state in the locally bistable posterior. Thus the

boundary forms by the simultaneous diffusive influx of Hb from the monostable anterior and

the attraction of Hb to the low state in the bistable posterior. Since the boundary evolves simul-

taneously toward both the high anterior and low posterior states (instead of beginning already

at the low state in the posterior), the front is initially less steep than boundaries for the other

two models. The large shift in Hb boundary position reported by the authors of [40] likely

arises as a consequence of the horizontal compression of the boundary from an initially large

and not very steep width to the sharp bistable front (Fig 4B).
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Assume for now that the Bcd gradient is static. In the bistable region, we can analyze the

local front velocity as defined in Eq (13). We find in all three models that it is essentially con-

stant in the posterior of the embryo (Fig 4A). The propagation speed is slow but nonzero, such

that although the boundary is theoretically transient, each minute of delay in the readout

would incur an additional error of less than 1 μm in boundary placement (less than the average

distance between nuclei). Since the front speed is quite large near xcrit, however, much faster

propagation could theoretically be attained by a small constant offset in gradient concentration

or by flattening the gradient at a low value. In Fig 4A we also compare the boundary location,

defined as the point at which the boundary crosses the local value of the unstable steady state,

in the full simulated PDE and in the ODE approximation beginning at t = 42 min, or 32 min

into nc14 (when the front first forms, i.e., first crosses the unstable steady state). The inital

bump in boundary location for the stau- PDE simulation results from the fact that the poste-

rior side of the boundary has not yet stabilized at 0 concentration as it will in the profile for the

final propagating front. Even with this deviation, the error in the ODE approximation for all

three models (Bcd1.0 not pictured) is at most 0.2% of embryo length, or about 2.2% of bound-

ary width, for a simulated time span up to t = 600 min (well past the time at which the embryo

has entered gastrulation).

The effect of temporal decrease in Bcd concentration is to shift xcrit anteriorly over time,

which hastens the “capture” of emerging fronts in the locally bistable region of slow propaga-

tion, causing the fronts to occupy a slightly anterior position relative to predictions with static

gradients for WT and Bcd1.0. Given the uniformity of the local front velocity in the posterior,

we predict that temporal decrease in Bcd once a front is already in the bistable region should

have little effect on boundary location. Indeed, since the front in the stau- model emerges

within the bistable region for both static and dynamic gradients, we see little difference

between simulations with and without temporal decrease in Bcd (Fig 4B).

Viewing the Hb boundary as a propagating wavefront suggests a straightforward mecha-

nism for stabilizing the pattern—namely, to reduce protein diffusivity to 0. Experimental mea-

surements indicate that effective diffusivity, or internuclear coupling strength, begins to

decrease 20 min into nc14, reaching 0 by 30 min [20]. This time window coincides with the

time the boundary reaches the bistable region in the WT embryo in our simulations. It is

worth noting that 20 min also marks the start of a reduction in slope in the data for stau-

reported in Fig 6 of [40], while 30 min is the point at which their model predictions for Bcd1.0

boundary placement also cease to recapitulate experimental results. In the WT simulations,

the Hb boundary at 20 or 30 min for a static gradient is reasonably close to the location of the

boundary for the system with a dynamic gradient at 20, 30, and 50 min into nc14 (S1 Fig).

Temporal decrease in morphogen concentration after the loss of diffusion would not be

expected to change boundary position, since cells to the anterior of the boundary would main-

tain their high state as the underlying region became locally bistable. It is therefore worth con-

sidering to what extent the gradient dynamics are in fact transmitting new dynamic positional

information, as opposed to being primarily symptomatic of a full handoff in control of the Hb

boundary to downstream networks [51].

Finally, in the example shown here, boundary placement for propagating wavefronts

behaves rather similarly to a traditional thresholding model with respect to embryonic scaling;

that is, in the absence of other adjustments, changing embryo length without altering the abso-

lute scale of the gradient should negligibly affect the absolute position of the boundary and

therefore produce an anterior or posterior shift with respect to normalized coordinates,

depending upon whether the embryo were lengthened or shortened. In practice, however, gra-

dients may change shape with embryo geometry. For example, experiments conducted in D.

melanogaster with artificially shortened embryos produced Bcd gradients later and lower in
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amplitude than WT, resulting in a posterior shift in the Hb boundary of just under 4% percent

embryo length [52], as compared to the approximately 12% that would be otherwise predicted

for embryos 80% the length of WT. Even if gradients were to scale perfectly, our simulations

indicate modest effects on boundary placement when initial conditions are not also scaled.

With the dynamic gradient, the additional shift is less than 0.5% for embryos at 80% WT

length, but rises to almost 2% for embryos 50% WT length (S1 Fig), at which point cells within

the bistable region begin with nonzero Hb concentration. Further research would be necessary

to determine whether very large or small embryos suffer from robustness issues due to com-

pounding errors, as well as whether initial conditions of fixed length scale have evolved to be

compatible with a range of scales downstream.

The final front(ier): Accurate boundary placement through front localization. Think-

ing about gene expression boundaries as propagating fronts reveals mathematical designs for

pattern-forming systems yet to be found in nature or constructed synthetically. Here, we con-

sider the case where the local front velocity passes through zero at some critical point in the

domain. This implies a switch in propagation direction, such that a front forming on either

side of the point will propagate toward it. This scheme decouples the steady-state location of

the boundary from the exact value of the homogeneous initial condition, and also produces

qualitatively predictable transient behaviors. Once a localized boundary is established, its sta-

bility to intrinsic and extrinsic perturbation may be further analyzed to assess its reliability as a

cue for downstream patterning processes [38, 53]. This scheme is distinct from recent research

into wave pinning, whereby two mutually repressive species with highly disparate diffusivities

may also produce bistable fronts that are fixed in place. In these models a highly diffusive spe-

cies acts as the bifurcation parameter, and its decay over time “pins” a propagating boundary

in place [47, 54, 55]. In other words, propagation is halted through the temporal modulation of

a homogeneous-in-space parameter controlling the front velocity. In the model discussed in

this section, propagation is stopped rather through spatial modulation of exogenous parame-

ters that locally bring the front velocity to zero.

A number of developmental patterning systems employ opposing morphogen gradients,

perhaps to enhance accuracy in boundary placement [56] or confer robustness to tissue scaling

[9, 57]. We employ a simple model of a chemical toggle switch in which two mutually repres-

sive species u1, u2 are activated by morphogens α1, α2 respectively. The morphogens are

expressed in opposing gradients. For simplicity, transcription and translation are lumped into

a single step. The governing equations are

@u1ðt;xÞ
@t ¼ ahaða1ðxÞÞhrðu2ðt; xÞÞ � bu1ðt; xÞ þ D1

@2u1ðt;xÞ
@x2

@u2ðt;xÞ
@t ¼ ahaða2ðxÞÞhrðu1ðt; xÞÞ � bu2ðt; xÞ þ D2

@2u2ðt;xÞ
@x2

8
<

:
ð19Þ

where ha, hr are activating and repressing Hill functions respectively, as in Eq (4).

Assume D1 = D2. The front localizes at the point xl where the switch is balanced such that

neither of the two stable steady states is dominant, i.e., α1(xl) = α2(xl) (assuming xl is suffi-

ciently far from the edges of the domain). Therefore, in this scheme, the final placement of the

gene expression boundary relative to the domain edges will be unaffected by changes to α1(x)

and α2(x) that do not shift xl, e.g., scaling the embryo length or equally modulating the ampli-

tude or spatial decay rates of the gradients (provided that bistability is maintained in the region

near xl). Quantitative features such as the boundary steepness and propagation speed may still

depend on the exact parameter values (S2 Appendix).

From a bifurcation plot of the local steady states, we can predict that uniform-in-space ini-

tial conditions will produce a front. Notice that here we have collapsed the effect of two
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bifurcation parameters, α1(x) and α2(x), onto a single bifurcation parameter, the axis x. The

switch in the anterior of the domain is biased in favor of u1 while the posterior is biased in

favor of u2, such that there is a range of concentrations for which initial conditions homoge-

neous or near-homogeneous in both chemicals will fall into the basin of attraction of u1 toward

the anterior and u2 toward the posterior. This means that a properly oriented front (high u1 in

the anterior) will emerge and approach the localization point.

The initial location where the front appears depends on a combination of the numerical val-

ues of the initial concentrations, and the relative rates of front emergence (local divergence

toward high or low steady state) vs. local front speed at the point where the initial concentra-

tions cross from one basin of attraction to the other. Although the final boundary location

may be fixed, the transients vary depending on whether u1 or u2 is favored by the initial condi-

tions, since the boundary may approach its final position from left or right. If these transients

are important for downstream patterning networks, the initial conditions should be con-

strained to have the appropriate asymmetry. Following front formation the behavior will then

be relatively robust to the exact degree of asymmetry. In contrast, a boundary forming in a sys-

tem without diffusion would remain at the initial location where it appeared, rendering the

final placement sensitive to initial conditions (Fig 5A). The transient, however, would follow

roughly the same dynamics on either side of the boundary, without any dramatic shift. Since

propagation speed decreases with decreasing diffusivity, we can consider the case with no dif-

fusion as the limiting case of a diffusive system for low D1, D2. From this perspective, we see

that diffusion provides a means to balance the tradeoff between accuracy in boundary place-

ment, the degree of accuracy required of the initial conditions, and the dependence of down-

stream components on transient behaviors upstream.

If D1 and D2 are unequal, then the localization point no longer corresponds to the point

where the switches are locally balanced. Specifically, the localization point ~xl shifts toward

lower concentrations of the morphogen that activates the faster-diffusing species. Thus, differ-

ences in diffusivity reverse the direction of front propagation in the region between xl and ~xl.
Larger disparities increase the size of the shift (Fig 5B).

Future quantitative investigation of developmental biological systems may reveal whether

the front localization mechanism occurs in natural contexts. In the meanwhile, an understand-

ing of propagating fronts can inform attempts to engineer synthetic multicellular patterning.

For example, researchers have recently implemented patterning over concentration gradients

with bistable networks in bacteria [58, 59]. Our results suggest that adding diffusion of gene

expression products to such systems could enable dynamic, predictable boundary placement

without the need to manipulate bifurcation parameters in real time. We may also envision

more complicated patterning schemes for natural or synthetic application, particularly in sys-

tems where a single domain possesses multiple localization points (Fig 6).

Discussion

Thresholding models for morphogen gradient interpretation are susceptible to variation in ini-

tial chemical concentrations and the shape of morphogen gradients [60] as well as to intrinsic

stochasticity in gene expression [29, 38, 61, 62]. Dynamic positional information has been pro-

posed as a framework to discuss the gradual refinement of gene expression boundaries [62]

and to better recapitulate empirical observations [17]. In this work, we have argued that the

means by which bistable gene expression boundaries refine over time is distinct between sys-

tems in which gene products diffuse and those in which they do not. We have illustrated that a

deterministic model without diffusion isolates the dynamics of neighboring cells, such that

temporal evolution in morphogen concentrations can drive the boundary toward transitions
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from bistable to monostable regions in the embryo. Allowing gene products to diffuse removes

the direct link from morphogen concentration to individual cell dynamics, but local morpho-

gen concentrations can still be used to quantitatively predict boundary shifting across bistable

regions toward points in the reaction domain where both steady states are equally dominant.

We suggest there are design tradeoffs among the accuracy of boundary placement, bound-

ary precision, the time to readout, and the amount of inaccuracy tolerated in the initial condi-

tions. Cell-to-cell variation in initial conditions contributes to boundary imprecision, while

embryo-to-embryo variation in initial conditions—even if initial conditions are uniform

within a given embryo—can reduce reproducibility in long-term boundary placement in sys-

tems where protein products do not diffuse. Time evolution in morphogen gradients can alle-

viate the unwanted effects of inaccurate or imprecise initial conditions provided that the rate

of evolution is slow with respect to network dynamics, though slower gradients also require

Fig 5. (a) Diffusion permits a bistable gene expression boundary to be accurately placed independently of initial

conditions. Left, bifurcation diagram and right, simulation results for Eq (19) with a = 1.7, β = 0.35,D1 =D2 = 1, na =

nr = 2, Ka = 0.75, Kr = 1, and α1(x), α2(x) as shown. Gray shaded region indicates rightward propagation of the front in

u1 (gold) and leftward for the front in u2 (blue), with lighter shades indicating later time points. Regardless of the initial

condition, the boundary propagates toward the point where the toggle switch is “balanced” (the local steady states are

such that u�
1
¼ u�

2
). Inverted black triangle indicates the position of a gene expression boundary with the same initial

conditions when gene products do not diffuse. For clarity, only u1 is pictured in the third and fourth plots. (b)

Imbalance in gradients or diffusivities may shift the location of the boundary. Right, whenD1 =D2 (top), the

boundary localizes where α1(x) = α2(x). LettingD1 = 2 = 2D2 (bottom) shifts the localization point in favor of higher

u1. Middle, ODE approximations from the time of boundary formation produce an error less than 0.5% embryo width

in predicting boundary location. Simulations are shown for � = 0 (D1 = D2) or � = −0.5 (D1 = 2D2). Right, changing the

diffusion ratio shifts the nullcline for front velocity toward lower concentrations of the faster-diffusing species.

Decreasing the diffusivity also decreases the width (increases the steepness) of the respective front (S2 Appendix).

https://doi.org/10.1371/journal.pcbi.1008589.g005
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longer times to readout. If protein products are permitted to diffuse, random variations in ini-

tial conditions among cells are expected to average out, but boundary placement will not gen-

erally remain constant in time. However, certain combinations of network parameters and

morphogen profiles can localize boundaries at a fixed point within a domain. In general, if

downstream networks depend on the transient behaviors of propagating boundaries, then

readout times or initial conditions will become more constrained. Finally, we note that diffu-

sivity may also vary in time, for example, during cellularization in Drosophila embryogenesis.

It is worth considering whether such a transition to more restricted cell-to-cell interaction acts

as a compromise between washing out initial variation in concentration and constraining con-

tinued boundary movement.

A common challenge in the field of biology is that multiple models may produce substan-

tially similar behaviors. We noted that the experimental results from [40] concerning the

placement of the Hb boundary are both well described by a model with a decaying Bcd gradi-

ent and a model in which diffusion decreases over time. Similarly, on a qualitative level the

gradual refinement in precision of a gene expression boundary can be described both by the

dynamic morphogen model proposed here and by a model with a static gradient and stochastic

system evolution [29]. Determining whether a model accurately captures an empirical behav-

ior requires systematic and often quantitative comparison of theoretical predictions with

experimental results. For example, the mathematical effect observed in [29] to refine gene

expression boundaries in stochastic models was empirically verified in vertebrate neural tube

through a careful interplay of theory and experiment [27]. We encourage the community to

follow the example of these authors in future efforts to validate a proposed model, or to differ-

entiate among potentially many mathematical descriptions of the same phenomenon.

In stochastic models such as the aforementioned, gene expression noise shapes the preci-

sion and positioning of a boundary by enabling stochastic switching, in which a trajectory ran-

domly crosses from one basin of attraction to another [28, 29]. A logical extension to these

works and to ours would be to examine boundary formation in stochastic networks with

time-varying morphogen gradients. Though our simulations indicate that imprecision can be

completely erased under certain circumstances, in a stochastic system some level of variation

will persist regardless of how slowly the gradient evolves. We expect the ratio of variation in

initial conditions vs. gene expression noise would affect the emergence or erasure of impreci-

sion over time. Further experimental work would also be necessary to elucidate the extent to

Fig 6. Fronts may localize at multiple points in a domain, resulting in more complicated patterns. Simulations were performed on the 1D model in S2

Appendix with a = 0.1,D = 0.1 on a 2D reaction domain (bottom) in which the bifurcation parameter α(x) varies only along the horizontal axis (gray

dashed line). Top, horizontal cross-sections through the midline show that two opposing fronts appear and propagate toward the nearest localization point,

resulting in refinement of a stripe pattern from either direction over time.

https://doi.org/10.1371/journal.pcbi.1008589.g006
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which initial conditions do in fact vary in natural patterning systems, and what the causes of

that variation or relative lack thereof might be.

In its current form, the ODE approximation to the dynamics of boundary position owes its

justification to an engineer’s reckoning rather than formal mathematical derivation. One of

the limitations, therefore, concerns the adjustment parameter �. For systems with equal diffu-

sivity among species and for which the domain is everywhere bistable, � = 0 appears to produce

very good estimates (Fig 5 and S2 Appendix). Otherwise, the highest accuracy of prediction

occurs for � nonzero. We hypothesize that � might theoretically be derived from boundary

shape. In particular, the ODE approximation assumes a single velocity for a front, but in a spa-

tially nonhomogeneous system a front will straddle multiple local front velocities. The parame-

ter � selects what point along the boundary is taken to approximate the velocity. In the event of

a transition from a monostable to bistable region, for some period of time the boundary will

straddle the bifurcation, and therefore the leading edge of the boundary may produce a better

estimate of front velocity than the crossover with an unstable steady state. Similarly, once diffu-

sivity is not the same for two species, the width of the boundary will vary by species, so again

the speed may no longer be best approximated at the crossover point. Other sources of error

could arise from the fact that a true traveling wave, from which the local front velocity is

derived, may have slightly varying boundary shape depending on the velocity (S2 Appendix),

and will propagate in an infinite domain, unlike the finite-length embryos considered here. A

formal mathematical investigation of the approximation could help to guide the selection of �

(or alternative adjustment parameters) and place theoretical bounds on the expected predic-

tion error. Further investigation would also help to develop metrics to assess where fronts

emerge from given sets of initial conditions, and to improve the accuracy of the ODE approxi-

mation Eq (14) for time-varying c(t, x) in the vicinity of bifurcation points.

Although we have taken a bistable switch as our conceptual model, we believe the basic

ideas explored herein may be generalized to a broader class of systems. For example, our

hypothesized mechanism for enhancing boundary precision essentially relies upon the ability

of cells to be preinduced to a desired state before temporal changes introduce further bifurca-

tions. Such (evasion of) topological capture as a means to correct for variation in initial condi-

tions could generalize to more complicated multistable networks. In such cases it may be

appropriate to draw upon mathematical tools from the growing literature on nonautonomous

dynamical systems; for example, the notions of pullback attractors and tipping points could be

employed to determine the maximum rate at which bifurcation parameters can evolve in time

without disrupting the ability of a trajectory to track a desired steady state [63, 64].

Similarly, propagating fronts could be found in bistable systems of higher than two dimen-

sions with many more bifurcation parameters than considered here. With appropriate care,

bistable subsystems might even be dissected from more complex networks, with the contribu-

tions of those networks serving as time-varying parameters or as factors that place bounds on

dynamic behavior. Traveling wavefronts in non-bistable systems are also known to exist, for

example, in monostable systems, although unlike bistable fronts there is a minimum speed at

which they must propagate [65]. Continuing mathematical investigation will doubtless open

up new avenues for exploring propagating fronts in gene expression patterning and other

areas of embryonic development [66].

Even working from a simple bistable model, our analysis highlights a few ways in which

dynamic positional information may be further explored to better our understanding of gene

expression patterning, both philosophically and mathematically. Consider signaling duration,

which has emerged as a central feature of morphogen-signaling systems [14]. From a dynam-

ical systems perspective we might expect signal duration to matter even with a static gradient:

Supposing a signal modulates local mono- or bistability, then if a cell begins from a low initial

PLOS COMPUTATIONAL BIOLOGY Dynamics of gene expression boundaries with time-varying morphogen gradients and diffusion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008589 June 1, 2021 20 / 25

https://doi.org/10.1371/journal.pcbi.1008589


condition, it may take longer to approach a high expression state than a low one simply

because it takes more time to produce more protein than to produce less. This observation

may partially explain some experimental results, e.g., that anterior patterning in embryonic

Drosophila is more highly disrupted by transient perturbations to areas with high than low Bcd

concentration [13]. Signaling duration also plays a role in our two hypothetical mechanisms.

In the bistable sweep model, cells to one end of the boundary require a minimum amount of

time to “lock in” to the appropriate steady state before a bifurcation arises elsewhere in phase

space. As we found in our examination of propagating fronts, signaling duration in one region

of a tissue can also determine fates in other regions of the tissue simply because a gene expres-

sion boundary requires time to propagate. In the case of Hb patterning, decreasing signal in

the anterior of the embryo decreased propagation speed, thereby shifting the entire boundary

location anteriorly.

In addition to explicitly incorporating temporal evolution, dynamic positional information

has implicitly challenged the notion of threshold-dependent activation, which we argue con-

flates the influence of two factors: the morphogen and the initial condition. In the simple

boundary-forming model in Fig 1A, the genetic network does indeed act as a threshold detec-

tor for very high or low morphogen concentrations, since cells in these regions are monostable

and therefore their final fates are independent of initial conditions. However, there is a band of

concentrations for which the system is bistable and cells must be in a responsive state induced

through initial conditions or coupling with neighbors in order to approach the appropriate

final expression level. Thus, for a fixed uniform initial condition, the apparent threshold at

which cells are activated will shift, giving rise to the observed inaccuracy in boundary place-

ment between naïve thresholding (French flag) models and empirical observations.

Local threshold-dependent activation also cannot explain boundary placement in the bis-

table sweep or front localization designs, even though both exhibit predictable behavior

regardless of initial condition. In the bistable sweep as illustrated in Fig 3, the sharp boundary

is ultimately found at the posterior transition from bistable to monostable, which shifts anteri-

orly over time. In the front localization design, the boundary position is fixed across the whole

range of initial conditions that produce a boundary, such that a “threshold” for activation is

determined by the single point where the front velocity crosses zero. In both cases, individual

cellular trajectories have less predictive power for the final observed pattern than do global

dynamical properties.

The matter of thresholding and initial conditions raises a further philosophical point in

relation to the notion of cellular competence, or the ability to “[express] all the necessary com-

ponents for receiving a signal” [14]. Consider a bistable autoregulatory element in which spe-

cies A activates its own expression and is also activated by a signal S that acts as a bifurcation

parameter for the switch. Further suppose an upstream network component must establish

nonzero A0 as an initial condition; otherwise A0 defaults to 0. Under these circumstances,

the concentration of signal S can determine whether A approaches a high state or decays to a

low state, based on which basin of attraction contains A0. However, if the system lacks the

upstream network component, then A0 = 0 and consequently A will approach the low state

regardless of the value of S. This would seem to indicate that A is not responding to the signal

S, but this situation is clearly distinct from the loss of the autoregulatory interaction of A upon

itself or the loss of the capacity for S to promote expression of A, both of which would destroy

the ability of A to respond to S in switchlike fashion regardless of initial condition. Of course,

it is rare that real developmental systems decouple nicely into components that only establish-

ing initial conditions vs. those that govern subsequent dynamic evolution. Nevertheless, the

distinctions made clear through a precise mathematical representation suggest potential areas

to refine our qualitative understanding.
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Taken together, our observations support the notion that positional information is neither

locally contained nor statically interpreted. Dynamic features may play functional roles in

enhancing patterning robustness to initial conditions. At the same time, tissue-level patterning

behaviors may not be immediately predictable from examining individual cell trajectories,

especially in the presence of cell-to-cell coupling. Future research in gene expression pattern-

ing will benefit from further techniques for modeling temporal evolution at multicellular

scales, particularly with respect to transient dynamic behaviors. Whether the hypothetical

mechanisms explored here are employed in natural embryonic development remains to be

seen. Nevertheless, we are confident that their presence or absence will prove insightful in our

quest to disentangle explanation from observation, function from form.

Methods

All simulations were performed in Matlab 2017b. Code is available in S1 Code.

Supporting information

S1 Code. Matlab code for all simulations referenced in the text.

(ZIP)

S1 Fig. Additional plots for Hb boundary placement with and without dynamic gradients

and scaling.

(TIF)

S1 Appendix. 2D autonomous model for precision enhancement and expressions for con-

vergence rate to steady state.

(PDF)

S2 Appendix. 1D model for front localization on a finite domain.

(PDF)
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