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recovery and state-specific duration of HIV-
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Abstract

Background: CD4 cell and viral load count are highly correlated surrogate markers of human immunodeficiency
virus (HIV) disease progression. In modelling the progression of HIV, previous studies mostly dealt with either CD4
cell counts or viral load alone. In this work, both biomarkers are in included one model, in order to study possible
factors that affect the intensities of immune deterioration, immune recovery and state-specific duration of HIV-
infected women.

Methods: The data is from an ongoing prospective cohort study conducted among antiretroviral treatment (ART)
naïve HIV-infected women in the province of KwaZulu-Natal, South Africa. Participants were enrolled in the acute
HIV infection phase, then followed-up during chronic infection up to ART initiation. Full-parametric and semi-
parametric Markov models were applied. Furthermore, the effect of the inclusion and exclusion viral load in the
model was assessed.

Results: Inclusion of a viral load component improves the efficiency of the model. The analysis results showed that
patients who reported a stable sexual partner, having a higher educational level, higher physical health score and
having a high mononuclear component score are more likely to spend more time in a good HIV state (particularly
normal disease state). Patients with TB co-infection, with anemia, having a high liver abnormality score and patients
who reported many sexual partners, had a significant increase in the intensities of immunological deterioration
transitions. On the other hand, having high weight, higher education level, higher quality of life score, having high
RBC parameters, high granulocyte component scores and high mononuclear component scores, significantly
increased the intensities of immunological recovery transitions.

Conclusion: Inclusion of both CD4 cell count based disease progression states and viral load, in the time-
homogeneous Markov model, assisted in modeling the complete disease progression of HIV/AIDS. Higher quality of
life (QoL) domain scores, good clinical characteristics, stable sexual partner and higher educational level were found
to be predictive factors for transition and length of stay in sequential adversity of HIV/AIDS.

Keywords: Latent variables, Markov Chain, Orthogonal variable, Quality of life domain, Transition and waiting
probabilities
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Background
HIV infection is one of the leading causes of death from
infectious diseases and remains a serious global public
health issue [1, 2]. AIDS, the last progression stage of
HIV infection, leads to severe damage of the body’s im-
mune system [3]. The progression of HIV/AIDS is highly
variable between populations and individuals and is de-
termined by immunological, genetic, environmental and
virological factors [4]. CD4 cell and viral load counts
have remained the two strongest correlates and surro-
gate markers of HIV disease progression regularly used
in the clinical setting to monitor the infection [5].
Although the main markers of HIV disease progres-

sion are both viral load and CD4 count, relatively few
HIV/AIDS disease progression modelling studies include
the longitudinal measurements of viral load biomarker
along with clinical states of HIV/AIDS disease progres-
sion [6, 7]. This might be due to the unavailability of
viral load data, particularly from middle and low-income
countries, because of the higher costs of viral load test-
ing [8]. Modelling of CD4 count progression, which
takes into account the viral load biomarker, may better
capturer the complete disease progression. Researchers
further argue that modeling of disease progression of
HIV/AIDS is important: to understand HIV pathogen-
esis and in the development of treatment strategies [9];
to refine the management of treatment-naive patients
[10]; to determine at what threshold it is most clinically
effective and less costly to begin ART [10]; to improve
the empirical basis for epidemiological and prognostic
models of the impact and cost-effectiveness of ART [11].
Modelling of disease progression of HIV/AIDS has

been studied by several authors. Mangal [12] evaluated
the effects of regional and age-specific differences on
mortality and CD4+ cell progression of HIV/AIDS, using
a hidden Markov model. Binquet et al. [13] estimated
the impact of CD8 cell count, weight loss, drug use, gen-
der, viral load and haemoglobin on the progression of
HIV using multi-state Markov process. Oliveira et al.
[14] studied the degrees of chronicity of HIV/AID using
a multi-state process and went further to examine the
impact of covariates; adherence, age and disease dur-
ation on CD4 cell count progression. Gillis et al. [15]
further investigated the effects of age, gender, ethnicity,
and people who had injected drugs, on the transitioning
among the five viral load and CD4 cell counts based
states. Recently, Shoko and Chikobvu [16] analyzed the
effects of gender, TB co-infection, and age on transmis-
sion intensities, using the Markov model. Another study
[17] in South Africa examined the effects of baseline
viral load, gender, age and non-adherence to treatment
on disease progression based on viral load followed by
the death state using the Markov model. All these stud-
ies, however, did not model the length of stay in each

state. In addition, although the factors related to disease
progression of HIV are multiple and complex, no previ-
ous study directly examined the effects of several clinical
variables (ie: white blood cell parameters, RBC parame-
ters, blood chemistry parameters, and QOL domain
scores) on both the length of stay and transitions of se-
quential events. This study thus gives a deeper insight
on assessing the effect of several prognostic factors on
both the transitions and length of stay of sequential ad-
versity of HIV/AIDS.
In this study, full-parametric and semi-parametric

multi-state Markov models are used to model the transi-
tions and length of stay of sequential adverse events of
HIV/AIDS. Multi-state Markov models are a powerful
tool for studying chronic diseases and the factors associ-
ated with transitions between states of progression [14].
These models can accommodate competing risk factors,
censored data, recurrent outcomes, multiple outcomes
and frailty [18]. We classified the sequential adverse
events by the degree of chronicity based on the CD4
counts (a marker for characterizing the clinical stages),
with progression classes defined by patients going
through normal, mild, advanced and severe clinical
stages [19]. More importantly, we presented full and
semi-parametric multi-state Markov models on both the
length of stay and transitions between sequential states,
thus making this research different from previous stud-
ies. In addition to that, among the determinants of the
progression of HIV/AIDS, both the CD4 cell counts and
viral load counts are included in the same model. As
discussed by Chikobvu and Shoko [17], the effects of
multi-collinearity on the CD4 cell count transitions can
be corrected using the principal component approach.

Methods
Data description
The data is from an ongoing prospective cohort study
conducted by the Centre for the AIDS Program of Re-
search in South Africa (CAPRISA) among ART naïve
HIV-infected women. The original study, CAPRISA_002,
which started in 2004, enrolled a cohort of HIV unin-
fected women whose age was greater than 18 years with
the aim to describe immunologic, clinical and virologic
characteristics of HIV-1 disease [20]. The study enroll-
ment was conducted from August 2004 to December
2017. A participant who seroconverted during the HIV
uninfected stage of CAPRISA_002 and other CAPRISA
prevention and seroincidences trials (including the
CAPRISA_004 trials), were enrolled into the Acute HIV
Infection phase, and then followed-up during chronic in-
fection and up to ART initiation. Participants were re-
cruited at two sites in KwaZulu-Natal-South Africa, a
rural site in Vulindlela and an urban site in the city of
Durban. Women without well documented estimated
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date of HIV infection, and those who did not have at
least two follow-up clinical attribute measurements were
excluded from our analyses. Finally, 219 participants
were included in the study. Further information about
the above mentioned ongoing prospective HIV cohort
study (CAPRISA_002), including women eligibility cri-
teria and the enrollment procedures were reported in
[20–22].

Variables and measurements
CAPRISA initially enrolled HIV-negative (phase I)
women into different study cohorts. The women who
seroconverted were enrolled into the acute infection
phase (i.e. phase II: weekly visits up to 3 months
post-infection), early infection phase (i.e. phase III:
monthly visits from 3 to 12 months), established in-
fection phase (i.e. phase IV: quarterly visits for more
than 12 months) and on ART phase (i.e. phase V).
Samples for immunological, virological and clinical at-
tributes (such as viral load, WBC parameters, RBC
parameters, blood chemistry parameters, CD4 cell
count, etc.) were measured at each visit [23]. These
longitudinal immunologic, virologic and clinical mea-
surements, were recorded for several followed-up
visits. There was a total of 8760 follow-up visits re-
corded from 219 HIV infected women. Of these pa-
tients, 9.2% of them were co-infected with TB and all
were black females, with a median age of 25 years
(Interquartile range, IQR, 22–30). Over half (69.9%)
reported having completed grades 11/12 of schooling.
The median baseline CD4 count of the participants
included in the analysis was 519.0 cells/mm3 (IQR
419–655.5 cells/mm3). The VL count of the partici-
pants ranged from 1.47 log10 copies/ml to 6.81 log10
copies/ml with the first quartile of 3.56 log10 copies/
ml, a median of 4.23 log10 copies/ml and the third
quartile of 4.79 log10 copies/ml.
The main outcome variables in this current paper are

immune deterioration, immune recovery and state-
specific duration of stay of HIV-infected women. During
the follow-up period, a patient could go through several
states defined as normal, mild, advanced and severe

disease states (See Fig. 1). The World Health Organization
immunological classifications were used to assess the de-
gree of severity of HIV infection of patients in the study.
These HIV infection states are: no adverse events (normal)
(CD4≥ 500), mild (350≤CD4≤499), advanced (200≤
CD4≤349) and severe (CD4 < 200) [19].
The effect of numerous possible factors on the in-

tensities of immune deterioration, immune recovery
and state-specific duration of stay of HIV-infected
women, were evaluated including, (1) demographic
variables, (2) risk variables, (3) past opportunistic ill-
ness/infections and (4) clinical attributes and (5)
health-related quality of life domain scores (HR-QoL).
The WHO QoL instrument [24], was used to measure
the HR-QoL of the participants. Therefore, the HR-
QoL scales contain the following four domains score.
The first domain is the physical health scores, that
measure the impact of the disease on the activities of
daily living, dependence on therapeutic substances,
presence of pain, fatigue, lack of energy and initiative
and perceived working capacity. The second is the
psychological wellbeing score domain, that assesses
the patient’s thoughts about body appearance, positive
and negative feelings, self-esteem and personal beliefs,
higher cognitive functions, spirituality, anxiety, suicide
and depression. The third is the social relationships
domain, which assesses personal relationships, social
contacts, social support and sexual activity. The
fourth domain is devoted to the level of independence
and assesses areas such as mobility, activities of daily
living, dependence on treatments and work capacity
(See Fig. 2).

Statistical method
Factor analysis
Since our data have a large number of clinical variables,
we used exploratory factor analysis in order to group and
minimize the number of variables. Accordingly from the
24 clinical variables in the study, we managed to group
them in order to create 9 latent variables, defined as gran-
ulocytes components, mononuclear components, eosino-
phils component, RBC component, red blood cell indices,

Fig. 1 Graphical display of the hypothesized model
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liver abnormality component, electrolyte component, lipid
component and protein component. (See Table 1).

Multi-state Markov modelling
Let a Markov chain process {S(t), t ∈ T}, T = [0, τ] for
τ <∞, that has finite space, denoted by E = {1, 2, 3, 4}, be
a representation of the transition process, where for each
patient, a multi-state process is observed. This Markov
chain process has an initial probability, denoted by
P(S(0) =m), m ∈ E, which evolves over time and with a
history (HE), which contains the states previously visited,
durations and times of transitions [25, 26]. The transi-
tion probability of the individual being in state j at time
t, given that the individual was in state m at time z, is
defined by

Pmj z; tð Þ ¼ P S tð Þ ¼ jjS zð Þ ¼ m;HEð Þ
for m; j∈E and z; t∈T ; z < t:

The corresponding transition intensity is defined by

hmj tð Þ ¼ lim
δt→0

P S t þ δtð Þ ¼ jjS zð Þ ¼ mð Þ
δt

for m≠ j:

Where
P

j∈EhmjðtÞ ¼ 0 and hmmðtÞ ¼ −
P

m≠ jhmjðtÞ . It
is worth noting that the transition probabilities depend
only on the elapsed time, not on the times since the
baseline of the study.
Besides modeling the ordinal transitional state of the

CD4 progression, our object is to examine the effect of
covariates or risk factors namely the education, marital
status, age, sex under the influence of alcohol, TB-co in-
fection status, anemia status, white blood cell parame-
ters, RBC parameters, HR-QoL domain scores and
weight on such transitions. We denote this set of covari-
ates by X.
We employ both fully-parametric and semi-parametric

multi-state models in our analysis. In both model types

hmj t;Xð Þ ¼ h0mj tð Þ exp α
0
mjXmj

� �

where. h0mjðtÞ represents the baseline intensity from

Fig. 2 The four-state Diagram for HIV Progression of patients based on CD4 counts. Note: immunological recovery (green arrows), immunological
deterioration (red arrows) and waiting time (black and white arrows)
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state m to state j and Xmj representing a set of covari-
ates, while αmj is the effect of the covariates on the haz-
ard intensity hmj. The transition m to j is defined as
immunological deterioration if m < j, as immunological
recovery if m > j; as the probability of staying in the same
diseasing state if m = j. In other words, the state labeling
is 1 for normal, 2 for mild, 3 for advanced and 4 for se-
vere states (See Fig. 1).
In the semi-parametric case, the log-linear effect of

the covariates, αmj are estimated by the maximum
partial likelihood and the corresponding baseline in-
tensity, h0mjðtÞ , is left unspecified and estimated non-

parametrically, similar to the Cox (1972) model.
In the fully-parametric cases, the baseline intensity,

h0mjðtÞ, is given by a fully-parametric function of time,

so that each transition-specific model is a standard
parametric survival model. The log-linear effect of the
covariates, αmj, are estimated by full maximum likeli-
hood and standard errors are obtained by standard
asymptotic theory. In the current study, we used dif-
ferent parametric and semi-parametric models
including the Exponential distribution and Weibull
distribution.

Principal component analysis
Principal component analysis (PCA) is a statistical
procedure that uses an orthogonal transformation to
convert a set of observations, of possibly correlated
variables, into a set of values of linearly uncorrelated
variables. In this paper, a principal component vari-
able is created by fitting a regression model of log10-
transformed viral load values (yi) on CD4 cell counts
(xi) to improve the efficiency of the model above. In
order to create two new uncorrelated components, as
explained by Chikobvu and Shoko [17], we carried
out regression analysis to estimate the intercept (β0)
and slope (β1) parameters in the model: yi = β0 +
β1xi + εi. We then define a viral load orthogonal vari-
able (VLO)= εi = yi − (β0 + β1xi).
VLO in the model explains the component of dis-

ease progression of HIV/AIDS that cannot be ex-
plained by the CD4 counts alone. In order to deal
with multicollinearity of CD4 cell count and viral load
count, the orthogonal viral load component was used.
The residual from the fitted model was included with
the original HIV/AIDS data to form the new viral
load component.

Table 1 Clinical parameters and corresponding factor loadings from the rotated factors

Clinical parameters Principal Components Variables Rotated factor loadings Commutative variations

White blood cell parameters 1. Mononuclear component Lymphocytes 0.838 77%

Basophils 0.616

2. Granulocytes component Leucocyte 0.925

Neutrophils 0.936

Monocytes 0.635

3. Eosinophils component Eosinophils 0.947

Red blood cell parameters 4. Hb and haematocrit component RBC counts 0.946 81%

Hb 0.886

Haematocrit 0.919

5. RBC indices component MCV 0.953

MCH 0.825

MCHC 0.521

RDW −0.592

Blood chemistry 6. Liver enzyme abnormality component ALT(GPT) 0.829 72%

AST (GOT) 0.967

7. Electrolyte component Chloride 0.455

Sodium 0.994

Calcium 0.213

Protein and lipids 8. Protein Comp LDH −0.769 75%

Total protein 0.670

9. Lipid component Cholesterol 0.971

LDL 0.917

Triglycerides 0.360

Dessie et al. BMC Public Health          (2020) 20:416 Page 5 of 13



Model diagnostics
The estimates of full and semi-parametric multi-state
models were compared with non-parametric estimates
to assess model fit (as discussed by Ieva et al. [27]
and Titman and Sharples [28]). Besides selecting the
best fit model for our data, the effect of CD4 count
with viral load adjustment on the HIV/AIDS disease
progression was also analyzed. This was done by fit-
ting a multi-state model for the effects of possible
factors (education, marital status, TB-co infection sta-
tus, anemic status, age, sex under the influence of al-
cohol, white blood cell parameters, RBC parameters,
HR-QoL domain scores, and weight) on disease pro-
gression of HIV/AIDS, based on CD4 count. Notably,
we excluded the orthogonal viral load component in
the first model. In the second model, viral load com-
ponent was included in the modified first model. A
comparison of these two models was based on their
likelihood ratio test (LRT) and Akaike information
criteria (AIC).
All of the analyses were implemented using R-3.6.2

(https://cran.r-project.org/bin/windows/base/) flex-
surv, survival and mstate packages in order to fit
fully-parametric Markov, Semi-parametric Markov and
to estimate the nonparametric Aalen-Johansen model,
respectively. For visual graphical presentation of the esti-
mates proc. SGPLOT in SAS 9.4 (https://www.sas.com/
en_us/software/sas9.html) was used.

Results
Estimated transition probability and length of stay
The plot in Fig. 3 displays the non-parametric Aalen-Johansen
estimator of the transition and waiting probabilities. As ex-
pected, the probability of transition from severe to advanced
states of the diseases did not increase much throughout
follow-up, while the transition probability from advanced to
severe disease states of the patients increased with increasing
years since enrollment. The plots further clearly demonstrate
that the overall probability of staying in the same diseasing
state had decreased throughout the follow-up periods. Patients
with lower CD4 count (particularly those in the severe disease
state) had a higher probability of staying in the same state
throughout follow-up periods, compared to those with higher
CD4 cells counts. (See Fig. 3).

Model assessment
We applied three Markov multi-state models, including Ex-
ponential, Weibull and the Semi-parametric multi-state
model. The overall goodness of fit of the models is pre-
sented in Fig. 4, which shows the estimates of full and
semi-parametric models to be overlaid on the nonparamet-
ric Aalen-Johansen estimates. As seen from this plot, we
noted that the Weibull model accounted for the decrease in
the hazard of waiting and transition probability better com-
pared to the Exponential and the Sem-parametric models.
The model selection criteria in Table 2 also confirmed this
finding.

Fig. 3 Estimated probability of transition and probability of being in each disease state of patients through the follow-up time
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The AIC and LRT from Table 3 showed that the
model defined by CD4 cell counts states with the viral
load orthogonal adjustment gives the best fit to the data
(ie. improve the efficiency of the model). (See Table 3).

Predictors of immune deterioration and immune recovery
The results in Table 4 show that after adjusting for other
covariates in the model, an increase in Hb and haemato-
crit component increases the intensities of transition
from mild to normal disease state (aHR = 1.12; 95% CI:
1.01–1.25). Similarly, after adjusting other covariates, an
increase in RBC indices score increases the intensities of
transition from mild to normal disease state (aHR = 1.16;
95% CI: 1.04–1.30). The result further showed that

patients with high mononuclear component scores, sig-
nificantly reduced immune deterioration from normal to
mild (aHR = 0.77; 95% CI: 0.67–0.88), mild to advanced
(aHR = 0.63; 95% CI: 0.55–0.73) and advanced to severe
(aHR = 0.64; 95% CI: 0.50–0.83) disease state. Moreover,
an increase in granulocytes component scores reduces
the intensities of immune deterioration transitions.
After adjusting for other covariates in the model, an

increase in liver abnormality score reduces the inten-
sities of transition from advanced to mild disease state
(aHR = 0.86; 95% CI: 0.76–0.98). Anemic patients had
also significantly increased the intensity of immune de-
terioration from mild to advanced disease state (aHR =
1.31; 95% CI: 1.04–1.66) as compared to non-anemic

Fig. 4 Goodness-of-fit the proposed model. Note: semi-parametric (purple), Weibull distribution (red) and Exponential distribution (green)
transition and waiting probabilities estimates overlaid on non-parametric (blue) survival functions of time to initiation of ART, from the
starting state

Table 2 Model selection criteria for each semi and full-parametric model

Criterion Weibull Multistate Markov Model Exponential Multistate Markov Model Semi-parametric Multistate Markov Model

−2 LOG L 19148.12 19,789.32 62,023.91

AIC 19408.12 20,147.32 62,589.36

Key: AIC Akaike information criteria, -2 LOG L -2Log-likelihood
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patients. The result further showed that having TB co-
infection significantly accelerates the transition time
from normal to mild (aHR = 2.08; 95% CI: 1.02–4.71)
and advance to severe (aHR = 1.86; 95% CI: 1.05–4.61)
disease stages, compared to those without TB co-
infection. (See Table 4).
With regard to HR-QoL variables, patients with high

physical health scores significantly increased the inten-
sities of immunological recovery from severe to ad-
vanced (aHR = 1.25; 95%CI: 1.01–1.58) and mild to
normal disease state (aHR = 1.17; 95% CI: 1.07–1.29).
Similarly, an increase in level of independence score re-
duces the intensities of transition from normal to mild
(aHR = 0.87; 95% CI: 0.83–0.91) and advanced to severe
disease state (aHR = 0.94; 95% CI: 0.88–0.99). Further-
more, having high psychological well-being scores, is sig-
nificantly associated with reduced intensities of
transitions from normal to mild (aHR = 0.83; 95% CI:
0.76–0.91) and mild to advanced (aHR = 0.91; 95% CI:
0.82–0.99) disease state (See Table 4).
With regard to socio-demographic variables, patients

with higher educational levels (grade > 11) had statisti-
cally significantly reduced intensities of transitions from
normal to mild (aHR = 0.44; 95% CI: 0.25–0.77), mild to
advanced (aHR = 0.51; 95% CI: 0.29–0.87) and advanced
to severe (aHR = 0.41; 95% CI: 0.23–0.73) disease state,
as compared to those with low level of education
(grade < 8). Patients who reported stable sexual partners
(aHR = 1.31; 95% CI: 1.01–4.92) and no sexual partner
(aHR = 1.27; 95% CI: 1.01–2.70), had significantly in-
creased immune recovery, from severe to advanced dis-
ease state, as compared to those who reported many
sexual partners. Furthermore, as the weight of women in
the study increased, the intensities of immune deterior-
ation from normal to mild and mild to advanced disease
state, decreased (See Table 4).

Predictors of state-specific duration of stay of HIV
patients
After adjusting for education, marital status, TB-co in-
fection, anemic status, age, sex while drunk, granulocytes
component, RBC indices, HR-QoL domain scores, and
weight, an increase in mononuclear component score in-
creases the likelihood that a patient stayed in normal
disease state (aHR = 1.27; 95% CI: 1.18–1.38) and mild
disease state (aHR = 1.12; 95% CI: 1.04–1.21), (Table 5).
The result further showed that patients with higher
physical health scores were more likely to stay longer in

normal (aHR = 1.07; 95% CI: 1.01–1.14) and mild disease
state (aHR = 1.12; 95% CI: 1.05–1.21), but significantly
reduced the waiting time in a severe disease state (aHR =
0.85; 95% CI: 0.73–0.99). Similarly, we noted that those
having high psychological well-being scores and high so-
cial relationship scores were less likely to stay longer in
severe disease state. (See Table 5).
After adjusting for education, marital status, TB-co in-

fection, anemic status, age, sex while drunk, granulocytes
component, RBC indices, HR-QoL domain scores, and
weight, patients who reported stable sexual partnership
(aHR = 1.51; 95% CI: 1.01–2.25) and no sexual partner
(aHR = 1.71; 95% CI: 1.14–2.78) were more likely to stay
longer in a normal disease state as compared to those
who reported many sexual partners. Furthermore, pa-
tients with higher educational levels (grade > 11) were
more likely to stay longer in the normal disease state
(aHR = 4.80; 95% CI: 2.02–11.40), as compared to those
with lower education (< 8 grade). (See Table 5).

Discussion
We have presented both full-parametric and semi-
parametric multi-state models, to model the transition in-
tensity and length of stay of sequential adverse events of
HIV/AIDS. We also improved the selected model, the
Weibull multi-state model, by including an orthogonal
viral load component, derived from PCA. The new or-
thogonal viral load component helped to explain the de-
terminants of transitions and length of stay in sequential
adverse events, which could not be explained by the CD4
count alone. This further improved the efficiency and pre-
dictive accuracy of the model. Results from the Akaike in-
formation criteria and likelihood ratio test showed that
the model defined by CD4 cell counts states with the viral
load orthogonal component, fitted significantly better than
the model with the exclusion of orthogonal viral load
components, as it was done by [17, 29].
Among the different hematological parameters for HIV

infected patients, as expected, a latent variable related to
basophils counts and total lymphocytes was significantly
associated with the intensities of immunological deterior-
ation transitions, and this confirms that HIV infection tar-
gets T-cells. Many studies also suggested that total
lymphocytes can adequately serve as a surrogate bio-
marker for predicting CD4 count progression [30–32].
The latent variable related to RBC indices was significantly
associated with CD4 count progression, which is in agree-
ment with findings reported in previous studies [33–35].

Table 3 Assessment of the fitted model with and without Viral Load Counts Component

Criterion Without Orthogonal Viral Load Counts Covariate With Orthogonal Viral Load Counts Covariate

-2 LOG L 19148.12 18388.20

AIC 19408.12 18768.20

Key: AIC Akaike information criteria, 2 LOG L -2Log-likelihood
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The RBC indices result also shows that it could be used as
a reliable marker of the prognosis in HIV- patient and that
a therapeutic approach is imperative for a patient with
anemia. Thus, hematological parameters such as basophils
counts, total lymphocytes and red blood cell indices (i.e.
MCV and MCH) could thus help health workers identify
patients with poor immunological and clinical responses
in the absence of CD4 count. Furthermore, the latent vari-
able related to alanine aminotransferase and aspartate
aminotransferase was significantly associated with the in-
tensities of immunological deterioration transitions, and
this confirms that the infection is the underlying cause of
the increased activities of liver enzymes [36, 37]. A study
in Ethiopia also reported similar findings [38], showing
that lower CD4 count level (CD4 < 200 cells/mm3) was as-
sociated with elevated liver enzymes. Thus, there is a need
to monitor alanine aminotransferase and aspartate amino-
transferase levels before initiation of ART mainly in high-
risk patients to reduce side effect concerns.
We found that hematological abnormalities such as

anemia had a significantly accelerated immune deterior-
ation effect. This may be attributed to the fact that anemia
is commonly due to the under-production of erythrocytes

by the bone marrow cells [39]. The bone marrow cells are
also responsible for the production of CD4 cell counts
through the myeloid cells [40]. Poor production of mye-
loid cells can, therefore, result in decreased production of
both erythrocytes and CD4 cells. A study done in Ethiopia
[41] reported similar findings that having low CD4+ T
cells count level (<200cells/mm3) and being HAART-
naïve, were significantly associated with anemia. Other re-
searchers [42–44] further reported that more severe levels
of anemia are found among HIV positive patients present-
ing with low CD4 count level.
We observed that TB co-infection accelerated the de-

terioration of immunological functions, a finding that is in
accordance with the literature [45–48], where TB co-
infection has a negative impact on the immune response
to HIV, accelerating the progression from HIV infection
to AIDS. Consequently, caution is needed for risk assess-
ment measures to monitor and screen patient’s pre-ART
initiation in African clinical settings, to curtail potential
risks associated with an increased probability of accelerat-
ing the deterioration of immunological functions. Further-
more, in agreement with the world health organization
treatment guidelines [49], which recommends ART in all

Table 5 Parameter effects (with 95% CI) of Socio-demographics variables, risk variables, HR-QoL domain scores and clinical
measurements on length of stay (waiting time) for the CD4 based Weibull multistate Markov model

Variables Waiting in Normal Waiting in Mild Waiting in Advanced Waiting in Severe

Exp(β)
(95% CI)

Exp(β)
(95% CI)

Exp(β)
(95% CI)

Exp(β)
(95% CI)

Orthogonal Viral load 0.90 (0.81, 0.99)*** 1.42 (0.60, 3.33) 1.27 (1.11, 1.45)** 1.28 (1.15, 1.43)**

TB: Yes 1.18 (0.34, 4.19) 0.99 (0.76, 1.29) 1.08 (0.75, 1.56) 1.44 (0.63, 3.30)

Age_Cat: 18–20 years 0.56 (0.39, 1.80) 1.11 (0.77, 1.17) 1.16 (0.91, 1.48) 0.22 (0.11, 1.45)

Age_Cat: 21–39 years 2.31 (0.07, 4.96) 1.05 (0.78, 1.47) 0.74 (0.54, 1.02) 0.02 (0.01, 1.03)

Anemia: Yes 1.12 (0.97, 1.30) 1.05 (0.91, 1.21) 1.08 (0.89, 1.30) 0.87 (0.51, 1.49)

Education: Grade 9–10 3.56 (1.34, 9.48)* 1.07 (0.79, 1.45) 1.33 (0.92, 1.94) 0.94 (0.61, 1.45)

Education: Grade > 11 4.80 (2.02, 11.40)* 0.87 (0.67, 1.14) 1.23 (0.92, 1.65) 0.91 (0.58, 1.43)

Marital Status: Married/stable sexual partners 1.51 (1.01, 2.25)* 1.27 (1.01, 2.05)* 0.98 (0.56, 1.73) 1.18 (0.34, 3.91)

Marital Status: Single/no sexual partners 1.71 (1.14, 2.78)* 1.26 (0.98, 1.63) 0.82 (0.62, 1.08) 2.60 (0.17, 16.19)

Sex while Drunk: yes 1.08 (0.78, 1.50) 0.95 (0.71, 1.26) 1.05 (0.77, 1.44) 1.41 (0.88, 2.28)

RBC indices component 1.05 (0.99, 1.12) 0.99 (0.92, 1.06) 0.94 (0.86, 1.03) 1.17 (0.99, 1.39)

Hb and Haematocrit component 1.11 (1.04, 1.19) 1.00 (0.93, 1.07) 0.94 (0.86, 1.02) 1.26 (0.99, 1.61)

Granulocytes component 0.98 (0.93, 1.03) 0.93 (0.88, 1.99) 0.99 (0.92, 1.07) 0.88 (0.66, 1.18)

Mononuclear component 1.27 (1.18, 1.38)** 1.12 (1.04, 1.21)** 1.07 (0.99, 1.15) 0.86 (0.64, 1.16)

Liver enzymes abnormality component 1.01 (0.95, 1.06) 0.99 (0.93, 1.05) 1.02 (0.95, 1.08) 0.87 (0.65, 1.18)

Weight 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.01 (0.98, 1.04)

Psychological well-being scores 0.89 (0.83, 1.00) 0.96 (0.79, 1.17) 0.88 (0.83, 0.94)** 0.87 (0.81, 0.93)*

Physical health scores 1.07 (1.01, 1.14)** 1.12 (1.05, 1.21)* 1.06 (0.99, 1.12) 0.85 (0.73, 0.99)**

Independence scores 1.00 (0.97, 1.03) 1.00 (0.97, 1.03) 0.98 (0.96, 1.01) 0.95 (0.88, 1.03)

Social relationship scores 0.97 (0.93, 1.00) 0.95 (0.92, 1.00) 0.97 (0.93, 1.00) 0.96 (0.87, 0.99)*

Key:- Statistical significance: (*)P < 0.05; (**)P < 0.01; (***)P < 0.001; reference category: Age [> 40]; education [grade ≤ 8]; marital status [Many sexual partners]; TB
[No]; Anemia [No]
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PLHIV regardless of CD4 cell count, early identification of
patients with poor clinical characteristics and initiation of
treatment will improve programmatic success and treat-
ment prognosis.
HIV patients who reported many sexual partners had

significantly increased intensities of immune deterior-
ation transitions. Moreover, patients who reported stable
or no sexual partners were more likely to spend a long
time in a normal disease state, as compared to those
who reported many sexual partners. Indeed it has been
reported [50] that patients with higher sexual risk-taking
behaviors (such as many sexual partners) were signifi-
cantly linked to depression, physically and psychologic-
ally impairment among patients living with HIV.
Chronic depression and low quality of life scores may be
associated with increased probability of experiencing im-
munological deterioration [51, 52], showing that at least
part of the effect of many sexual partners on incomplete
immunological recovery, is mediated through QoL and
depression.
Patients with higher educational levels had signifi-

cantly reduced rates of immune deterioration. Other re-
searchers [53, 54] also found that higher education
promotes a better rate of change of immune recovery,
possibly due to better knowledge about their treatment
and disease, access to health services, or functional sta-
tus. We have also observed that patients having higher
educational levels were significantly associated with lon-
ger time spent in normal disease states. This might be
attributed to patients having higher educational levels
were significantly associated with good sanitation and
hygiene practices [55]. Good sanitation and hygiene
practices decrease the risk of diarrhea, which can in-
crease CD4 count [56]. This shows the effect of educa-
tional level on the time spent in healthier states
(particularly the normal disease state), is mediated
through good sanitation and hygiene practices. Another
possibility may be that higher educational level often
provides financial benefits and thus better access to nu-
tritious food. This may be attributed to the fact that nu-
tritious food significantly increases the time spent in
healthier states.
Having high body weight significantly reduces the inten-

sities of immunological deterioration transitions. This
finding is consistent with higher weight was significantly
related to higher CD4 cell count levels [57, 58]. Recent
studies have also shown that patients with higher BMI at
pre-HAART possess higher CD4 cell count and CD4/CD8
ratio compared to normal or underweight adults [59, 60].
A significant positive relationship between QoL do-

main scores and intensities of recovery of HIV infected
patients is noted in our study. Previous studies [61–63]
had reported a significant positive relationship between
CD4 cell count recovery and HR-QoL scores of HIV

infected patients. In contrast, studies [64, 65] from sub-
Saharan Africa showed that there was no significant re-
lationship between CD4 count level and HR-QoL scores.
Possible explanations for this controversial finding might
be that our data was from a cohort of acutely infected
patients and followed up repeatedly over an extended
ART-free period. We have also observed that patients
having higher physical health scores were significantly
associated with longer time spent in normal disease
states. This may explain the observed positive progres-
sion in the physical health domain score and the CD4
cell counts. Furthermore, having high mononuclear
component scores were significantly associated with lon-
ger time spent in normal disease states.
This study has some limitations, including missing

data, which are expected for a study conducted on data
collected from patients’ files with many variables and a
long term follow-up period. Moreover, some clinical co-
variates that influence the intensities of immune deteri-
oration and immune recovery, may not have been
included, for example, CD4/CD8 ratio and hepatitis sta-
tus. Furthermore, the study findings were limited to
adult females.

Conclusions
From a clinical perspective, the study has revealed that
having higher QoL domain scores, good clinical charac-
teristics, stable sexual partners and higher educational
levels, were found to be the significant predictive factors
for intensities of immune deterioration, immune recov-
ery and state-specific length of stay of HIV-infected
women. Furthermore, we found that the identification of
factors, such as QoL measurement items, clinical attri-
butes, marital status, and educational status, associated
with the current state of the patient, were important
contributing factors to extend the survival of the patients
and could potentially guide clinical interventions.
From a methodological perspective, by treating the

collinearity of the viral load and CD4 cell counts using
orthogonal; transformation, the Weibull multi-state
Markov model gives a better fit and insight than the
semi-parametric methods. Moreover, our study will help
researchers to uncover the critical areas of correcting
and dealing with multicollinearity when including both
CD4 cell and viral load count in parametric multi-state
modelling of HIV/AIDS, that many researchers have not
been able to explore. Other more robust parametric dis-
tributions other than the Weibull are also a possible area
of further research.
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