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Sequential Wnt Agonist Then Antagonist
Treatment Accelerates Tissue Repair
and Minimizes Fibrosis

Xiao-Jun Tian,1,2,8,* Dong Zhou,3,8 Haiyan Fu,4,8 Rong Zhang,2 Xiaojie Wang,3 Sui Huang,5 Youhua Liu,3,4,*

and Jianhua Xing1,6,7,9,*

SUMMARY

Tissue fibrosis compromises organ function and occurs as a potential long-term
outcome in response to acute tissue injuries. Currently, lack of mechanistic under-
standing prevents effective prevention and treatment of the progression from
acute injury to fibrosis. Here, we combined quantitative experimental studies
with a mouse kidney injury model and a computational approach to determine
how the physiological consequences are determined by the severity of ischemia
injury and to identify how to manipulate Wnt signaling to accelerate repair of
ischemic tissue damage while minimizing fibrosis. The study reveals that memory
of prior injury contributes to fibrosis progression and ischemic preconditioning
reduces the risk of death but increases the risk of fibrosis. Furthermore, we vali-
dated the prediction that sequential combination therapy of initial treatment
with a Wnt agonist followed by treatment with a Wnt antagonist can reduce
both the risk of death and fibrosis in response to acute injuries.

INTRODUCTION

Acute injury of organs triggers inflammation and wound healing to restore tissue integrity and function.

This rapid repair response involves a complex cascade of inflammatory processes that contain the damage

and trigger regeneration (Koh and DiPietro, 2011; Wynn, 2008). During this response, instead of the

signaling pathways that maintain tissue homeostasis, pathways that control self-propelling yet self-limiting

program are active. During the tissue healing response, many diverse cell types, both resident and infil-

trating cells, communicate through secreted signals and cell contact to modulate each other’s behaviors.

Some of these behaviors include proliferation and transitions between different cellular states, such as

differentiated cells adopting a transient progenitor-like state or quiescent stem cells adopting an activated

state (Wynn, 2008). A critical phase in the repair process is the resolution (Serhan et al., 2007), which termi-

nates inflammation and regeneration once the damaged tissue is repaired: excess cells die, return to quies-

cence, or re-differentiate.

Perfect repair of injury is not always possible, especially when large areas of damage or repeated injuries

occur. Consequently, the resolution process is altered resulting in the formation of scars or tissue fibrosis. In

some cases, such as chronic kidney disease (CKD) (Humphreys, 2018), chronic progressive fibrosis occurs

(Gardet et al., 2013) due to excess proliferation of fibroblasts and deposition of the extracellular matrix.

Chronic progressive fibrosis impairs organ function and can ultimately lead to organ failure and death.

Chronic progressive fibrosis is not simply ‘‘incomplete’’ or ‘‘altered’’ repair; instead, it results from exces-

sive repair activity and failure of resolution and is, thus, a maladaptive response. Fibrosis impairs organ

function in heart, kidney, and liver diseases and is a complication that impairs function after organ trans-

plantation and organ health following surgery. For example, ischemic kidney injury is a common conse-

quence of cardiac surgery (O’Neal et al., 2016).

Here, we used a mouse model of ischemic kidney injury to explore acute injury repair and chronic fibrosis.

Exposure to toxins or hypoxic stress can lead to loss of epithelial cells in the renal tubules, causing either

acute kidney injury (AKI) with kidney failure or CKD that progresses irreversibly to end-stage renal insuffi-

ciency. AKI and CKD are global health challenges with limited treatment options (Wynn and Ramalingam,

2012). These two conditions are often mechanistically and clinically linked (Belayev and Palevsky, 2014;
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Ferenbach and Bonventre, 2015; Leung et al., 2013). Although some patients completely recover from AKI,

others progress to CKD (Amdur et al., 2009; Coca et al., 2009). The determining factors for the transition

from AKI to CKD are not clear. The risk of CKD increases if a patient survives a single episode of AKI

and further increases with repetitive AKI episodes (Chawla and Kimmel, 2012; Coca et al., 2012). In mice,

exposing the kidney to mild ischemia prior to injury (ischemic preconditioning) protects against renal dam-

age from a subsequent AKI (Bonventre, 2002; Joo et al., 2006; Park et al., 2001). Clinical trials of ischemic

preconditioning for AKI associated with cardiac surgery are ongoing (Li et al., 2017; Zarbock et al., 2015).

Mechanistically, kidney tissue injury stimulates two connected cellular networks (tubular cells and fibro-

blasts) through signals mediated by the Sonic hedgehog (Shh) and Wnt pathways. Shh released by the

kidney tubular cells stimulates the proliferation of activated fibroblasts to promote tissue repair (Zhou

et al., 2014). Wnt produced by both tubular cells and fibroblasts participates in both repair of injured tis-

sue and stimulation of fibrosis (Akhmetshina et al., 2012; Wang et al., 2018; Xiao et al., 2016; Zhou et al.,

2016). In particular, Wnt signaling stimulates cell state transitions, including epithelial-to-mesenchymal

transition (EMT) and partial EMT (pEMT), which contribute to both tissue repair and many chronic fibrotic

diseases (Humphreys, 2018; Tennakoon et al., 2016; Willis et al., 2005). After AKI, some kidney tubular

epithelial cells undergo pEMT and some activated fibroblasts become myofibroblasts, the latter of which

is a critical event in the development of fibrosis (Grande et al., 2015; Lovisa et al., 2015). The Wnt-stim-

ulated process of myofibroblast expansion could serve as a drug target for limiting fibrosis and develop-

ment of CKD. Consistent with this hypothesis, excessive and prolonged activation of Wnt signaling pro-

motes myofibroblast proliferation and fibrogenesis and correlates with progression to CKD (Xiao et al.,

2016; Zhou et al., 2016).

The apparent seemingly contradiction of the beneficial effects of ischemic preconditioning and the estab-

lished detrimental role of Wnt activation on fibrosis development has led to a long-standing puzzle in the

field of AKI and CKD studies. To resolve this controversy, here we combined quantitative experimental

studies with a mouse kidney injury model and a nonlinear dynamical systems model of the cellular interac-

tion network composed of a tubular epithelial cell module and a fibroblast cell module, involving three cell

states in each module, and regulatory signals mediated by Shh and Wnt. We used this cellular network

model to investigate the transition from acute injury and repair to chronic tissue damage and fibrosis.

The model provided a mechanism for the multiple outcomes of kidney injury found experimentally in a

mouse model. Furthermore, the model predicted a potential increased risk of fibrosis of ischemic precon-

ditioning despite its well-known protective effect, which was validated in a mouse kidney ischemia system.

Importantly, we developed a Wnt pathway-targeted treatment regimen involving sequential agonist then

antagonist treatment to accelerate tissue repair and prevent fibrosis with the guidance of computational

multi-objective optimization. These findings are particularly relevant in the context of surgery when the

timing of the ischemic episode is known and treatments can be initiated and strategically planned to opti-

mize positive outcomes.

RESULTS

Mouse Models Reveal Four Discrete Terminal States Depending on the Duration of Acute

Kidney Injuries

We established a mouse model for AKI (the ischemia-reperfusion injury [IRI] model) to study whether vary-

ing a single input variable (the severity of transient ischemia) produces qualitatively distinct repair out-

comes. If so, then the system is a complex non-linear dynamical system, which has the property that mul-

tiple distinct stable outcomes arise in response to a continuous range of a perturbation. We tuned the

severity of kidney injury by varying the duration of ischemia (Xiao et al., 2016): mild (5 min), moderate

(10, 15, and 20 min), and severe (30 min) IRI. All mice exposed to mild IRI survived, four of seven mice

exposed to each of the moderate IRI conditions survived, and only six of sixteen mice exposed to severe

IRI survived. Surviving mice recovered for 30 days; then we analyzed the kidney tissue by periodic acid-

Schiff (PAS) (Figure S1) to evaluate the severity of injury based on morphological changes and marker ex-

pressions. We stained for Wnt1, Vimentin, fibroblast specific protein 1 (FSP-1), a-smooth muscle actin

(a-SMA), and platelet-derived growth factor receptor-b (PDGFR-b) by immunohistochemistry to monitor

the activation of fibroblasts and pEMT (Figures 1A and 1B). For animals subjected to mild IRI, we observed

that all markers returned to basal levels like those in control mice not exposed to IRI. The response to

10-min IRI was more variable: some mice had a small but statistically significant increase in Wnt1, FSP-1,

and vimentin, but not PDGFR-b; only one mouse had a statistically significant increase in a-SMA. The other
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Figure 1. Mouse Models Show the Existence of Four Possible Outcomes Depending on the Duration of Acute Kidney Injuries

(A) Representative micrographs showing expression of Wnt1, FSP-1, Vimentin, a-SMA, and PDGFR-b in control and diseased kidneys 30 days after varying

degrees of IRI. Scale bar, 100 mm.

(B) Quantification of marker levels. Each column indicates an individual mouse. Data are represented as mean G SEM of three slices for each marker each

mouse. **p < 0.005, *p < 0.05 versus control using t test (n = 5).

(C) Hierarchical clustering analysis of the marker levels on day 30 after different duration of IRI treatment.

(D and E) Temporal profiles of renal function markers, serum creatinine (D) and BUN (E) after various duration of IRI. n = 3, Data are represented as mean G

SEM.

(F) The fraction of the dead mice, repair outcomes, myofibroblast expansion, and renal function depends on the duration of IRI.

See also Figure S1.
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three experimental groups displayed a significant increase in all five markers. Mice exposed to the severe

IRI displayed the highest amounts of all of thesemarkers and had large fibrotic patches (Figures 1A and S1).

In contrast, small and scattered fibrotic patches were observed in mice after 15- or 20-min IRI (Figure S1).

Cluster analysis with these markers 30 days after injury divided the surviving mice into three readily distin-

guishable groups (Figure 1C) representing the treatment groups, indicating that these markers adequately

captured the differences between themild, moderate, and severe injury conditions. In themice in the 5-min

IRI group, the markers returned to basal, the tissue was morphologically indistinguishable from the control

mice, and the mice clustered with the control mice, indicating that the repair response was complete and

resolved. Hence, we defined the kidney tissue state in the mice of this cluster as a ‘‘perfect adaptive

response state’’ (PARS). The markers of mice in the 15- and 20-min IRI groups indicated the persistence

of low levels of Wnt and low numbers of residual activated fibroblasts and pEMT cells; thus, we defined

this as an ‘‘imperfect adaptive response state’’ (iPARS). The third cluster of the 30-min IRI group had kidneys

with high amounts of Wnt and markers of myofibroblasts and pEMT cells; thus, we defined this as a ‘‘mal-

adaptive response state’’ (MARS).

To determine how increasing the severity of IRI affected kidney function, we evaluated kidney function

based on serum creatinine and blood urea nitrogen (BUN), which are routinely used to assess kidney func-

tion in patients. By 30 days after IRI, only the mice in the severe IRI group exhibited compromised kidney

function (Figures 1D and 1E). Consistent with the severe IRI and 20-min moderate IRI group exhibiting the

most impairment in kidney function (highest serum creatinine and BUN), several animals died in those two

groups of mice in the first 2 weeks after the IRI (Figure 1F).

These data suggest that the kidney response to IRI is a complex non-linear dynamical system. A single

quantitative variable, the duration of ischemia, produced four qualitatively distinct outcomes: (1) full adap-

tive recovery (PARS), (2) imperfect recovery with mild lasting tissue changes but restored kidney function

(iPARS), (3) a maladaptive response (MARS) with signs of fibrosis and renal dysfunction, and (4) death.

A Mathematical Model of the Regulatory Network of the Kidney Response to Injury

Accurately Recapitulates the Four Observed Outcomes

We first asked whether the four distinct and robustly separable outcomes in the animals, triggered by vary-

ing the magnitude of one experimentally controllable parameter, reflect inherent dynamical behaviors of

the cell-cell interaction network that orchestrates the repair response. We constructed a canonical model

with the key components involved in kidney repair (Figure 2A, Tables S1 and S2). We represented the

model with ordinary differential equations with eight variables representing the rates of change in the

abundance of cells and the two signaling mediators (Shh, Wnt) (Supplemental Information). The cellular

components of the network are represented by two modules: the tubular module (representing the tubular

epithelial cells) and the fibroblast module, each containing three distinct cell states. Shh andWnt produced

by the cells in the cellular modules mediate the interactions between the two modules. The cells prolifer-

ate, undergo state transitions, or die under the influence of these two signaling molecules in response to

ischemic injury (‘‘insult’’ in the model). The outcome variables include (1) the fraction of dead tubular

epithelial cells (Figure S2A, see Supplemental Information: The fate of organism death in the mathematical

model) and (2) the abundance of myofibroblasts. We selected the number of myofibroblasts as a determi-

nant of the outcome related to fibrosis, because the abundance of myofibroblasts is a major determinant of

this pathology through secreting extracellular matrix (ECM) (LeBleu et al., 2013). Thus, the effect of ECM is

implicated included in the model based on a positive correlation between the number of fibroblasts and

ECM. Using these variables, we set to examine whether the system could reproduce multiple clinically

and experimentally observed outcomes, such as full recovery without fibrosis (no dead tubular epithelial

cells and no increase in myofibroblasts compared with the uninjured state), fibrosis (indicated by the

steady-state abundance of myofibroblasts), or organismal death (modeled as the number of dead tubular

epithelial cells exceeding a preset threshold).

Under physiological conditions, the number of fibroblasts residing in the interstitial compartment is low

(Lovisa et al., 2015). We model these as ‘‘resident fibroblasts’’ (Figure 2A). In response to insult, some

healthy epithelial cells (‘‘tubular epithelium’’ in the model) enter the injured state (‘‘injured tubular cells’’)

and promote self-renewal of neighboring tubular epithelial cells. In the model, Shh promotes resident fi-

broblasts to transition into the state ‘‘activated fibroblast’’ in which they proliferate and from which they
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can further transition into the state ‘‘myofibroblast’’ (Grgic et al., 2012; Zhou et al., 2014). The myofibro-

blasts secrete Wnt, which stimulates the proliferation of both activated fibroblasts and myofibroblasts, es-

tablishing a positive feedback loop between the myofibroblasts and Wnt production.

Wnt also affects the tubular module (Lyons et al., 2004), further promoting self-renewal and repair of injured

tubular epithelial cells. Wnt also stimulates tubular epithelial cells to undergo a state transition to pEMT

(‘‘partial EMT tubular cell’’) (Grande et al., 2015; Kusaba et al., 2014; Lovisa et al., 2015; Yang et al., 2010;

Zhou et al., 2016), which also secretesWnt (Grande et al., 2015). This establishes a second positive feedback

loop between the partial EMT tubular cell and Wnt production.
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Figure 2. Theoretical Analyses Reveal the Mechanism of the Four Outcomes in Response to Renal Injury

(A) Cell-cell communication model for renal homeostasis and fibrosis. The positive feedback loops are highlighted in red.

(B) Simulated time series of the number of myofibroblasts under different durations of insult.

(C) Repair outcomes under insult of fixed strength but increasing durations.

(D) Phase diagram of repair outcomes (indicated by myofibroblast level) in the space of insult strength and duration.

(E) Fraction of outcomes as a function of insult duration sampled from 1,000 independent simulations.

(F) Bifurcation diagram of the myofibroblast level with respect to insult strength shows three possible survival outcomes

depending on the strength of the insult.

See also Figure S2 and Tables S1 and S2.
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To determine the outcomes produced by themodel, we set the parameters to those for mice (see Tables S1

and S2 for values of parameters and initial states, see Supplemental Information: Parameter Estimation and

Justification), then monitored the distinct stable steady states produced by the model as a function of my-

ofibroblast number by either applying a range of insult intensities (Figure 2B) or starting from a range of

initial conditions (Figure S2B). The simulated time course of the number of myofibroblasts showed that

the network existed in one of three stable steady states with respect to myofibroblast abundance: return

to baseline, persistent intermediate numbers of myofibroblasts, or persistent high numbers of myofibro-

blasts (Figures 2B and S2B). Increasing insult duration and incorporating the number of dead tubular

epithelial cells into the outcome of the model resulted in the separation of organismal death from states

associated with survival and separated each of the three survival-associated steady states into those rep-

resenting severe fibrosis associated with high numbers of myofibroblasts (representingMARS in the mouse

experiments), low numbers of residual myofibroblasts (representing iPARS), and no fibrosis, no increase in

myofibroblasts from baseline, and complete recovery of tubular epithelial cells (representing PARS) (Fig-

ure 2C). Further analysis of the cell network (Figure S2C) suggested that the three steady states associated

with survival are stable with respect to other system variables.

Consequently, we could parameterize insult by duration and strength in a 2D-phase diagram, which is

divided into the four outcome domains and revealed that a short and severe insult had a similar effect

as a longer but less severe one (Figure 2D). To account for the stochastic variability betweenmice, we simu-

lated an ensemble of models with parameters randomly and uniformly chosen within G20% of its default

value and measured the fraction of mice exhibiting each of the four outcomes. By representing the data on

a 2D-phase diagram, we showed that the fraction of mice displaying PARS decreased with increasing dura-

tion of the insult and that the fraction of mice suffering from the next higher-level severity of disease (or

death) increased with increasing duration of the insult (Figure 2E). This outcome is consistent with the

experimental results observed for the mice (Figure 1F).

Bifurcation Analysis Reveals Increasing Insult Severity Triggers Distinct Irreversible States

Because the three outcomes—PARS, iPARS, and MARS—map to stable steady states of the cellular network

model (Figure 2A), we performed an analysis of the irreversibility of the states using one-parameter bifurcation

analysis. Under mild insult, the system ended in PARS (Figure 2F, green line) and returned to the state prior to

the insult after removing the insult (with zero myofibroblasts at zero insult strength). However, increasing insult

severity above a threshold (Figure 2F, SN1) resulted in the system crossing a first bifurcation point. Conse-

quently, the system ‘‘jumped’’ to iPARS (Figure 2F, orange line). In this state, the system exhibited hysteresis,

because reducing the insult strength to zero did not restore a completely healthy tissue composition. Instead,

low levels of myofibroblasts remained. This is consistent with the preservation of kidney function that we

observed in the mice (Figures 1D and 1E). With further increase of insult strength beyond a second critical point

(Figure 2F, SN2), the system jumped to MARS (Figure 2F, red line), characterized by high abundance of myofi-

broblasts that persisted even after the insult was reduced to zero. Thus, the model predicted that both iPARS

and MARS are irreversible states (for full bifurcation diagram, see Figure S2D). That is, the system in iPARS and

MARShasmemory that persists even after the end of ischemia, represented as the remnants of tissue pathology

or the progression to fibrosis. Parameter sensitivity analysis (Figure S2E) revealed that all four outcomes existed

within a parameter range of 15% increase or decrease of most parameters, indicating that existence of these

outcomes is insensitive to heterogeneity of individual mice or our model parameter choice.

Preconditioning to iPARS Reduces Risk of Death but Increases Risk of Fibrosis

Mild ischemic insults have a protective role against subsequent insults in several organ systems, such as

brain, heart, liver, and kidney. Protective preconditioning is being explored as a therapeutic modality for

kidney injury associated with cardiac surgery (Bonventre, 2002; Joo et al., 2006; Park et al., 2001). We

hypothesized that mice surviving a previous AKI would be in iPARS, which would protect them against

subsequent ischemic events but would increase their risk of CKD after subsequent ischemic events. We

examined whether protective preconditioning is a property of our kidney cellular interaction network.

We simulated a moderate renal insult (10 min) to place the system into iPARS, characterized by the absence

of dead tubular cells and the presence of residual myofibroblasts (Figure 3A, solid black lines). Following a

second moderate insult (15 min), the percentage of dead tubular cells reduced faster, indicating faster

repair and regeneration, in the preconditioned system (Figure 3A left, red solid line) than in the control sys-

tem without preconditioning (Figure 3A left, black dashed lines). Thus, our system exhibited another type

of memory, i.e., a protective priming effect of preconditioning.
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However, the preconditioned system produced a high level of myofibroblasts (Figure 3A right, red solid

line). Thus, the model predicted that ischemic preconditioning increases the risk of CKD. Because the pre-

conditioned state represents iPARS, Wnt, myofibroblasts, and pEMT tubular cells are predicted to persist.

This prediction is consistent with clinical observations that some patients, who survive an episode of AKI

with no obvious residual impairment of renal function, have significantly increased risk of developing

CKD (Chawla and Kimmel, 2012; Coca et al., 2012). Using our computational model, we also tested if repet-

itive mild AKI, with episodes of different duration and different spacing between episodes, increased the

risk of CKD. Our model indicated that some dead tubular cells persisted after each episode and that the

level of myofibroblasts increased after each episode (Figures S3A and S3B). Additionally, prolonged and

more frequent exposure to mild AKI resulted in quicker development of CKD (Figure S3C). Thus, our sim-

ulations recapitulated both the clinical and animal model observations that repetitive mild AKI also

increased the risk of CKD (Nath et al., 2000; Thakar et al., 2011).

The previous simulations tested the induction of iPARS on the outcome of a mild second insult (15 min).

We also tested the induction of iPARS on the outcome of a stronger second insult (30 min). An insult of

this intensity is predicted to sometimes lead to death in the naive control systems (Figures 2C and 2E).

Our model predicted that iPARS reduced the peak percentage and cumulative sum of dead tubular cells

(Figure 3B, black dashed lines), thus preventing organism death (Figure 3B right, dotted vertical line).

This reduction in dead tubular cells was predicted for a large range of durations of the second insult (Fig-

ure 3C), indicating that iPARS has a protective role in reducing the risk of death from subsequent severe

renal injury.

Taken together, our model predicted that the relative benefit of ischemic preconditioning of kidneys to

place them in iPARS depended on the severity of the second insult. When the second insult was severe,

the benefit of ischemic preconditioning in reducing the risk of death exceeds that of the increased fibrotic

risk associated with MARS, which reflects an increased risk of CKD. Ischemic preconditioning raised the

threshold of death and lowered that of MARS (Figure 3D left, blue and green arrows), thus expanding

the insult conditions (parameters in the model) associated with survival at the cost of increasing the risk

of chronic fibrosis (Figure 3D right).

To test the mathematical predictions, we preconditioned mice by subjecting them to 10-min IRI. After

30 days of recovery, the mice survived and then were exposed to various durations of a second IRI from

10 to 30 min. We observed larger fibrotic patches in both cortex and medulla in all groups of precondi-

tioned mice subjected to a second IRI compared with the animals only subjected to a single IRI (Figure 3E).

Serum creatinine levels did not reveal an obvious change in renal function between mice subjected to pre-

conditioning and a second IRI and those subjected to a single IRI (Figure 3F). However, quantification of the

fibrotic areas revealed a significant increase of fibrosis in the preconditioned mice compared with the

single IRI group (Figure 3G), consistent with the predictions of the model. Also consistent with the model

predictions, we observed significant protection from death in the animals subjected to preconditioning,

especially for cases of more intense insult (Figure 3H). Thus, these animal experiments recapitulated the

opposing effects of preconditioning predicted by the model: Preconditioning reduced death rate at the

cost of increased fibrosis.

Figure 3. Double-Edged Sword Effects of Pre-fibrotic iPARS, Reducing the Risk of Death but Increasing the Risk of MARS

(A) Temporal profiles of the percentage of dead tubular cells and the myofibroblast level under one 10-min insult (dashed lines) and two successive insults

with one second 15-min insult occurring 30 days after the first (solid lines). The green arrow indicates the change from iPARS to MARS with pretreatment.

(B) Same as (A) and (B) except with a 30-min second insult. The horizontal line indicates the threshold for death. The blue arrow indicates the change from

Death to MARS with pretreatment.

(C) Peak level of dead tubular cells and maximum level of the cumulative death tubular cells as a function of insult duration. The system is either

preconditioned with a first moderate insult (solid red lines) or without preconditioning (black dash lines) as control.

(D) (Left) Phase diagram of repair outcomes (indicated by myofibroblast level) in the space of insult strength and duration. Similar to Figure 2D, except

preconditioned with a moderate insult (duration = 10 min, 30 days of recovery after first insult). Green lines indicate the threshold of MARS with (solid) and

without (dashed) preconditioning. Blue lines indicate the threshold of death with (solid) and without (dashed) preconditioning. (Right) Repair outcomes

under insults of fixed strength but increased durations with (red dots) and without (black boxes) preconditioning (duration = 10 min, 30 days of recovery).

(E) Representative micrographs of Picro Sirius Red staining show collagen deposition in kidney cortex and juxta medulla area in both groups of pre-

conditioned mice and single-IRI mice 30 days after varying degree IRI. Scale bar, 100 mm.

(F–H) Dependence of the level of serum creatinine (F) (n=3), the fraction of the fibrotic area (G), and the animal death fraction (H) on the duration of IRI 30 days

after IRI. Preconditioning: 10 min IRI followed by 30 days of recovery.

See also Figure S3.
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Wnt-Mediated Positive Feedback Loops Modulate the Repair Response and Risk of

Progression to CKD

To explore the molecular origin of the four AKI outcomes, we focused on the positive feedback loop

formed by the pEMT tubular cells and Wnt (Figure 2A). We selected this feedback loop because it repre-

sents a critical aspect of tissue repair (pEMT tubular cells) and a major contributing factor to fibrosis (Wnt

secretion that stimulates myofibroblast expansion). With the model, we tested the effect of altering Wnt

signaling on the outcome of injury (Figure 4). From a clinical standpoint, Wnt signaling represents a poten-

tially pharmacologically manipulatable aspect of the injury response; thus, we focus on the results of those

simulations.

We simulated the outcomes in the cellular network model by perturbing the activity of Wnt. When we

reduced Wnt in the network model, the system tolerated higher insult intensities before jumping to either

iPARS or MARS (Figure 4A, blue lines compared with black lines). When we increased Wnt, the system

jumped to iPARS andMARS at lower insult intensities (Figure 4A, compare red lines with black lines). These

results indicated that reducing Wnt in the presence of a continuous low-intensity insult was protective,

increasing the threshold of MARS and making the maladaptive response less likely, whereas increasing

Wnt had the opposite effect under these conditions.

We also simulated the outcomes in response to a single transient insult of varying duration representing

AKI, while increasing or decreasing Wnt (Figures 4B–4E). When Wnt was reduced, there were only three

states: PARS, iPARS, and death. The insult durations that resulted in death or iPARS increased, expanding

those states and eliminating MARS (Figures 4B and 4C). Conversely, when Wnt was increased, the insult

durations that resulted in MARS increased and fewer resulted in death or iPARS (Figures 4D and 4E),

thus raising the threshold for death and lowering that for MARS.

We simulated the effect of Wnt agonists added prior to a single transient insult of varying duration. The

model predicted that pretreatment with Wnt agonists raised the threshold of death and expanded the in-

sults that resulted in MARS (Figure 4F). The predicted reduction in death is consistent with a report that

treatment with Wnt reduced the kidney damage and improved renal function in an IRI rat model (Kunce-

witch et al., 2015). Inspection of the transition between iPARS and MARS (Figure 4F) suggested that the ef-

fect of Wnt pathway activity was biphasic: The threshold of MARS first increased (reflecting a safer effect of

Wnt treatment) and then decreased as Wnt agonists increased. These results predicted that the therapeu-

tic window for Wnt activation that minimizes both the risk of death from acute injury and the development

of chronic fibrosis is narrow.

Consistently, increasing the Wnt secretion rate in the model increased the death threshold and decreased

the MARS threshold (Figure 4F). That is, the renal system faces a fundamental trade-off between CKD (rep-

resented as MARS) and death, so reducing the risk of death increases the risk of CKD and vice versa. Thus,

the model predicted that the consequences of manipulating Wnt consistently throughout the injury

response are complicated and depend on the condition (low intensity and continuous injuries, like CKD,

or transient injury, like AKI). In CKD, reducing Wnt is predicted to be protective. However, in AKI, reducing

Wnt is predicted to increase the risk of death. Furthermore, addingWnt agonists as a pretreatment strategy

is predicted to have a narrow optimal activity window.

Achieving Optimal Treatment of AKI by Dual Targeting of Repair and Resolution Dynamics

In view of the trade-off between repair and fibrosis and the narrow therapeutic window of Wnt activity pre-

dicted by our cellular interaction model, we hypothesized that an optimal strategy targeting Wnt would

combine activation and inhibition in a temporally controlled manner, thereby promoting both the repair

and resolution phases of the injury response. Thus, we formulated it as a computational multi-objective

optimization problem and used a Metropolis search to evaluate Wnt-targeted regimens by varying the

schedules, durations, and dosages of both Wnt antagonists and agonists (Figure 5A, see Methods). The

ideal strategy minimizes both the risks of death and fibrosis and achieves the fastest recovery using the

lowest doses of drugs with the shortest treatment time. Practically the optimization process is to minimize

a score function that includes all these factors with the highest weight given to reducing the risk of death,

followed by the weight for reducing the risk of fibrosis. As expected, the optimal strategy required treat-

ment with a Wnt agonist at the beginning followed by treatment with a Wnt antagonist (Figures 5B and

S4A). Simulation of 1,000 mice, each with parameters drawn from a distribution to account for individual
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heterogeneity confirmed the robustness of the treatment scheme with the most mice under a combined

treatment of Wnt agonist and antagonist reaching PARS and a small fraction reaching iPARS (Figure 5C).

Our model also predicted that the optimal treatment design depends on insult duration (Figures S4B

and S4C).

To validate our therapeutic strategy, we used a 30-min IRI and tested four different treatment designs in

mice: IRI only, a singleWnt1 pretreatment prior to IRI, Wnt signal inhibitor ICG-001 treatment administered

iPARS
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Figure 4. The pEMT-Wnt Axis Modulates Repair Response and Progression Risk to CKD

(A) Bifurcation diagram with overexpressed Wnt (increased secretion rate, red lines) or downregulated Wnt (reduced

secretion rate, blue lines) in contrast to the control (Ctrl, black lines).

(B) Repair outcomes under insults of fixed strength but increasing durations with (blue dots) and without (black boxes,

control) constant Wnt downregulation.

(C) Phase diagram of repair outcomes (indicated by myofibroblast level) in the space of insult strength and duration with

constant downregulated Wnt. Dashed lines indicate boundaries in the control system (without Wnt downregulation).

(D) Repair outcomes under insults of fixed strength but increasing durations of IRI with (red dots) and without (black

boxes, control) Wnt constant overexpression.

(E) Same as panel C except with constant Wnt overexpression. Dash lines represent the boundaries in the control system

(without Wnt overexpression).

(F) Effect of Wnt agonist treatment before AKI on repair outcome under various insult duration.
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Figure 5. Temporal Regulation of Wnt Represents the Optimal Dynamic Treatment Design for AKI through

Temporal Regulation of Wnt

(A)Schematic of treatment design combining Wnt and its inhibitor, with parameters to be optimized including the doses,

timings, and durations of Wnt and inhibitor.

(B) Representative searching trajectory of the therapy score function and treatment design over Monte Carlo steps. The

weights of different factors [l1, l2, l3, l4, l5] in the score function are set as [500, 10, 1, 1, 1].

(C) Fraction of various repair outcomes under different treatment designs—Wnt agonist only (Wnt Ag), Wnt antagonist

(Wnt Antag), or combination of Wnt agonist and antagonist—and the control system without treatment, each sampled

from 1,000 simulations.

(D) Fractions of repair outcomes as a function of insult duration with the optimal design for the 30-min insult. Dashed lines

are corresponding region boundaries without treatment (yellow, PARS/iPARS; red, iPARS/MARS; black, MARS/Death).

Each result was sampled from 1,000 independent simulations.
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every day from day 4 to day 13 after IRI, and combined treatment withWnt1 before IRI and ICG-001 after IRI.

Of note, the Wnt1 pretreatment was based on the hydro-dynamic gene delivery technique. Figure S5 illus-

trated that HA-tagged Wnt1 gene was effectively delivered to the kidneys. Histochemical analysis showed

that fibrosis was markedly reduced in the groups receiving ICG-001 alone or in combination with Wnt1 pre-

treatment; pretreatment with Wnt1 alone increased the severity of fibrosis (Figures 5E and 5F). Compared

with the IRI-only group, we observed a reduction of components of the extracellular matrix, indicating

reduced extracellular matrix deposition, in the groups with combined treatment or ICG-001-only treat-

ment, whereas Wnt1 pretreatment alone increased extracellular matrix deposition (Figures 5G and 5H).

Either Wnt1 pretreatment alone or the combination treatment enhanced survival to this severe insult

(Figure 5I). In the absence of ischemic insults, administration of either Wnt1 or ICG-001 alone had little

effect (Figure S6), recapitulating our previous findings (Xiao et al., 2016; Zhou et al., 2018).

Taken together, the prediction from theoretical analysis and preclinical studies in a mouse model for AKI

and CKD suggested that combined sequential treatment with Wnt agonists and antagonists can overcome

the dilemma of the double-edged-sword effect of Wnt pathway activity and minimize both animal death

and kidney fibrosis.

DISCUSSION

Tissue injury and its repair pose a conundrum that lies at the intersection between recovery from acute dis-

ease and the development of chronic disease. The unleashing of a well-orchestrated and rapid response

that fixes the parenchymal tissue defect through a transient mesenchymal proliferative response must

be tightly controlled to prevent chronic fibrosis caused by the response itself. Thus, tissue repair that en-

sures survival ranges from full reconstitution to chronic disease. The latter represents an evolutionary trade-

off that prioritizes survival over avoidance of proliferative fibrotic disease.

We used an established animal model for acute ischemic kidney injury in the mouse to study the trade-off

using both experimental andmathematical analyses. Bymulti-variablemolecular, morphological, and func-

tional assessment, we identified three distinct response types of kidney tissue with respect to its adaptation

to the insult: full recovery of the healthy tissue (PARS), functional recovery with residual tissue alterations

(iPARS), and progressive chronic disease with fibrosis (MARS).

It is increasingly believed that the acute and chronic forms of kidney disease do not reflect distinct types of dis-

eases with different etiologies. Instead, both forms are distinct responses to the same type of insult, such as

ischemia, occurring at varying intensity. Thus, the system is a dynamical one producing qualitatively distinct be-

haviors in response to a quantitative continuumof perturbation. The emergence ofmultiple qualitatively distinct

behaviors is a central characteristic of non-linear dynamical systems. Therefore, dynamical systems theory is an

appropriate method for analyzing the system representing the kidney injury response.

In constructing a mathematically tractable model, we focused on the repair of the cellular damage medi-

ated by well-characterized cell-to-cell interactions. The dynamics of the cell interaction network (Figure 2A)

exhibited multistable dynamics that mapped to the four observed disease fates: PARS, iPARS, MARS, and

death. Theoretical analysis of the model made a number of predictions that were experimentally confirmed

and explained long-observed phenomena (Figure 6 and Table S3). Multistability and memory are the most

elementary manifestations of non-linear dynamics and require positive feedback loops in the system archi-

tecture (Angeli et al., 2004). Memory is a manifest of irreversibility, which emerges owing to hysteresis in the

dynamics. Physiologically, memory is represented in iPARS as the remnants of tissue pathology that persist

long after the end of ischemia and in MARS as the progression to fibrosis. Memory is also represented by

the protective priming effect of pre-conditioning, a phenomenon seen in several ischemic organ diseases.

Thus, the kidney repair program keeps a ‘‘memory’’ of previous injury and is primed for a more rapid

Figure 5. Continued

(E–I) Representative micrographs of Picro Sirius Red staining (E), the fraction of fibrotic area (F), quantitative real-time RT-

PCR (qRT-PCR) for collagen type III and TNC (G and H) on day 30 and the fraction of animal death (I) (within 30 days) after

30-min IRI with pre-administration of Wnt treatment or with Wnt inhibitor ICG-001 administration from day 4 to day 30 or

combination of Wnt pre-administration and ICG-001 administration from day 4 to day 30 or without any treatment.

Scale bar, 100 mm. **p < 0.01 versus labeled groups using one-way ANOVA, followed by the Student-Newman-Keuls test

(n = 4–6). For (I), the total number of mice is 9–16 for each group. For (F)–(H), data are represented as mean G SEM.

See also Figures S4–S6 and Table S3.
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response to subsequent injury but at the expense of increased risk of fibrosis. Future studies may further

reveal the molecular mechanisms of the memory, including possible roles of epigenetic modifications.

The double-edged nature of molecular players that could serve as therapeutic targets poses a dilemma for

treatment. Specifically, Wnt represents an important lever point for pharmacological intervention. Howev-

er, Wnt plays opposing roles, which are captured in our model: in the acute phase, it is a positive regulator

of regeneration by promoting stem-like states and stimulating myofibroblast expansion. However, the

latter role of Wnt signaling drives fibrosis in the chronic phase. Some studies indicate renal tubular cells

undergoing pEMT are a potential target for intervention as tubular cells in pEMT state secrete various cy-

tokines to promote the fibrosis (Grande et al., 2015; Lovisa et al., 2015), and others focus on the activation of

resident fibroblasts as a site for intervention because these cells are a source of the fibrogenic myofibro-

blasts (Grande et al., 2015; LeBleu et al., 2013; Lovisa et al., 2015; Nieto et al., 2016; Ovadya and Krizhanov-

sky, 2015). Both mathematical modeling and experimental studies have identified key pEMT regulators,

such as Snail1, HIPK2, NF-kB, and Twist1 (Grande et al., 2015; Jin et al., 2012; Lovisa et al., 2015; Tian

et al., 2013; Xing and Tian, 2019; Zhang et al., 2014), which may be combined with other targets, such as

Wnt and Shh, for designing optimal treatment against both AKI and CKD (Machado and Diehl, 2018; Zhang

et al., 2016). However, these approaches commonly rest on the conventional paradigm of linear causation

embodied by molecular pathways that only need to be manipulated in one direction (enhanced or in-

hibited), ideally at multiple points in the network by combination therapy.

However, such unidirectional up- or downregulation of pathways cannot address the complexity of a trade-off

response. Because of the double-edged effect, a unidirectional (unimodal) intervention in the repair program is

unlikely to achieve speedy repair and complete resolution, free of unintended consequences. Thus, we focused

on the double-edged sword effect of Wnt as a potential target, for which both agonists and antagonists exist.

We formulated a treatment design as an optimization problem.Our computational optimizationprocedure pro-

posed a regimen that we implemented in the animal AKI model, demonstrating that a temporal combination of

applying a Wnt agonist and a Wnt antagonist thereafter can both prevent death by promoting rapid repair as

well as reduce the development of fibrosis. That is, Wnt antagonists could prevent fibrosis. However, Wnt

Figure 6. Summary of the Renal Repair Process

In response to injury, the renal repair system is initialized to reduce the damage through cell regeneration. If too many

tubular cells are dead without timely replenishment, immediate death may happen. Otherwise, the repair process

continues and generates myofibroblast that produces extracellular matrix (ECM). If too much ECM accumulates, the

system goes into MARS and develops renal fibrosis. If the ECM level is low and the level of myofibroblasts does not reset

to the pre-injury level, the system goes into iPARS. If all the components are completely reset to their normal states, the

system goes into PARS. See also Table S4.
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signaling is necessary to activate regenerative programs. Indeed, in studies with mice, Wnt agonists adminis-

tered prior to an ischemic episode reduce kidney damage and improve renal function (Kuncewitch et al.,

2015). The key to using Wnt pathway-targeted therapies is timing the application of the agonists and antago-

nists. Agonists need to be administered early after the injury to promote repair, whereas antagonists need to be

administered later to enable resolution and limit fibrosis. Future studies with time-controlled, cell-type-specific

genetic models are warranted to further address this issue.

While the broader applicability of our procedure of optimizing the dual use of antagonist and agonist to control

the non-linear dynamics of the repair process remains to be further evaluated in human and other disease

models, our results suggest that, to confront a pathogenetic mechanism that involves a target that is a dou-

ble-edged sword, we need to think beyond the standard unidirectional inhibition (or activation) of a single

target or pathway. As a first step, our work establishes the rationale for a newmodality of non-monotonical phar-

macological intervention to control non-linear disease dynamics by biphasic application of both agonists and

antagonists of the same target. The insights provided by the current workmay guide potential therapeutic stra-

tegies, which would need rigorous investigation before any practical clinical intervention.

Limitations of the Study

In this work, we presented a proof-of-concept study focusing on Wnt signaling in the context of fibrosis. Our

model robustly predicts key dynamic features of the repair response that underlies the pathogenesis. As with

any model, some simplification is necessary to enable computational study. Two cell types (tubular epithelial

cells and fibroblast cells) and two pathways (Shh and Wnt) are considered in the model, which works despite

the simplicity. Thus, ourmodel implicitly but not explicitly takes into account a number ofmolecularmechanisms

known to take part in the response, such as several inflammatory cytokines, growth factors, autacoids, and ECM

(Bonventre and Zuk, 2004). By focusing on regeneration that repairs the cellular deficit caused by ischemic

destruction, we omit inflammatory infiltrates and ensuing angiogenesis. Through implementing these pro-

cesses and their actively controlled termination, future studies may fine-tune the model description of disease

coursewith geneticmousemodels. In addition, our cell-cell interactionmodel describes tissue-level changes (as

defined by cell and matrix composition) and does not consider the granularity to describe gene expression

changes and associated epigenetic alterations that govern the cell state dynamics and have been implicated

in the memory of AKI (Naito et al., 2009; Ramesh and Reeves, 2004; Zager and Johnson, 2009). The spatial as-

pectswere not considered in themodel. Considering spatial aspects in themathematicmodel and targeting the

EMT plasticity will further optimize the treatment design (Goetz et al., 2020).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All data produced or analyzed for this study are included in the published article and its supplementary in-

formation files or are available from the corresponding author upon reasonable request. All the equations

and parameters of the mathematical models can be found in Transparent Methods.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101047.
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Fig S1. Representative micrographs showing periodic acid-Schiff (PAS) staining in 
control and diseased kidneys 30 days after varying degrees of IRI. Related to Figure 1. 
Scale bar, 100 µm. 
  



 

 
Fig S2. Mathematical definition of the end states. Related to Figure 2. 
(A) Definition of death for mathematical simulation. An organism is set to death if the cumulative 
sum of dead tubular cell（∫ 𝑂𝑑𝑡%&'()*+

%&( ）is larger than a threshold (𝐶𝑢𝑚𝑠𝑢𝑚0).  
(B) The simulated time course of the number of myofibroblasts with the system starting from a 
range of initial conditions  
(C) Definition of the states (PARS, iPARS, MARS) in terms of the state variables.  
(D) Full bifurcation diagram of the myofibroblast level in respect to insult strength. SN1 and SN2 
(SN3 and SN4) indicate the thresholds and irreversibility of iPARS (MARS).   
(E) Parameter sensitivity of the thresholds for four outcomes with 15% increase or decrease of 
each parameter. 
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Fig S3. Repeated mild AKI leads to CKD. Related to Figure 3. 
(A-B) Temporal profiles of the percentage of dead tubular cells (A) and myofibroblasts (B) under 
repeated insults (5 min insult every 10 days).  
(C) Number of repeated insults needed to induce CKD in the space of insults duration and the 
gap between two repeated insults. 
  

inf

Time

Time Gap Between Two Insults

Insult Duration

A B

C



 

Fig S4. The searching of the optimal treatment design on the starting point and the insult 
duration. Related to Figure 5. 
(A) Representative searching trajectory of the therapy score function and treatment design with 
a starting point from the initial point with only Wnt mimic at the later phase (I), or an initial point 
with only Wnt inhibitor at the early phase (II), or an initial point with Wnt inhibitor at the early 
phase and Wnt mimic after Wnt inhibitor (III), or an initial point with two doses of each drug (IV).  
(B-C) Fine tuning of the optimal designs according to the insult duration. (B) Optimal design as a 
function of insult duration. (C) Fractions of repair outcomes as a function of insult duration with 
duration-specific optimal designs, each sampled with 1000 independent simulations.  
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Fig. S5. HA-tagged Wnt1 expression and localization in the liver and kidney after 
hydrodynamic gene delivery. Related to Figure 5.  (A) Schematic diagram. Healthy adult mice 
were administrated with pHA-Wnt1 intravenously. Liver and kidney tissue were collected at 0h, 
4h, and 1d, respectively. (B) HA-tagged Wnt1 in the liver at 4h and 1d after gene delivery. 
Arrows indicate positive cells. (C) HA-tagged Wnt1 in liver at 4h and 1d after gene delivery. 
Arrowheads indicate positive cells.  



 
Fig S6. Effect of Wnt or ICG-001 administration in the absence of ischemic insults. 
Related to Figure 5.  (A) Experiment design.  (B) Mouse body weight gain at 30 days after Wnt1 
or ICG-001 administration, compared with controls (n = 4 - 6). (C) The ratio changes of kidney 
weight/body weight at 30 days after Wnt1 or ICG-001 administration, compared with controls (n 
= 4 - 6). (D) Urinary albumin level changes at 30 days after Wnt1 or ICG-001 administration, 
compared with controls (n = 4 - 6). (E-F) Renal function including blood urea nitrogen (E) and 
serum creatinine (F) changes at 30 days after Wnt1 or ICG-001 administration, compared with 
controls (n = 4 - 6). (G) Representative micrographs of PAS or Sirius Red staining show kidney 
histologic changes or collagen accumulation at 30 days after Wnt1 or ICG-001 administration, 
compared with controls (n = 3 - 4). (H) Mathematical model behavior in response to Wnt or its 
inhibitor in the absence of an ischemic insult. (I) Representative simulation results of Wnt and 
myofibroblast in response to Wnt at absence of an ischemic insult. 
  



Table S1. Parameters of the model. See also the ‘Parameter Estimation and Justification’. 
Related to Figure 2. 
Parameter Description Value 

kd34 Rate of tubular cell injury induced by insults 0.001 
k536357849:( Basic regeneration rate of healthy tubular cells 0.00001 
k536357849: Regeneration rate of healthy tubular cells mediated by Wnt 0.001 
J536357849: Michaelis constant of Wnt-dependent regeneration of healthy 

tubular cells 

5 
k3<= Transition rate from healthy tubular cells to partial EMT tubular 

cells 

0.11 
J3<	 Michaelis constant of Wnt-dependent partial EMT 7 
k<3 Transition rate from partial EMT tubular cells to healthy tubular 

cells 

0.5 
k53<745 Repair rate of injured tubular cells 0.05 
J53<745 Michaelis constant of Wnt-dependent repair of damaged tubular 

cells 

0.1 
d?@ Death rate of injured tubular cells 0.2 
kABB= Shh secretion rate from injured tubular cells 0.2 
kABBC Shh secretion rate from partial EMT tubular cells 0.008 
dABB Degradation rate of Shh 0.01 
kD4:= Wnt secretion rate from partial EMT tubular cells 0.06 
kD4:C Wnt secretion rate from myofibroblasts 0.06 
dD:8 Degradation rate of Wnt 0.21 
𝑘FGH( Basic production rate of resident fibroblasts 0.1 

 

 

 

 

 

 

 

 

 

𝑑FGHI Basic death rate of resident fibroblasts 0.1 
𝑘F*= Activation rate of fibroblasts by Shh 5 
𝑘F*C Activation rate of fibroblasts by Wnt 5 
dJ4K7 Basic death rate of activated fibroblasts 0.1 
kJ<= Shh-dependent production rate of fibroblasts 0.15 
JJ<= Michaelis constant of Shh-dependent production of fibroblasts 4 
kJ<C Wnt-dependent production rate of fibroblasts  0.2 
JJ<C Michaelis constant of Wnt-dependent production of fibroblasts 4 
kJL= Transition rate from Shh-dependent fibroblast to myofibroblast 0.1 
JJL= Michaelis constant of Shh-dependent fibroblast to myofibroblast 

transition 

0.1 
kJLC Transition rate from Wnt-dependent fibroblast to myofibroblast 0.05 
JJLC Michaelis constant of Wnt-dependent fibroblast to myofibroblast 

transition 

6 
kLJ Transition rate from myofibroblast to fibroblast 0.01 
kL Production rate of myofibroblasts 0.1 
JL Michaelis constant of Wnt-dependent production of myofibroblast 0.25 

MN*O Maximal level of myofibroblasts 60 
kLC Production rate of myofibroblast promoted by partial EMT tubular 

cell 

0.005 

 
dL Death rate of myofibroblast 0.1 

 
  



  
Table S2. Variables of the model. Related to Figure 2. 
Variable Description Initial values 

E Percentage of tubular cells in health state 100 

IE Percentage of tubular cells in injured state 0 

PE Percentage of tubular cells in partial EMT state 0 

O Percentage of tubular cells in dead/vacancy state 0 

Shh Level of Shh secreted by tubular cells 0 

Wnt Level of Wnt secreted by tubular cells and myofibroblasts 0 

Fibr Relative level of resident fibroblasts 1 

Fiba Relative level of activated fibroblasts 0 

Myo Relative level of myofibroblasts 0 

  



Table S3. Nucleotide sequences of the primers used for RT-PCR. Related to Figure 5. 

Mouse  
gene 

Primer Sequence 5’ to 3’ 

Forward Reverse 

Collagen I ATCTCCTGGTGCTGATGGAC ACCTTGTTTGCCAGGTTCAC 

Collagen III AGGCAACAGTGGTTCTCCTG GACCTCGTGCTCCAGTTAGC 

TNC CAGGAATCTCCGCCGTGTCT GTGGCTTGCTGGCTCTTTGG 

β-actin CAGCTGAGAGGGAAATCGTG CGTTGCCAATAGTGATGACC 

 
  



 
 
 
Table S4. Predictions and experimental confirmations. Related to Figure 6. 

The risk of developing progressive CKD is significantly 

increased even if one patient has survived an episode of AKI 

(Belayev and Palevsky, 2014; 

Leung et al., 2013) 

The long-term outcome of AKI varies among patients. (Belayev and Palevsky, 2014) 

Administration of Wnt agonist at one hour prior to ischemia 

reduces kidney damage and improves renal function 
(Kuncewitch et al., 2015) 

Ischemic preconditioning provides both acute and delayed 

protection against renal damage in mice 

(Bonventre, 2002; Joo et al., 

2006; Park et al., 2003; Park et 

al., 2001) 

Acute kidney injury can be significantly reduced with remote 

ischemic preconditioning  

(Li et al., 2017; Zarbock et al., 

2015) 

Inhibiting partial EMT reduces fibrosis 
(Grande et al., 2015; Lovisa et 

al., 2015) 

Imperfect adaptive response state reduces the risk of death 

but increases the risk of fibrosis 
Predicted and verified here 

A dynamic therapy strategy targeting on Wnt is able to 

reduce the risk of both death and fibrosis.  
Predicted and verified here 

 

  



Transparent Methods  

Ethics statement 

All animal experiments were conducted using mice bred at and maintained in our animal facility 

according to the guidelines of the Institutional Animal Care and Use Committee of University of 

Pittsburgh (19034849 & 19044959).  

Animal models 

Male BALB/c mice weighing about 22–25 g were obtained from the Envigo (Somerset, NJ). 

Renal IRI was performed in mice by using an established protocol, as described elsewhere 

(Zhou et al., 2012). Briefly, bilateral renal pedicles were clamped for designed timing using 

microaneurysm clamps to generate acute injury. During the ischemic period, body temperature 

was maintained at 37°C by using a temperature-controlled heating system. Animals were then 

administered intraperitoneally with buprenorphine at 0.05 mg/kg body wt. For Wnt pretreatment, 

the mice were subjected to a single intravenous injection of Wnt1 expression plasmid (pHA-

Wnt1; Upstate Biotechnology) at 1 mg/kg body wt using the hydrodynamic–based gene transfer 

technique (Dai et al., 2002; Xiao et al., 2016). Specifically, 20 µg plasmid DNA was diluted in 1.8 

ml saline and injected through the tail vein into mouse circulation within 5–10 seconds. Mice 

from the control group were injected with 20 µg empty vector pcDNA3 in an identical manner. 

For pharmacologic inhibition experiments, mice were daily intraperitoneal injection of ICG-001-

phosphate (kindly provided by Dr. M. Kahn, University of Southern California, Los Angeles, CA) 

at 5 mg/kg body weight from the 4th day after IRI (Hao et al., 2011; Xiao et al., 2019; Xiao et al., 

2016; Zhou et al., 2015). Mice were sacrificed at 30th day after IRI, and serum and kidney 

tissues were collected for various analyses. Animal experiments were approved by the 

Institutional Animal Care and Use Committee at the University of Pittsburgh.  

Determination of Serum Creatinine  



Serum was collected from mice at different times after IRI as indicated. Serum creatinine level 

was determined by use of a QuantiChrom creatinine assay kit, according to the protocols 

specified by the manufacturer (BioAssay Systems, Hayward, CA). The level of serum creatinine 

was expressed as milligrams per 100 ml (dl).  

Reverse transcriptase (RT) and real-time PCR 

Total RNA isolation and quantitative, real-time RT-PCR (qRT-PCR) were carried out by the 

procedures (Zhou et al., 2014). Specifically, Total RNA isolation was carried out using the 

TRIzol RNA Isolation System (Life Technologies, Grand Island, NY) according to the 

manufacturer’s instruction. The first strand cDNA synthesis was carried out by using a Reverse 

Transcription System kit according to the instructions of the manufacturer (Promega, Madison, 

WI). qRT-PCR was performed on ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems, Foster City, CA). The PCR reaction mixture in a 25-µl volume contained 12.5 µl 2x 

SYBR Green PCR Master Mix (Applied Biosystems), 5 µl diluted RT product (1:10) and 0.5 µM 

sense and antisense primer sets. PCR reaction was run by using standard conditions. After 

sequential incubations at 50oC for 2 min and 95oC for 10 min, respectively, the amplification 

protocol consisted of 40 cycles of denaturing at 95o C for 15 sec, annealing and extension at 60 

o C for 60 sec. The standard curve was made from series dilutions of template cDNA. The 

mRNA levels of various genes were calculated after normalizing with β-actin. Primer sequences 

used for amplifications were presented in Table S4.  

Histology and immunohistochemical staining 

Paraffin-embedded mouse kidney sections (3-μm thickness) were prepared by a routine 

procedure. The sections were stained with Periodic acid–Schiff (PAS) staining reagents by 

standard protocol. Immunohistochemical staining was performed according to the established 

protocol (Zhou et al., 2013a). Specifically, Paraffin-embedded mouse kidney sections (3-μm 

thickness) were prepared by a routine procedure. The sections were stained with Periodic acid–



Schiff (PAS) staining reagents by standard protocol. For immunohistochemical staining, 

paraffin-embedded sections were stained with anti-Wnt1 (ab15251); anti-α-SMA (ab5694) 

(Abcam, Cambridge, MA), anti-FSP-1 (#07-2274; EMD Millipore, Burlington, MA), anti-Vimentin 

(#5741); and anti-PDGFR-β (#3169) (Cell Signaling Technology, Danvers, MA) antibodies using 

the routine procedure. Nonimmune normal control IgG was used to replace the primary antibody 

as negative control, and no staining occurred. Briefly, slides were deparaffinized, with 

inactivation of endogenous peroxidases and blocking, followed by incubation with primary 

antibody overnight. Subsequent incubation with biotinylated secondary antibody (Jackson 

ImmunoResearch Laboratories), ABC Reagent, and AEC Reagent (Vector Laboratories, 

Burlingame, CA) were used to visualize staining. The antibodies against Wnt1 (ab15251); α-

SMA (ab5694) (Abcam, Cambridge, MA), FSP-1 (#07-2274; EMD Millipore, Burlington, MA), 

Vimentin (#5741); PDGFR-β (#3169) (Cell Signaling Technology, Danvers, MA) were used.   

Statistical analyses 

All data were expressed as mean ± SEM. Statistical analysis of the data was performed using 

SigmaStat software (Jandel Scientific Software, San Rafael, CA). Comparison between groups 

was made using one-way ANOVA, followed by the Student-Newman-Keuls test. P < 0.05 was 

considered significant.  

Mathematical modeling and computer simulation for renal homeostasis and fibrosis 
In response to renal insults, a complex interconnected wound-healing program is activated to 

repair the damage. Here we built a minimal mathematical model that explicitly considers the 

communication of a tubular module and a fibroblast module, while other modules are either 

implicitly considered or can be added straightforwardly in the future.  

After treating a mouse with IRI, some of the tubular cells are injured, which either can be 

repaired to normal tubular epithelial cells or become dead through apoptosis or necrosis. In 

addition, tubular cells can be settled in a partial EMT state, which is confined to their tissue of 

origin, under G2/M cell cycle arrest, and apoptosis resistant (Grande et al., 2015). Thus, we 

divide tubular cells into three groups, normal tubular epithelial cells (E), injured tubular cells (IE), 

and partial EMT tubular cells (PE).  The fibroblast module includes three groups, resident 



fibroblasts, activated fibroblasts and myofibroblasts. At the rest state, a low level of local 

resident fibroblast cells is kept in inactive state. In response to renal damage, fibroblasts are 

activated and recruited to the damage sites, and then are transitioned to myofibroblast. 

Myofibroblast plays a critical role in the repair/regeneration of tubular cells and formation of 

fibrosis. 

One way of communication between the two modules is through secreted growth factors. For 

example, injured tubular epithelial cells secret Shh to promote activation of local resident 

fibroblasts and proliferation of myofibroblast (Zhou et al., 2014), while both myofibroblasts and 

PEs secret Wnt to promote proliferation of normal tubular epithelial cells, repair of the injured 

tubular cells, and transition from healthy tubular cells into PEs (Zhou et al., 2016). Furthermore, 

these secreted growth factors do not work alone but in a concerted way. For example, 

experimental data suggests that HGF and Wnt work inter-dependently to promote proliferation 

of tubular epithelial cells (Nelson and Nusse, 2004), and Wnt is necessary for TGF-β-mediated 

myofibroblast activation (Akhmetshina et al., 2012; Maarouf et al., 2016). Thus, here we only 

consider Wnt and Shh in the model for simplicity. Involvement of other growth factors is 

implicitly included in the present model, and can be treated explicitly by generalizing the model 

in the future. Several positive feedback loops exist in the cell-cell communication. For example, 

PEs secret Wnt while Wnt promotes the transition of E to PE, and they form a positive feedback 

loop. A similar positive feedback loop between TGF-β and partial EMT is proposed by Grande et 

al (Grande et al., 2015). Here we integrated these two positive feedback loops into one in our 

model since Wnt is necessary for TGF-β-mediated myofibroblast activation. Another positive 

feedback is formed between myofibroblast and Wnt, given that myofibroblast secrets Wnt while 

the latter promotes the transition of activated fibroblast to myofibroblast and the proliferation of 

myofibroblast. Taken together, the tubular module and fibroblast module secret cytokines that 

target themselves and each other through autocrine and paracrine mechanisms, resulting in an 

intertwined regulatory network.   

Based on the information about the cell-cell communication, we constructed the following 

coarse-grained ODE model.   

ODE for the Tubular Module  

EQ = 	 	−kd34 ∗ Insult ∗ E + (k536357849:( 	+ k536357849: ∗
]:8

]:8^_`aba`cdefg
) ∗ E ∗ O		 − jk3<= ∗

]:8k

]:8k^_alk
m ∗

E + k<3 ∗ PE + k53<745 ∗
]:8

]:8^_`alce`
∗ IE 



IEQ = kd34 ∗ Insult ∗ E − k53<745 ∗
Wnt

Wnt + J53<745
∗ IE	 −	d?@ ∗ IE	

PEQ = k3<= ∗
WntC

WntC + J3<C
∗ E − k<3 ∗ PE	

The tubular cell is injured under insult with a rate kd34. O = 100 − E − IE − PE	 represents the 

percentage of dead tubular cells (or vacant tubular sites for new generated tubular cells). With a 

mean field approximation, the regeneration rate of tubular cells linearly depends on the 

percentage of the healthy tubular cells E and O. This rate expression is based on the following 

biological considerations. Only healthy tubular cell is proliferating while the partial EMT and 

injured tubular is under cell cycle arrest. Also the renal tissue has a size control mechanism to 

make sure the tissue will recover back to the normal size after regeneration. That is, a new 

tubular cell is generated only if there is a vacant site available.  In addition to a basic 

regeneration with a rate k536357849:(, regeneration of tubular cell is promoted by Wnt, and is 

modeled to follow a Michaelis-Menten kinetics with a maximum  k536357849:. Repair of injured 

tubular cells is promoted by Wnt, and is also modeled by a Michaelis–Menten kinetics with a 

maximum rate k53<745. Transition from a healthy tubular cell to the partial EMT state is promoted 

by Wnt, and is modeled with a Hill function with a maximum rate k3<= and partial EMT tubular 

cell transits to tubular epithelial with a constant rate k<3. Healthy and injured tubular cells also 

have their respective death rates, while partial EMT cells are protected from death (Vega et al., 

2004).  

ODE for secretion signals  

Shh′ = kABB= ∗ IE + kABBC ∗ PE − dABB ∗ Shh	

WntQ = kD4:= ∗ PE + kD4:C ∗ Myo − dD:8 ∗ Wnt 

Both injured tubular cells and partial EMT tubular cells secrete Shh, while both PE and 

myofibroblast secrete Wnt. For simplicity we model the processes linearly.  

ODE for the Tubular Module 	

Fib5Q = kJ4K( 	− 	dJ4K5 ∗ Fib5 	−	kJ7= ∗ Shh ∗ Fib5 −	kJ7C ∗ Wnt ∗ Fib5	 



Fib7Q = kJ7= ∗ Shh ∗ Fib5 	+ 	kJ7C ∗ Wnt ∗ Fib5	–	dJ4K7 ∗ Fib7 	

+	{kJ<= ∗
ShhC

ShhC + Jfp1C 	+ 	kJ<C ∗
WntC

WntC + JJ<CC
~ ∗ Fib7 ∗ j1 −

Myo + Fib7 + Fib5
ML7�

	m		

−		 kJL= ∗ Fib7 ∗
ShhC

ShhC + JJL=C 	− 		kJLC ∗ Fib7 ∗
WntC

WntC + JJLCC 	+ 	kLJ ∗ Myo	

MyoQ = kJL= ∗ Fib7 ∗
ShhC

ShhC + JJL=C +	kJLC ∗ Fib7 ∗
WntC

WntC + JJLCC 	−	kLJ ∗ Myo	 + 	kL ∗
WntC

WntC + JLC

∗ Myo ∗ j1 −
Myo + Fib7 + Fib5

ML7�
m	+	kLC ∗ PE	 −	dL ∗ Myo 

Activation of fibroblasts linearly depends on both Shh and Wnt with rates kJ7=  and kJ7C 

respectively. Proliferation of activated fibroblasts depends on Shh and Wnt, and is modeled by a 

Hill function with maximum rates kJ<= and kJ<C respectively, and a factor of vacant or available 

interstitial space for fibroblast and myofibroblasts (1- (Myo + Fiba + Fibr)/Mmax), where Mmax 

represents the maximal total level of Myofibroblasts and fibroblasts. Transition of activated 

fibroblast to myofibroblast depends on Shh and Wnt, which is modeled by a Hill function with 

maximum rates kJL= and kJLC, respectively. Proliferation of myofibroblast depends on Wnt and 

is modeled by a Hill function with maximum rates kL. A basic myofibroblast generation from 

other possible recourses is assumed linearly regulated by PE. A linear death term is assumed 

for fibroblast and myofibroblast.  

Due to lack of detailed information, in the above equations we use simple and generic mass 

action, Michaelis-Menten, and Hill function forms to model the kinetic processes. Our further 

numerical tests show that our main results of existence of four outcomes are largely insensitive 

to the exact forms of these terms or the parameters, and the key essential components are 

existence of the positive feedback loops with sufficient overall nonlinearity.  

The level of myofibroblasts is one output of the model. Extensive and persistent activation of 

myofibroblasts induces excessive ECM accumulation and eventually leads to fibrosis. A 

complete resolution of myofibroblasts is an indicator of renal function recovery after damage.  

Table S1-2 provide the definition and values of the parameters and variables, respectively.  

In our experiment, ischemia/reperfusion injury (IRI) is introduced to the mice for different periods 

from 10 min to 30 min to induce different levels of renal damage. In our model, the renal 

damage is introduced by a period of insults, which promotes normal epithelial tubular to injured 



tubular cell with a rate constant kd34. The strength of the insult for the simulation is set as 400 

(in arbitrary unit, a.u.) except as indicated otherwise. To mimic the heterogeneity at the 

population level, values of the parameter set is randomly and uniformly chosen from 80 to 120% 

of default values with Latin Hypercubic sampling. Ward linkage is used for the hierarchical 

clustering analysis of the marker levels. To mimic the constant overexpression or 

downregulation of Wnt in Fig.4, the secretion rate of Wnt from myofibroblast was increased or 

decreased by 15%. 

Parameter Estimation and Justification 
Table S1-2 summarize all the model parameters. Here we discuss how we estimate and justify 

the parameters.  

The doubling time of immortalized renal proximal tubular epithelial cells (RPTEC/TERT1) is 

about 96 hours (Wieser et al., 2008). Thus, the regeneration rate of immortalized 

RPTEC/TERT1 is about ln(2)/96 h-1 =0.007 h-1. In the kidney without damage, most of tubular 

epithelial cells are in the quiescent state and thus the regeneration rate is much smaller. Thus, 

we assume a very small basic regeneration rate (k536357849:() for the healthy tubular epithelial 

cells. The regeneration rate is significantly increased after renal damage, and is dependent on 

the concentration of Wnt [6]. Therefore, we use a regeneration rate (k536357849:) of healthy 

tubular cells mediated by Wnt much larger than the basic regeneration rate (k536357849:(), but still 

smaller than the regeneration rate of immortalized tubular cells since not all of the tubular cells 

have exit quiescence. The repair rate of the injured cells (k53<745) is set as 50-fold as the 

regeneration rate mediated by Wnt as we expect that the injured cell does not undergo the 

whole process of cell cycle and can be repaired quickly. The Michaelis constant of Wnt-

dependent repair of damaged tubular (J53<745) is set to be much smaller to the max level of Wnt 

as we assume that Wnt is critical for tubular cell repair (Tan et al., 2016). The death rate of 

injured tubular cells (d?@) is set 4-fold as the repair rate of injured tubular cells (k53<745) since we 

assume that most of injured tubular cell is dead due to severe damage in different ways 

including apoptosis and regulated necrosis.  

The rate of tubular cell injury depends on the insults, as different types of insults induce renal 

damage at different rates. Here, we mainly focus on Ischemia-Reperfusion Injury (IRI), which a 

major insult of AKI and induces tubular injury. The rate of tubular cell injury 	

(kd34) is estimated based on the percentage of the injured tubular cell can reach up to 20% at 

one day after IRI (Zhou et al., 2018).  



Shh is mainly secreted by injured tubular cells and promotes the fibroblast proliferation and 

activation, but has no effect on the proliferation of tubular epithelial cells (Zhou et al., 2014). The 

secretion and degradation rates of Shh and Wnt have not been measured. Therefore, the 

secretion rates of Shh and Wnt (kABB=, kD4:=, kD4:C) are estimated based on the reports that Shh 

can be observed as early of 1h after IRI while Wnt can be observed at as early as 24 hours 

(Terada et al., 2003; Xiao et al., 2016). Here, we used a reduced unit for Shh and Wnt and set 

the degradation rates of Shh and Wnt (dABB, dD:8) by scaling the maximum steady state level of 

Shh and Wnt to ~8. As most of the Shh is secreted by the injured tubular cell [17], we assume a 

rate (kABBC) for partial EMT tubular cells to secrete Shh smaller than that from injured tubular 

cells. 

In our model, we explicitly considered two functions of Wnt on the tubular epithelial cell, 

promoting proliferation of healthy epithelial tubular cell and its transition to partial EMT state. In 

our previous reports (Tian et al., 2013; Zhang et al., 2014), the partial EMT is stable yet 

reversible as it is governed by a reversible bistable switch. Reversibility of partial EMT is also 

supported by a recent experimental report in the renal system, in which Snail1 inhibition 

promotes the reversion of the partial EMT tubular to epithelial phenotype and increase of 

proliferation  (Grande et al., 2015). Given the maximum steady-state levels of Wnt is ~ 8, we set 

the Michaelis constant of Wnt-dependent partial EMT (J3<) to be 7, the Michaelis constant of 

Wnt-dependent regeneration of healthy tubular ( J536357849: ) to be 5. That is, the Wnt 

concentration required to activate regeneration is lower than that of inducing partial EMT. These 

choices are consistent with the observation that under mild injury the percentage of cells under 

cycle arrest (including partial EMT tubular cells) is low(Yang et al., 2010). The dilated renal 

tubular epithelium, consisting of partial EMT tubular cells, can be already observed from 1 day 

after UUO (Li et al., 2007). We expect that the AKI-induced partial EMT has similar dynamics, 

and set the transition rate from healthy tubular cells to partial EMT tubular k3<= = 0.11 h-1. 

Considering that it is a functional requirement for the system to efficiently reverse partial EMT 

for renal tubular cells after completion of repair, we set the transition rate from partial EMT 

tubular cells to healthy tubular (k<3) to be 4.5-fold of k3<=.  

Without injury, there is a very low density of resident fibroblasts in the interstitial space between 

nephrons (Strutz and Zeisberg, 2006). Shh and Wnt significantly increase the proliferation rate 

of fibroblasts. Therefore we set values of the basic production rate and basic death rate of 

resident fibroblasts as smaller than its production rate mediated by Shh and Wnt. Also, the 

steady state level of resident fibroblasts is determined by the ratio of its basic production rate 



and basic death rate (𝑘FGH(/𝑑FGH( 	= 1), to give a ratio of resident fibroblasts to tubular epithelial 

cells 1:100.  The activation rates of fibroblasts (𝑘F*=, 𝑘F*C) are estimated based on the rapid 

activation of fibroblast after AKI (Rognoni et al., 2018). The basic death rate of the activated 

fibroblast (dJ4K7) is set to be the same as that of resident fibroblast (dJ4K) as there is no evidence 

that the activation changes its death rate.  The proliferation rate of activated fibroblast is 

increased as it is promoted by Shh and Wnt (Sörensen et al., 2011). Michaelis constants of 

Shh-dependent and Wnt-dependent proliferation of fibroblasts (JJL=, JJLC) are assumed to be 

similar to the Michaelis constant of Wnt-dependent regeneration of healthy tubular cells 

(𝐽I���I*%G��). The doubling time of activated fibroblast is about 24h, thus its proliferation rate is 

about ln(2)/24h = 0.029/h.  Here, we use rather larger production rates for fibroblasts and 

myofibroblast (kJ<=, kJ<C, kL) since in addition to proliferation there are multiple other sources of 

activated fibroblast and myofibroblast, including pericyte, fibrocyte, endothelial cells and tubular 

cell (Grande and Lopez-Novoa, 2009; Liu, 2011). The contribution of full EMT program to the 

production of myofibroblast is very limited compared with other source and most the tubular 

cells in the partial EMT state stay in the original site rather be further transited to mesenchymal 

state (Grande et al., 2015; LeBleu et al., 2013). We also set the Michaelis constant of Wnt-

dependent production of myofibroblast (JJLC) to be smaller than other Michaelis constants to 

account for contributions from multiple sources of myofibroblast that are not explicitly 

considered in the model. Death of activated fibroblast and myofibroblast is actively through 

matrix metalloproteinase (MMP-7) induced FasL for fast resolution after the renal damage is 

repaired (Zhou et al., 2013b). Here, the regulation of myofibroblast apoptosis is not explicitly 

considered in the model but we set a rather large death rate (dL) to show this programmed 

death of myofibroblast. The maximum level of the interstitial cells (MN*O) in the condition of 

fibrosis is less than the maximum level of the tubular cell but is significantly increased from the 

basic level of the resident fibroblast. We assumed a 60-fold increase for the possible maximum 

level of the interstitial cell. The transition rates between fibroblast and myofibroblast have not 

been measured. Here we assume the transition rate from fibroblast to myofibroblast (kJL=, kJLC) 

is much larger than the transition rate from myofibroblast to fibroblast (kLJ) as the majority of 

activated fibroblast is transited to myofibroblast for the tissue repair (Grande and Lopez-Novoa, 

2009). Because Shh is the most important cytokine that promotes differentiation of fibroblasts 

into myofibroblasts (Ding et al., 2012), the Michaelis constant of Shh-dependent fibroblast to 

myofibroblast (JJL=) is set much smaller than the Michaelis constant of Wnt-dependent fibroblast 

to myofibroblast (JJLC). 



Overall, we estimated all the parameters either directly from the literature, or the relative 

relationship between parameters based on the existing reports as stated above, together with 

fitting the dynamics of the key regulators and the overall dependence of the renal outcomes on 

the insult (IRI) duration. In addition, because of heterogeneity among individuals, all the 

parameters have a variation. We mimicked this heterogeneity in our simulations by choosing 

values of the parameter set randomly and uniformly from 80 to 120% of default values with Latin 

Hypercubic sampling.  

The fate of organism death in the mathematical model. Our mathematical model does not 

treat the complex process of organism death explicitly. Instead we used the cumulative sum of 

dead tubular cell (O)（∫ 𝑂𝑑𝑡%&'()*+
%&( ）as an indicator of death by considering that the death is 

induced by death-inducing factors leaked at the sites of dead tubular cells. During the repair 

process there is constant tubular cell death and replenishment from healthy tubular cells. 

Therefore, the cumulative sum of the net vacant tubular sites, but not the individual cell death, is 

relevant to the death risk of the organ and the organism. As shown in Supplementary Figure 2A, 

a mouse assumes a fate of death without further simulation (Red line) if the cumulative sum of 

dead tubular cell is larger than a threshold value (Cumsum�=50). In contrast, in the case where 

Cumsum	 < 	Cumsum�, the recovery can be continued (green line).   

Procedure of searching the optimal dynamic Treatment Design for AKI by Targeting on 
Wnt 
In order to find the optimal treatment design for AKI, the following procedure is used.  

1. For each drug (Drug4), we have three parameters, the dose (Dose4), the duration (Dura4), 

and the timing (T4) that determine how much, how long and when this drug is applied. 

2. A score function is defined to quantify the effectiveness of the treatment design. Here, 

we considered the organism death risk, fibrosis risk, the duration of drugs and the 

recovery time and used this score function,   

						Score8B357<� 	= λ= ∗ Risk�378B + 	λC ∗ Risk�4K59�4� + λ' ∗ RecTime +	� λ4 ∗ Dura4

�^�

G&�

 

where		(λ= > λC > λ' = λ� = ⋯ = λ�^:).	 

Risk�378B（= =
��L��L 

∫ 𝑂	𝑑𝑡%&'(	)*+¡
%&(  is evaluated as the cumulative sum of dead tubular 

cells normalized by Cumsum�, which can be considered as the total level of death-

inducing factors leaked by dead tubular cells. Risk�4K59�4� （ = =
¢+�£

∫ 	𝑀𝑦𝑜	𝑑𝑡%&'(	)*+¡
%&( )	is 



evaluated as the cumulative sum of myofibroblast level normalized by the maximum 

level of myofibroblast at MARS state 𝑀𝑦𝑜N, which can be considered as the total level of 

extracellular matrix (ECM) generated by myofibroblasts. That is, both a transient high 

level and a sustained low level of myofibroblasts increase the risk of fibrosis. RecTime is 

the time point when the myofibroblast level is reduced below the threshold of the 

transition from PARS and iPARS (set as 1 here). It assumes a maximum value of 30 

days if the level of myofibroblasts does not go below the threshold value at the end of 

the simulation (30 days).  

The weight of death risk λ1 is set to be much larger than that of fibrosis risk λ2, and the 

latter is much larger than that of recovery time λ3 and the duration of drugs λi. The 

reason for this setting is that the top priority of a treatment plan is life-saving and the 

second priority is risk reduction of fibrosis, and a fast recovery and a minimized medicine 

usage at the last.  

3. Search the optimal therapy design in the parameter space with Metropolis algorithm. 

Here, we have two drugs targeting on Wnt, Wnt and inhibitor, thus we can have a 6-

dimensional space. 

a. Set the initial temperature T to some high value. 

b. Choose an initial treatment design as Design( = [T1, Dose1, Dur1, T2, Dose2, Dur2] 

and calculate its therapy score, Score(.  

c. Generate a new treatment design Design= = Design( + ε ∗ ∆Design,  where 

∆Design specifies the displacement per step and ε	is a vector of random integer 

with (-1 0 1).  

d. Calculate the therapy score Score= with the current treatment design Design1. 

e. Calculate the acceptance probability p = 	𝑒­(A®953¯­A®953°)/±. Generate a random 

number γ=	from with uniform distribution between 0 and 1. Update Design( =

Design= if γ= < p. Otherwise, reject the step k to k+1. 

f. Reduce the temperature T=T-ΔT. ΔT is a small number. 

g. Update k. If k is larger than a maximum step number, stop. Otherwise return to 

step a. 

It is noted that our searching algorithm can start from any initial treatment design set. Our 

simulation started from no treatment with Design( = [0, 0,0,0,0,0] . The Metropolis algorithm 

guided the search to treatment designs with drugs added. The weight of different factor [ l1 l2 

l3 l4 l5] in score function is set as [500 10 1 1 1] in Figure 5. 
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