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Mycobacterium abscessus complex (MABC) is an important pathogen of
immunocompromised patients. Accurate and rapid determination of MABC at the
subspecies level is vital for optimal antibiotic therapy. Here we have used comparative
genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide
polymorphisms and core genome multilocus sequence typing showed clustering of
genomes into three distinct clusters representing the MABC subspecies M. abscessus,
M. bolletii andM. massiliense. Pangenome analysis of 318 MABC genomes from the three
subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico
testing of primer sets against 1,663 publicly available MABC genomes and 66 other
closely relatedMycobacterium genomes showed that all assays had >97% sensitivity and
>98% specificity. Subsequent experimental validation of two subspecies-specific genes
each showed the PCR assays worked well in individual and multiplex format with no false-
positivity with 5 other mycobacteria of clinical importance. In conclusion, we have
developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies
that could improve their detection, diagnosis and inform correct treatment choice.

Keywords: Mycobacterium abscessus, Mycobacterium bolletii, Mycobacterium massiliense, multiplex polymerase
chain reaction, cystic fibrosis, genomics
INTRODUCTION

The Mycobacterium (Mycobacteroides) abscessus complex (MABC) consists of a group of rapidly
growing, nontuberculous mycobacteria (NTM) that are associated with pulmonary infections,
especially in cystic fibrosis patients (Harris et al., 2012), and has become one of the most common
groups of NTM species isolated from pulmonary samples worldwide (Hoefsloot et al., 2013). MABC
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infections have limited chemotherapeutic options due to both
intrinsic and acquired drug resistance to the most commonly
used antibiotic classes (Haworth et al., 2017). Despite the
prolonged treatment with a combination of different antibiotics
(including macrolides, rifampicin and ethambutol), MABC
infections remain difficult to treat and have poor treatment
outcomes (Chen et al., 2019). These infections pose a major
challenge to public health.

MABC has been subdivided into three independent subspecies:
M. abscessus subsp. abscessus (M. abscessus), M. abscessus subsp.
bolletii (M. bolletii) and M. abscessus subsp. massiliense (M.
massiliense) (Leao et al., 2011). MABC subspecies can exhibit
both smooth and rough morphotypes which is influenced by the
cell wall glycopeptidolipid (GPL). It is believed that the
morphotypes contribute to bacterial colonization and play a role
in virulence, with the rough strains generally being more virulent
compared with the smooth strains (Howard et al., 2006; Kim et al.,
2013; Bernut et al., 2016). These subspecies differ in treatment
options and their potential clinical outcomes. For example, the
three subspecies differ in their susceptibility to macrolide
antibiotics, which can be ineffective when treating MABC
infections (Davidson et al., 2014). This is due to the presence of
an inducible functional erythromycin resistance methylase
(erm41) gene that confers macrolide resistance in both M.
bolletii and in a subpopulation of M. abscessus but is non-
functional and non-inducible in M. massiliense (Bastian et al.,
2011; Shallom et al., 2013; Brown-Elliott et al., 2015; Kim et al.,
2015). Thus, correct identification of MABC subspecies is of high
clinical relevance.

Classical mycobacterial identification methods have been
based on the phenotypic characterisation of isolates following
culture, including medium selectivity, colony morphology,
growth rate (less than seven days), pigmentation and
biochemical tests (positive arylsulfatase test, negative nitrate
reductase, negative iron uptake, positive sodium chloride
tolerance and negative citrate utilisation) (McGrath et al., 2008;
Leao et al., 2009; Bhalla et al., 2018). The outcome of these tests
can take up to two weeks (Bhalla et al., 2018). While these are
often considered the gold standard, they are dependent on
bacterial growth and often take a long time, particularly with
slow growing mycobacterial species (more than seven days).

The three subspecies of M. abscessus are often considered to
be phenotypically indistinguishable (Leao et al., 2009), and hence
alternative methods are required. Molecular techniques and mass
spectrometry methods have largely replaced biochemical
techniques for the identification of MABC isolates. Line probe
assays (GenoType NTM-DR) have been used to identify MABC
to the subspecies level and determine antibiotic resistance to
macrolides (Kehrmann et al., 2016). Similarly, multi-locus
sequence typing (MLST) and multispacer sequence typing
(MST) have been used (Sassi et al., 2013; Wuzinski et al.,
2019), but are time-consuming and expensive, while mass
spectrometry-based methods such as Matrix-assisted laser
desorption/ionization-time of flight (MALDI-TOF) require the
use of expensive equipment and trained personnel (Fangous
et al., 2014; Panagea et al., 2015).
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PCR-based tests offer a rapid and relatively simple alternative,
which have been able to differentiate between M. abscessus and
M. massiliense, but not M. bolletii (Nakanaga et al., 2014; Mase
et al., 2019). However, there is a limited number of PCR-based
methods that have been developed which are able to differentiate
between all the three subspecies (Minias et al., 2020; Yoshida
et al., 2021).

Rapid developments in genome sequencing have resulted in
the availability of a large number of pathogen genomes, which
are invaluable for our understanding of the evolution,
epidemiology and biology of these microbial pathogens. In this
study, we have used the wealth of genomic information available
for the subspecies of MABC to study the genetic differences
between the subspecies, and to identify genes specific to each.
These subspecies-specific genes have subsequently been used to
design a subspecies-distinguishing PCR assay that can be further
developed for use in clinical diagnostics to aid treatment choice.
MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
M. abscessus, M. bolletii, andM. massiliense clinical isolates were a
kind gift from the NationalMycobacterium Reference Laboratory,
Borstel, Germany. An auxotrophic mutant strain of M.
tuberculosis (H37Rv DpanCD DleuCD) was used as a control
(Vilchèze et al., 2018). Mycobacterial strains were grown on
Middlebrook 7H11 agar (Sigma-Aldrich) supplemented with
0.5% glycerol and 10% oleic albumin dextrose catalase (OADC)
(Becton Dickinson (BD), Oxford, UK), and incubated at 37°C for
3 to 5 days for MABC strains and, 14 to 21 days for M.
tuberculosis. E. coli BW25141 was grown on LB agar (Sigma-
Aldrich) and used as a further control.

Genomic DNA Isolation and
Genome Sequencing
Genomic DNA of non-MABC NTM species (M. chelonae, M.
avium, M. intracellulare and M. chimaera) were also a kind gift
from National Mycobacterium Reference Laboratory, Borstel,
Germany. Genomic DNA was extracted from MABC isolates
and from M. tuberculosis using a protocol specific for
mycobacteria, including enzymatic digestion, mechanical
disruption of the cell wall and extraction with phenol/
chloroform/isoamyl alcohol 25:24:1 (Käser et al., 2010).
Genomic DNA of E. coli was extracted using Monarch
Genomic DNA purification kit (New England Biolabs, Ipswich,
MA, USA). Genomic DNA was quantified using a Biodrop
µLITE spectrophotometer (ISOGEN Life Science, Netherlands).
The integrity of the genomic DNA samples was assessed by the
presence or absence of a dense molecular band using agarose
gel electrophoresis.

Genome Sequence Selection
A total of 1,663 MABC genome sequences and 66 genome
sequences from related Mycobacterium species (e.g., M.
chelonae, M. immunogenem) were obtained from GenBank
March 2022 | Volume 12 | Article 816615

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Akwani et al. PCR to Differentiate M. abscessus Subspecies
using NCBI-genome-download version 0.2.3 (https://github.
com/kblin/ncbi-genome-download) (Supplementary Table S1).
These were first assessed for assembly quality using QUAST
version 4.6.3 (Gurevich et al., 2013). Exclusion criteria were the
presence of N’s in the contigs, N50<25 kb, L50>50, number of
contigs >300 and absence of information on isolation source. The
final dataset for pangenome analysis consisted of 318 genomes,
whereas the excluded genome sequences were used to test the
specificity of selected genes from pangenome analyses in silico
and for in silico PCR assays (Figure 1).
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Bioinformatic Analysis of
Genome Sequences
Phylogenetic analysis of the sub-selection of 318 MABC genomes
(Supplementary Table S1) was based on core genome single
nucleotide polymorphisms identified using ParSNP with the “-a
13 -x” settings as described elsewhere (Pornsukarom et al., 2018).
Isolates were assigned to the three MABC subspecies based on
their placement on the core genome SNP and core genome
MLST phylogenetic trees. Genomes were subsequently annotated
using Prokka version 1.14 (Seemann, 2014). The GFF files
FIGURE 1 | An overview of the workflow used to identify M. abscessus genomes for the in-silico evaluation of the PCR primers sequences.
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produced were used to create the pangenome of MABC using
Roary 3.12 (Page et al., 2015) using default settings and a BLAST
cut-off of 95%, and subspecies-dependent genes were identified
using Scoary (Brynildsrud et al., 2016), with an initial threshold
of a Bonferroni-corrected p-value of 0.05. Subsequently genes
were only included if present in >90% of their respective
subspecies, and <10% of the other subspecies. Selected genes
were tested against all 1,663 MABC genomes and 66 related
Mycobacterium spp using Abricate version 1.0.9 (https://github.
com/tseemann/abricate) with a minimum coverage of 70% and
minimum identity of 80% for a positive match.
Core Genome Multilocus Sequence
Typing (cgMLST)
A core genome MLST scheme was developed for MABC
subspecies using chewBBACA version 2.8.5 (Silva et al., 2018)
with default settings, as described in the tutorial on the program
GitHub webpage (https://github.com/B-UMMI/chewBBACA_
tutorial). A training file for M. abscessus was generated from
the completed genome of M. abscessus subspecies abscessus
UC22 (Accession number CP012044.1) using Prodigal version
2.6.3 (Hyatt et al., 2010). The scheme was initially generated
using 18 genomes of each subspecies, selected on genomes being
complete or if draft, to have a high N50, low L50, and spread over
the core genome SNP-tree. An initial whole genome MLST
scheme contained 10,913 loci, and a subset of 2,785 loci
present in >99% of the 54 genomes was selected for further
screening with the 318 MABC subspecies used for the core
genome SNP tree, and the other 1,345 MABC genomes
(Supplementary Table S1). This allowed the scheme to be
further improved in a selection of 1,262 genes with a
chewBBACA threshold of 25, and a more selective scheme
with 882 genes (chewBBACA threshold of 50). Phylogenetic
trees from the chewBBACA allele calls were constructed using
GrapeTree version 1.5.0 and the RapidNJ algorithm (Zhou et al.,
2018). The MABC subspecies cgMLST scheme with allele
sequences and training file is available from FigShare (https://
doi.org/10.6084/m9.figshare.19158563.v1) and will be made
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available via Chewie-NS (https://chewbbaca.online) (Mamede
et al., 2021).

PCR Amplification Primers
and Parameters
Based on the final candidate genes chosen, primers were
designed using PrimerQuest (Integrated DNA Technologies,
https://eu.idtdna.com/pages/tools/primerquest). The amplicon
size range was between 100-200 bp with an optimum length
set at 125 bp. The primers are detailed further in Table 1. Single
blind and multiplex PCR assays differentiating MABC into its
subspecies (M. abscessus, M. bolletii and M. massiliense) were
conducted with the listed primers. The total bacterial DNA
samples were numbered from one to fifteen including all the
controls by another member of the laboratory for a single
blinded test. This blinded test was carried out from the
beginning of the DNA extraction using the procedures
detailed above.

For the single PCR assays, each mixture contained 12.5 µl of 2 ×
GoTaq G2 Green master mix [which comprises of Buffer (pH 8.5),
400 µM of each of the dNTP and 4 mMMgCl2] (Promega), 0.4 µM
of the forward primer and 0.4 µM of the reverse primer, 1 µl of the
extracted DNA [diluted, DNA concentration (1-10µg)], 1 µl of
DMSO and nuclease free water to achieve a final volume of 25 µl. A
negative template control that consisted of each primer and 1 µl of
nuclease free water was also included. For the multiplex PCR assays,
each mixture contained 25 µl of 2× GoTaq G2 Green master mix
(Promega), 0.2 µM of each of the forward primers and 0.2 µM of
each of the reverse primers of all the MABC subspecies primers sets,
1 µl of all the extracted DNA and controls (DNA concentration
<5µg), 2 µl of DMSO and nuclease free water to achieve a final
volume of 50 µl. Amplification was carried out in a thermal cycler
(Applied Biosystems™ SimpliAmp™ Thermal Cycler, Fisher
Scientific, Loughborough, UK) using the following PCR cycling
conditions: initial denaturation at 95°C for 2 min; 35 cycles of
denaturation at 95°C for 1 min; annealing at 60°C for 1 min; and
extension at 72°C for 1.5 min; with final extension at 72°C for 10
min. The PCR products were separated by 2% agarose
gel electrophoresis.
TABLE 1 | Selected genes, product sizes and primer sequences for M. abscessus subspecies-specific PCRs.

Reference genome* Gene number Coordinates Primers Product

M. abscessus UC22 MAUC22_07270 3729832-
992

5’-TCCAACCGAGATGACCAGAG 161 bp
5’-
CCGATATAGAATTCGGCCAGCAAGT

M. abscessus UC22 MAUC22_18635 1444138-
323

5’-CCATCACCACACAAGGAGAG 186 bp
5’-CCAAAGACTCGCGCAACAATC

M. bolletii BD MASB_RS22045 4413042-
217

5’-GGCTTCACGTTCAATCAGTTTCTA 176 bp
5’-CGATTCACTGCTCCGCATTC

M. bolletii BD MASB_RS03355 671265-448 5’-GTTGTAGGGATGACGTGGTG 184 bp
5’-CTCCGCACCGAAGAAGAAAT

M. massiliense
JCM15300

MMASJCM_0836 828761-894 5’-AGGGTATTTCACTTGATGACCTATG 134 bp
5’-GATCGCCGTCAGCGAATAAT

M. massiliense
JCM15300

MMASJCM_0834 826228-365 5’-GTCAGCAACTCGGCAAGAAG 138 bp
5’-GTTTCTCCTGGAACGAGATCTAATG
March 2022 | Volume 12 | Artic
*The accession numbers of the genome sequences used are M. abscessus UC22: CP012044, M. bolletii BD: NZ_AP018436, and M. massiliense JCM15300:AP014547.
le 816615

https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://github.com/B-UMMI/chewBBACA_tutorial
https://github.com/B-UMMI/chewBBACA_tutorial
https://doi.org/10.6084/m9.figshare.19158563.v1
https://doi.org/10.6084/m9.figshare.19158563.v1
https://chewbbaca.online
https://eu.idtdna.com/pages/tools/primerquest
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Akwani et al. PCR to Differentiate M. abscessus Subspecies
RESULTS

Identification of Genomic Diversity in
MABC Subspecies-Specific Genes by
Pangenome Analysis
A set of 1,663 MABC genomes was obtained from public
repositories with their metadata (Supplementary Table S1),
and genomes were clustered using phylogenetic trees based on
core genome single nucleotide polymorphisms (SNPs) and using
a core genome multiclocus sequence typing (cgMLST) scheme
developed for this study. Both methods resulted in subdivision in
three large clusters, representing the three MABC subspecies M.
abscessus,M. bolletii andM. massiliense (Supplementary Figure S1).
Comparison of the SNP- and cgMLST based trees using a tanglegram
showed differences of order within each MABC subspecies cluster,
but no differences in subspecies assignment (Supplementary Figure
S2). The initial dataset consisted of 840M. abscessus, 113M. bolletii,
351 M. massiliense and 359 genomes where the MABC subspecies
was not identified in the description. Of the 359 MABC genomes
without subspecies information, 182 were determined to be M.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
abscessus, 18 M. bolletii and 159 M. massiliense. There were 18
genomes that did not cluster with the named subspecies, suggesting
the original description was incorrect (Supplementary Table S1);
these were allM. bolletii genomes which wereM. abscessus (n=2) and
M. massiliense (n=16) (Supplementary Table S1). In the remainder
of this study, we have used the genomic clustering as leading.

Identification of MABC Subspecies-
Specific Genes by Pangenome Analysis
A selection of 318 MABC genomes (183 M. abscessus, 40 M.
bolletii and 95 M. massiliense) was used to perform pangenome
analysis using Roary (Page et al., 2015) and were clustered using
core genome SNPs (Figure 2). The pangenome was interrogated
for MABC-subspecies-specific genes using Scoary (Brynildsrud
et al., 2016), with subspecies-specific genes defined as being
present in >90% of the specific subspecies, and <10% in the
other two subspecies. A total of 240 subspecies-specific genes
were identified, with 74 being M. abscessus-specific, 74 being M.
bolletii-specific, and 92 being M. massiliense-specific (Figure 2).
These were further tested against the full 1,663 MABC genomes,
FIGURE 2 | Phylogenetic tree of the core genomes of the MABC subspecies - M. abscessus (yellow), M. massiliense (light blue) and M. bolletii (red) with
pangenome matrix of genes specific to MABC. The pangenome was determined using Roary and queried using Scoary based on the core genomes showing
subspecies- specific genes that are either present or absent. Bootstrap values based on ParSNP tree iterations (expressed in percentage) have been added to the
major branches in the phylogenetic tree.
March 2022 | Volume 12 | Article 816615
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and a further 66 genomes representing phylogenetically related
Mycobacterium species to M. abscessus (e.g., M. chelonae, M.
immunogenem, see Supplementary Table S1) (Gupta et al.,
2018). This reduced the number of MABC subspecies-specific
genes to threeM. abscessus-specific, sevenM. bolletii-specific and
five M. massiliense-specific genes. The 15 candidate genes were
subsequently tested using in silico PCR amplification for their
MABC subspecies specificity (Table 2) with the complete 1,663
MABC genomes and the 66 other Mycobacteria genomes. For
each of the subspecies, two primer pairs representing two
individual genes of each subspecies were selected as they
showed >98% specificity and >97% sensitivity in the in-silico PCR
(Table 2, Supplementary Table S1 and Supplementary Figure S1).
These primer sets were further tested using conventional PCR.

Single and Multiplex PCR Assay
Differentiating Mycobacterium
abscessus Subspecies
The selected primer sets were first tested individually with M.
abscessus, M. bolletii and M. massiliense DNA, which resulted in
amplicons of the predicted sizes (Table 1 and Figure 3), while
negative controls consisting of E. coli and other mycobacterial
species of clinical importance (M. chelonae, M. avium, M.
intracellulare, M. chimaera, M. tuberculosis) gave no amplicons.

Based on the results of the single PCR assay, we performed
multiplex PCR assays using different combinations of the MABC
subspecies-specific PCR primers in a multiplex assay. The DNA
products were amplified using different combinations of primer
pairs (Table 1 and Figure 4). Multiplex PCR A produced PCR
products with sizes of 161 bp, 176 bp and 134 bp bands from M.
abscessus, M. bolletii and M. massiliense, respectively. Multiplex
PCR B produced PCR products with sizes of 186 bp, 184 bp and
138 bp bands for M. abscessus, M. bolletii and M. massiliense,
respectively. Finally, multiplex PCR C was able to identify M.
abscessus, M. bolletii and M. massiliense, according to their
product sizes of 161bp, 184bp and 134bp, respectively. To
differentiate M. abscessus to the subspecies level, a further
multiplex PCR assay was performed that contained a mixture
of the individual DNA of all the MABC clinical strains and the
controls (E. coli and other mycobacterial species of clinical
importance) in a tube. The PCR assay accurately identified the
three MABC subspecies, without any cross-reactivity detected,
despite a mixture of the samples. In lane B it appears to have a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
single dense molecular band as there is only 2 bp difference (186
vs 184 bp, respectively) between the PCR products for M.
abscessus and M. bolletii (Figure 5).
DISCUSSION

Pulmonary infection with M. abscessus is becoming more
common worldwide, and this is a significant threat to
immunocompromised people, especially cystic fibrosis patients
(Degiacomi et al., 2019). Here we have used a pangenome-based
approach to to successfully differentiate the three subspecies of
MABC isolated from clinical samples. The primary value of this
approach is to use the selected genes concurrently to rapidly
distinguish the subspecies based on the different sizes of the
amplicons. Whilst commercially available diagnostic methods
such as MALDI-TOF (Saleeb et al., 2011) and DNA probes [Inno
LiPA Mycobacteria (Innogenetics) or GenoType NTM-DR assay
(Hain Lifesciences)] (Tortoli et al., 2010) are able to identify M.
abscessus subspecies, these methods are expensive and have a
comparatively longer turnaround time.

Several molecular assays have been developed for the
identification of MABC, however, some of these assays have
showed inaccuracies in separating the three subspecies. The
general molecular target used for differentiation of
mycobacterial species is the 16S rRNA gene. However,
diagnostic methods based on the 16S RNA sequence are
unable to sub-speciate MABC, due to the lack of sequence
diversity (Clarridge, 2004). Therefore, alternative genes (hsp65
and rpoB) have been used as targets for the identification of
mycobacteria species. It has been reported that based on
combinational genotypic analysis of the internal transcribed
spacer (ITS) regions, hsp65 and rpoB genes, two of the
subspecies (M. abscessus and M. massiliense) have been
separated (Nakanaga et al., 2014). Furthermore, the use of the
rpoB-based methods has showed that there is an increased risk of
misidentification of the MABC due to lateral gene transfer of
rpoB alleles (Kim et al., 2019).

Phylogenetic approaches have been used for subspecies
classification; this has been achieved using sequencing analysis
with multiple housekeeping genes (Tan et al., 2013).
Nevertheless, this methodology of using multiple gene targets
is expensive and time consuming. In addition, it has been
TABLE 2 | In silico PCR validation of M. abscessus subspecies-specific PCR primers.

Gene number Genome Size (bp) M. abscessus subspecies Other (n=66)a

abscessus (n=1024) bolletii (n=113) massiliense (n=526)

MAUC22_07270 abscessus UC22 161 1016 (99.2%) 0 (0%) 3 (0.6%) 0 (0%)
MAUC22_18635 abscessus UC22 186 1013 (98.9%) 8 (7.1%) 0 (0%) 1 (1.5%)
MASB_RS22045 bolletii BD 176 7 (0.7%) 113 (100%) 0 (0%) 0 (0%)
MASB_RS03355 bolletii BD 184 0 (0%) 110 (97.3%) 0 (0%) 0 (0%)
MMASJCM_0836 massiliense JCM15300 134 2 (0.2%) 1 (0.9%) 513 (97.5%) 0 (0%)
MMASJCM_0834 massiliense JCM15300 138 0 (0%) 0 (0%) 513 (97.5%) 0 (0%)
March 2022 | Volume 12 |
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genome with the MAUC22_18635 PCR was a M. saopaulense genome (Msao1729). Information on all genomes included can be found in Supplementary Table S1.
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reported that M. massiliense has been misidentified as M.
abscessus due to similarity in gene features (Tan et al., 2013).
In addition, evolutionary trees have been used to understand the
relationship between microevolutionary processes and the
diversification of MABC at the subspecies level (Tan et al.,
2017). Similarly, another phylogenetic approach used a large
dataset of the MABC genomes to understand the relationship
between dominant circulating clones and drug resistance
evolution in cystic fibrosis and non-cystic fibrosis patients
around the world (Bronson et al., 2021). Phylogenetic
analysis has been used as an accurate method to classify the
subspecies of MABC using whole genome sequencing. Even
though whole genome sequencing is the ‘gold standard’
approach for the identification of the MABC, it is an
expensive method and there is a need for other cost-effective
tools to be developed.

As an alternative of using multiple genes, a single gene target
(gnd) has been used to identify the three MABC subspecies,
however this gene target misidentified M. massiliense as M.
abscessus (Ng and Ngeow, 2020). Due to the presence of an
inducible functional erythromycin resistance methylase (erm41)
gene that confers macrolide resistance within the subspecies, this
gene has also been used as a target in identifying MABC.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Nevertheless, this target has also showed discrepancies as only
two of the three subspecies (M. abscessus and M. massiliense)
have been differentiated (Mase et al., 2019). In addition, someM.
massiliense strains have been identified as having an intact erm
(41) gene instead of the expected deleted gene (Shallom et al.,
2013). These previous studies show that the gene targets used
lack the specificity to discriminate between all the subspecies,
therefore limiting their utility for diagnostic applications.
Another study used Subspecies-Specific Sequence Detection
(SSSD) method based on DNA hybridization. However, the
labelled probes (for M. bolletii and M. massiliense) identified
the respective strain sequences but cross-reacted with a related
Mycobacterium species: M. chelonae (Minias et al., 2020).
Genotypic characterization of the 16S rRNA sequences have
shown that there is 4bp difference between M. abscessus and M.
chelonae but they both have identical hypervariable region A
sequences (Brown-Elliott and Wallace, 2002; Leao et al., 2009). It
is important to distinguish betweenM. abscessus andM. chelonae
as they have both been associated with lung disease (Ko et al.,
2013; Pease and Alvarez, 2021). However, treatment for M.
chelonae is less complicated compared with M. abscessus as it
is more susceptible to traditional antibiotics, i.e. clarithromycin
(Ko et al., 2013).
FIGURE 3 | PCR results after optimizing the amplification of the candidate genes used to isolate the three MABC subspecies. Two different sets of primers pairs as
shown in Table 1 were used to differentiate MABC into its subspecies. M. abscessus (rough and smooth morphotypes), M. bolletii, M. massiliense and other
bacterial species used as controls including M. chelonae, M. tuberculosis, M. avium, M. intracellulare, M. chimaera, and E. coli were selected. Both M. abscessus
strains including rough and smooth morphotypes yielded 161-bp and 186-bp gene amplicons, respectively (Top Panel). In addition, M. bolletii yielded 176-bp and
184-bp gene amplicons, respectively (Middle Panel). Lastly, M. massiliense yielded 134-bp and 138-bp gene amplicons, respectively (Bottom Panel). Each MABC
subspecies yielded an amplified PCR product that was specific to that species.
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In contrast, we have developed PCR assays that are able to
dist inguish between al l three subspecies of MABC
simultaneously. The Multiplex C assay which included all three
subspecies and the other bacterial samples with all the primers in
one tube would be the recommended assay to use. This is because
the amplicon sizes are the easiest to distinguish from one another
(with no cross reactivity) and the results are therefore easier to
interpret. We found only two other reports of successful
discrimination between the MABC subspecies using multiplex
PCR DNA; the first following chromatography (Yoshida et al.,
2021), and the second combining multiplex assay with molecular
beacon probes to distinguish between theM. abscessus subspecies
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and determine antibiotic susceptibility (Marras et al., 2021).
However, our assay has the advantage of reducing the
processing steps to a single PCR reaction, which is cost-
effective and reduces the turnaround time. In addition, we
have included M. chelonae and other mycobacterial species of
clinical importance, which cause or have been associated with
chronic lung infections to evaluate the specificity and sensitivity
of our assay and found the primers used in our assay produced
no false reactions to these other mycobacteria. Another
advantage of our PCR assays is the ease of adapting its
application to other diagnostic tools such as Quantitative PCR
(qPCR) due to the amplicon sizes. This allows for the addition of
FIGURE 4 | Multiplex PCR assay capable of differentiating MABC subspecies. Multiplex PCR A produced amplicon sizes of 161bp, 176bp and 134bp for M.
abscessus for both rough and smooth morphotypes, M. bolletii and M. massiliense, respectively (Top Panel). Multiplex PCR B produced amplicon sizes of 186bp,
184bp and 138bp bands for M. abscessus for both rough and smooth morphotypes, M. bolletii and M. massiliense, respectively (Middle Panel). Multiplex PCR C
was able to identify M. abscessus for both rough and smooth morphotypes, M. bolletii and M. massiliense according to their product sizes of 161bp, 184bp and
134bp, respectively (Bottom Panel).
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probes or intercalating dyes which will allow for the
differentiation of the subspecies of MABC which is more cost
effective than whole genome sequencing.

These results promise that, with further validation on a larger
sample of clinical isolates, our test may provide a rapid,
inexpensive, and accurate test for introduction into diagnostic
laboratories worldwide. Rapid and unambiguous differentiation
of MABC subspecies will provide improved disease surveillance
and will inform antibiotic therapy.
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