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Abstract. The effect of food on pharmacokinetic properties of drugs is a commonly
observed occurrence affecting about 40% of orally administered drugs. Within the
pharmaceutical industry, significant resources are invested to predict and characterize a
clinically relevant food effect. Here, the predictive performance of physiologically based
pharmacokinetic (PBPK) food effect models was assessed via de novo mechanistic absorption
models for 30 compounds using controlled, pre-defined in vitro, and modeling methodology.
Compounds for which absorption was known to be limited by intestinal transporters were
excluded in this analysis. A decision tree for model verification and optimization was
followed, leading to high, moderate, or low food effect prediction confidence. High (within
0.8- to 1.25-fold) to moderate confidence (within 0.5- to 2-fold) was achieved for most of the
compounds (15 and 8, respectively). While for 7 compounds, prediction confidence was found
to be low (> 2-fold). There was no clear difference in prediction success for positive or
negative food effects and no clear relationship to the BCS category of tested drug molecules.
However, an association could be demonstrated when the food effect was mainly related to
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changes in the gastrointestinal luminal fluids or physiology, including fluid volume, motility,
pH, micellar entrapment, and bile salts. Considering these findings, it is recommended that
appropriately verified mechanistic PBPK modeling can be leveraged with high to moderate
confidence as a key approach to predicting potential food effect, especially related to
mechanisms highlighted here.

KEY WORDS: drug-food interaction ; food effect; modeling and simulation; PBBM ; PBPK.

INTRODUCTION

For orally administered drugs, the consumption of food
at the time of drug administration can alter absorption (1).
Food effect is widespread, and over 40% of the orally
administered drugs approved by the FDA or EMA in the
last 10 years were reported to have altered pharmacokinetics
(PK) by food (2). Therefore, health authorities expect
sponsors to characterize food or meal effects prior to
approval (3,4). While a food effect assessment is typically
performed with a standardized high-fat meal, in certain cases,
evaluation of different meal types (i.e., varying macro and
calorie contents) may be recommended. If food does not have
a clinically significant impact on PK, then sponsors can
conduct pivotal trials without regard to food and labeling
can state that the drug may be taken with or without food.
However, in the case of a clinically meaningful PK effect, a
specific recommendation will be made for drug administra-
tion; for example, a drug can only be given under fasted
conditions or taken with a meal to maximize drug absorption.

Recently updated FDA guidance on the conduct of food
effect studies describe, in detail, the clinical study design, data
analysis, and labeling recommendation. Notably, neither the
recent FDA guidance nor guidance from other agencies has
mentioned the utility of mechanistic studies of food effect
using in vitro and in silico models. However, within the
pharmaceutical industry, significant resources are often
invested to anticipate, characterize, and mitigate a food
effect, since clinical studies alone do not provide the
mechanistic insights needed to predict and understand food
effects (2). Recent reviews have covered the multiple
mechanisms for food effect (5) and the tools available to
understand them (6). Among them, PBPK modeling has
gained critical attention for the prediction of food effects
using the advanced absorption models in commercial soft-
ware platforms such as GastroPlus™ and Simcyp® (7–9).
However, despite these examples, the health authorities still
lack confidence in these predictions (8,10). This may, in part,
be due to a lack of best practices for consistent modeling
strategy, as well as, lack of a prospective approach to
evaluating the success of food effect predictions.

Therefore, this work aims to assess the predictive
performance of PBPK food effect models and to provide
recommendation for best practice. Instead of relying on
previously published models, the Food Effect PBPK IQ
Working Group generated de novo mechanistic absorption
models for 30 compounds using physicochemical and in vitro
data generated in accordance with pre-defined methodology.
Furthermore, a decision tree is proposed for model verifica-
tion and optimization, which was strictly followed within the
working group. Thus, this work provides a well-controlled
assessment of PBPK food effect modeling by minimizing
confounding factors, such as inconsistent data generation,

subjective model verification/optimization, and variable mod-
eler experiences.

MATERIALS AND METHODS

To reduce methodological bias in PBPK input parame-
ters, this work mostly used permeability, solubility, surface
pH, and dissolution data generated using pre-defined
methods by this working group. However, if literature data
used comparable methods, values were not re-measured. This
information is indicated in Table I.

Compound Selection

A comprehensive compound list with clinically observed
PK changes in the presence of food was collated through a
detailed literature search and curation (Supplementary
Table 1). The information collected included the outcome of
a food effect study, the compound type (i.e., acid, base, or
ampholyte), and proposed mechanism of food effect. To focus
on absorption-related mechanisms of food effect and to
reduce variability in modeling where there is low confidence
in the disposition of a given compound, all compounds
lacking clinical intravenous (IV) PK data or population PK-
based data, as well as compounds with high hepatic extrac-
tion, were excluded from this list. Furthermore, prodrugs and
compounds whose absorption is known to be limited by active
transport were excluded, though these compounds are not
expected to make up a large subset of clinical compounds
displaying food effect (Supplementary Table 1). The com-
pound list was subsequently refined to 30 compounds for final
modeling and analysis while ensuring equal distribution of
compound, BCS, and food effect type (Table I, Fig. 1). Food
effect (FE) type was defined based on AUC and/or Cmax

ratios of fed to fasted using BE criteria (i.e., within 0.8–1.25).
FE definitions were based on the drug label and set to
positive if the ratio of fed > fasted, negative if ratio fasted >
fed, or none if no significant change in AUC and Cmax with
food.

Permeability Measurement in MDCK Cells

Wild-type Madin-Darby canine kidney (MDCK-WT) cell
line was obtained from NKI (Amsterdam, The Netherlands)
and modified to knockdown endogenous canine P-
glycoprotein (P-gp). Permeability through a cell monolayer
was determined with a Transwell™ system. Cells were plated
on the apical side of 96-well Transwell plates 4–7 days prior to
the experiment and were cultured at 37°C under a 5% CO2

atmosphere. All compounds were dissolved in Hanks’ bal-
anced salt solution (HBSS) plus 80 mM Lucifer Yellow (LuY)
and 10 μM cyclosporin A, which was added to the apical
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wells. The corresponding receiver (basolateral) wells were
filled with HBSS plus 10 μM cyclosporin A, a P-gp Inhibitor.

Permeation rates of the compounds, including reference
compounds, were measured in the apical-to-basolateral (AB)
direction. The donor and receiver wells were sampled
immediately after application of the compound to the donor
well to determine baseline concentrations, and again after 1 h.
Quantification was done using high-performance liquid chro-
matography combined with mass spectrometry (HPLC-MS/
MS) analysis and monolayer integrity was verified by
analyzing the receiver samples for LuY fluorescence in a
plate reader. Control compounds were run in parallel to test
compounds and were used to scale the apparent permeability
(Papp × 10−6 cm/s) to an effective human permeability
(Peff,man × 10−4 cm/s) using the software’s built-in calibration
curve (21).

Solubility Measurement in Aqueous Buffer Solutions and
Biorelevant Media

The solubility of the drug substances was determined in
biorelevant media as well as in aqueous buffers at different
pH. Fasted state simulated gastric fluid (FaSSGF) (37), fasted
state simulated intestinal fluid (FaSSIF-V2) (38), and fed
state simulated intestinal fluid (FeSSIF-V2) (39) were pre-
pared according to the instructions provided by Biorelevant
(Biorelevant.com Ltd., London, UK). Hydrochloric acid
pH 2, citrate buffer pH 4, and phosphate buffer pH 7, as well
as additional buffer solutions if required, were prepared

according to the standard buffer solutions described in the
United States Pharmacopeia (USP) [USP 41, buffer solutions,
5748–5749]. For neutral compounds, solubility was deter-
mined at pH 2, pH 4, and pH 7. For ionizable compounds,
two additional solubility data points, one pH unit above and
below the pKa value(s), were collected.

Excess of drug substance was equilibrated in the media
on a magnetic stirrer (200 rpm) at 37°C (biorelevant media)
and at room temperature (aqueous buffer). The concentra-
tion of dissolved drug and the medium pH were determined
after 1, 2, 6, and 24 h. The equilibrium solubility was
interpreted as the concentration measured after a plateau
was reached and was at the latest measured after 24 h. For
freely soluble compounds, the extent of solubilization was
measured only up to 10 mg/mL.

PBPK Modeling Approach

An aligned decision tree was defined by working group
members prior to modeling, as outlined in Fig. 2. In short,
PBPK models were built for all compounds in Simcyp V17.1
(Certara, USA, Inc.) and/or GastroPlus V9.5 (Simulations
Plus, Inc.). A software comparison was not the aim of this
working group. However, if the results of the two software
platforms (i.e., model 1 vs. model 2) showed any large
discrepancies, this was reported (Table II, footnotes), and
where possible, the underlying mechanisms were investi-
gated and described (Table III, Fig. 5). For GastroPlus,
individual, population-representative simulations were

Fig. 1. Physicochemical properties of the 30 modeled compounds. The compounds
selected cover a range of solubility, permeability, molecular weight, and lipophilicity. A
compound’s unitless dose number is calculated as the maximum dose administered in the
food effect study in mg, divided by the FaSSIF or buffer solubility in mg/ml, and divided by
an approximate small intestine fluid volume of 500 ml. A dose number greater than 1
indicates low solubility or a high dose while a dose number less than one indicates high
solubility or low dose. The unitless permeation number is calculated as the effect jejunum
permeability multiplied by the surface-to-volume ratio of the small intestine assuming a
1.75 cm cylindrical radius, multiplied by the small intestine transit time assumed to be 3 h.
A permeation number greater than one indicates high permeability while a permeability
less than 1 indicates poor permeability. The size of the markers is proportional to the active
ingredient’s molecular weight. The color encodes the calculated lipophilicity
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conducted as best practice. For Simcyp, all simulations were
run in the healthy volunteer population using the default
system parameters and with the clinical trial design and
doses matched to the reported studies. Published and
measured values for physicochemical properties, permeabil-
ity, solubility, and dissolution were utilized as input param-
eters, respectively, to build mechanistic, bottom-up models
for absorption. In order to reduce the uncertainty and
variability and narrow the analysis of food effect predictions
to absorption-related mechanisms, clearance and disposition
were modeled based on published clinical IV PK and/or
population PK data. This was not done because IV data is
required or recommended by the working group for PBPK
model success, but rather to simplify the modeling approach

and subsequent analyses, such that model outcomes could be
interpreted in the context of absorption parameters only.
Furthermore, the focus of this work was to study FE related
to absorption mechanisms and not, for example, hepatic first
pass or metabolism changes.

The decision tree outlined specific criteria for a model to
be considered verified, as well as potential steps to optimize a
model where necessary (Fig. 2). The decision tree was
followed by all modelers and used to determine the degree
of success in predicting food effect. Parameters that were
optimized were limited to clearance, precipitation time, and/
or permeability. Due to uncertainty in the bio-relevance of
in vitro solubility data, solubility was not optimized once the
relevant solubility input was evaluated by comparing the

Fig. 2. Decision tree for the verification and optimization of food effect projections using PBPK. This decision tree was utilized by all modelers
working on this initiative to verify and, if necessary, optimize their models using an aligned and consistent approach. Confidence categories
were defined based on the outcome of this workflow after an independent review of the model outcome and verification. A summary of the
outcome of PBPK modeling based on this decision tree for the 30 compounds is provided in Table II
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different in vitro measured solubility values. In some cases
where the decision tree did not lead to a successful model
even after optimization, additional steps were taken to
optimize the model to enable hypothesis testing; these
examples are further discussed in an accompanying manu-
script in this issue (e.g., discussion on pazopanib).

Confidence Criteria

PBPK models were developed based on the decision tree
outlined in Fig. 2, initially using a bottom-up approach and
subsequently using a middle-out approach for cases where
verification based on the decision tree criteria was not
successful. Compounds were assigned to a pair of modelers
with one modeler building the model and the other reviewing
it for accuracy and goodness of fit. Success was defined based
on visual inspection of the PK profile overlay (i.e., if there
was a Tmax or Cmax shift), as well as quantitative assessment
of Cmax and AUC ratios (verification range defined in Fig. 1
and described in more detail below).

Model performance was evaluated in the context of the
stage of drug development (i.e., purely bottom-up vs. middle-
out) using two key criteria: confidence in predicting the
likelihood of food effect (i.e., risk assessment) and confidence
in predicting the direction and extent of food effect.

The first criterion was assessed using a qualitative yes/no
categorization in answer to the question: was the food effect
captured correctly in the absence of model optimization with
clinical data?

The second criterion was quantitative in nature and
involved evaluation of observed versus predicted AUC and
Cmax ratios of fasted and fed.

When the bottom-up model could accurately capture the
fasted and fed PK parameters and profile within 2-fold of
observed, and visual inspection indicated good overlay of the
PK profiles without the need for optimization of absorption
parameters, the model was considered to have high confi-
dence with respect to bottom-up success (confidence cate-
gory: high confidence bottom-up). Second, where the bottom-
up model could accurately capture the fasted and fed PK
parameters and profile within 0.8–1.25 range, but only after
optimization of absorption parameter(s) as defined in the
decision tree, the model was considered high confidence with
respect to middle-out success, e.g., for informing food effect
of new formulations and dose strengths (confidence category:
high confidence middle-out). Third, where the model could
capture the fasted and fed PK parameters and profile
following optimization using fasted data, though it fell outside
the conservative criteria defined above, but within 2-fold of
observed PK parameters, the model was considered to have
moderate confidence. Finally, where the model failed to
capture the fasted and/or fed PK parameters and profile even
after optimization as described in the decision tree, it was
categorized as low confidence (Fig. 2). While modeling the
latter subset of compounds using a broad, pre-defined
decision tree around optimization was not found to be
suitable, deviating from the general workflow helped improve
the accuracy of some of the models; these examples are
captured in an accompanying manuscript in this issue focusing
on low confidence predictions.

RESULTS

Based on the exclusion criteria described above, 30
compounds were selected for modeling. The selected com-
pounds showed diverse properties and included 13 com-
pounds with positive food effect, 8 compounds with negative
food effect, and 9 compounds with no food effect. Of the 30
compounds modeled, 24 of the models could correctly
capture the likelihood of food effect without any optimiza-
tion, this is indicated by a yes/no on Table II (i.e., risk
assessment) (Table II). Furthermore, the impact of food on
PK was predicted with high, moderate, and low confidence
for 15, 8, and 7 compounds, respectively (Table II, Figs. 3 and
4). There was no clear correlation between the prediction
confidence and BCS category and/or food effect type.
However, an association could be demonstrated with the
key mechanism(s) driving the food effect (Fig. 5, Table III).
High confidence in PBPK prediction of food effects was
typically observed for compounds where the mechanism of
food effect was related to physiology, including changes in the
gastrointestinal (GI) luminal fluids, fluid volume, motility, pH,
ion pairing, and bile salts. Low confidence in prediction was
associated with food effects related to drug formulation
interactions with the intestinal microenvironment, specifically
with respect to salts and weak bases such that the model and/
or the biorelevant media used could not capture the dynamic
effect of the drug on its microenvironment. Low confidence in
modeling was also observed with food effects related to fed-
state hydrodynamics (e.g., GI fluid viscosity) and food-drug/
micelle-drug interactions where standard in vitro assays are
not able to characterize the food effect mechanistically.

Three examples from the different confidence categories
have been highlighted here. For category I, a high confidence
example for bottom-up application demonstrates successful
verification using a purely bottom-up approach for modeling
absorption and related FE. Category II exemplifies the
successful verification following a middle-out approach using
the optimization decision tree, identified as high confidence
for post-FIH applications. Finally, an example from category
III shows a failed verification following optimization using the
outlined strategy. Here, confidence in using a general
workflow for the prediction of food effect is low and
increased confidence will depend on a case-by-case evalua-
tion of more predictive in vitro and modeling methodologies.

PBPK Predictions to Waive Food Effect Studies—Bottom-
Up Application

Case Example: Nifedipine (High Confidence)

Nifedipine is a poorly soluble, non-ionizable compound
with no food effect reported on the extent of absorption when
administered as a 10 mg IR soft gelatin capsule, although the
rate of absorption decreased with food (40).

The capsule contains nifedipine dissolved in an organic
solvent (polyethylene glycol 400 and peppermint oil) and thus
behaves like a solution.

The mechanistic, bottom-up absorption model was built
using previously published solubility data (29). Precipitation
time was kept at the default. The apparent Caco-2 perme-
ability was taken from the literature (Gertz, Harrison et al.
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2010) and converted into a human effective permeability,
using the software’s built-in conversion tool (Table I) (21). As
nifedipine is metabolized mainly via CYP3A and undergoes
pre-systemic metabolism, the extent of pre-systemic metabo-
lism was fitted to match the observed AUC of nifedipine
following oral administration of 5 mg to fasted healthy

subjects (41). Complete absorption was predicted for each
dose level (5 mg, 10 mg, and 20 mg), which was in line with
reported data (42,43).

Following successful model verification, the pharmacoki-
netics of the 10 mg nifedipine IR capsule were simulated
under fed conditions. Predicted/observed AUC, Cmax, and

Table II. Summary of the Outcome of Food Effect PBPK Modeling for 30 Compounds and the Associated Confidence in the PBPK Food
Effect (FE) Prediction and Risk Assessment. The Color Coding Represents the Food Effect Direction with Green and Red Signifying Positive

and Negative Food Effect, Respectively

Compound
Food

Effect
Model

Simulated AUC(0-inf)

(h*ng/mL)

Observed AUC(0-inf)

(h*ng/mL)
Simulated 

AUC Ratios

(Fed/Fasted)

Observed 

AUC Ratios

(Fed/Fasted)

AUC Ratio

of Ratios

(Sim'd / Obs'd)

Simulated

Cmax

(ng/mL)

Observed

Cmax

(ng/mL)

Simulated

Cmax Ratios

(Fed/Fasted)

Observed

Cmax Ratios

(Fed/Fasted)

Cmax Ratio

of Ratios

(Sim'd / Obs'd)

Bottom-Up

Risk Assessment
Confidence

Fed Fasted Fed Fasted Fed Fasted Fed Fasted

Nelfinavir Mesylate +++
Model 1

Model 2 2.79E+04 9.52E+033.58E+047.08E+03 2.93 5.06 0.58 2.26E+03 7.79E+023.91E+038.95E+02 2.90 4.37 0.66 Yes Moderate

Telaprevir +++
Model 1 9.42E+03 5.99E+031.33E+043.58E+03 1.57 3.71 0.42 7.72E+02 4.90E+022.08E+033.49E+02 1.58 5.96 0.26 No Low

Model 2 8.84E+03 3.62E+031.33E+043.58E+03 2.44 3.71 0.66 6.94E+02 2.63E+022.08E+033.49E+02 2.64 5.96 0.44 Yes Low

Ivacaftor +++
Model 1 8.90E+03 2.81E+039.59E+033.12E+03 3.17 3.07 1.03 6.21E+02 1.26E+026.37E+021.48E+02 4.93 4.30 1.15 Yes High (post)

Model 2

Amiodarone +++
Model 1Fasted model1.45E+033.30E+041.40E+04 2.36 Fasted model1.49E+021.40E+033.80E+02 3.68 No Low

Model 2 not verified 6.82E+033.30E+041.40E+04 2.36 not verified 3.82E+021.40E+033.80E+02 3.68 No Low

Venetoclax +++
Model 1

Model 2 6.10E+03 2.25E+037.10E+032.08E+03 2.71 3.41 0.79 4.00E+02 1.60E+025.00E+021.50E+02 2.50 3.33 0.75 Yes Moderate

Alectinib 1 ++
Model 1 1.04E+04 1.40E+035.23E+031.79E+03 7.43 2.92 2.54 4.10E+02 5.00E+012.57E+029.51E+01 8.20 2.70 3.03 Yes Low

Model 2 3.65E+03 9.13E+025.23E+031.79E+03 4.00 2.92 1.37 2.44E+02 9.49E+012.57E+029.51E+01 2.57 2.70 0.95 Yes Moderate

Danazol ++
Model 1Fasted model Fasted model

Model 2 not verified 6.68E+022.31E+02 2.90 not verified 1.01E+023.70E+01 2.73 Yes Low

Aprepitant ++
Model 1

Model 2 2.07E+04 8.88E+032.41E+048.57E+03 2.33 2.81 0.83 8.47E+02 3.65E+021.10E+034.96E+02 2.32 2.21 1.05 Yes High (post)

Pazopanib ++
Model 1 3.14E+05 9.71E+052.02E+068.24E+05 0.32 2.45 0.13 8.40E+03 3.27E+044.52E+042.07E+04 0.26 2.19 0.12 No Low

Model 2 5.22E+05 5.38E+052.02E+068.24E+05 0.97 2.45 0.40 1.33E+04 1.38E+044.52E+042.07E+04 0.96 2.19 0.44 No Low

Ziprasidone

HCl 2 ++
Model 1

Model 2 1.23E+03 5.80E+021.91E+039.50E+02 2.12 2.01 1.05 1.90E+02 1.10E+021.65E+028.40E+01 1.73 1.96 0.88 Yes Moderate

Itraconazole ++
Model 1 2.90E+03 2.14E+033.12E+031.88E+03 1.35 1.66 0.82 2.16E+02 1.23E+022.39E+021.40E+02 1.76 1.71 1.03 Yes High (post)

Model 2 4.60E+03 2.77E+033.12E+031.88E+03 1.66 1.66 1.00 2.18E+02 1.25E+022.39E+021.40E+02 1.74 1.71 1.02 Yes High (post)

Clarithromycin 3 ++
Model 1 1.21E+04 1.32E+041.57E+041.26E+04 0.92 1.25 0.74 1.87E+03 2.16E+032.51E+031.65E+03 0.87 1.52 0.57 Yes High (pre)

Model 2 1.34E+04 1.12E+041.57E+041.26E+04 1.19 1.24 0.96 1.79E+03 1.57E+032.51E+031.65E+03 1.14 1.52 0.75 Yes Moderate

Metoprolol +
Model 1 2.99E+02 3.15E+024.25E+023.07E+02 0.95 1.41 0.67 7.00E+01 9.10E+011.18E+028.96E+01 0.77 1.33 0.58 No Moderate

Model 2

Phenytoin +
Model 1 1.36E+05 1.17E+051.27E+051.04E+05 1.17 1.22 0.95 6.20E+03 4.75E+036.95E+034.92E+03 1.31 1.41 0.92 Yes High (post)

Model 2 1.24E+05 1.02E+051.27E+051.04E+05 1.21 1.22 0.99 6.53E+03 4.64E+036.95E+034.92E+03 1.41 1.41 1.00 Yes High (post)

Tezacaftor +/-
Model 1 3.65E+03 3.62E+034.36E+033.97E+03 1.01 1.10 0.92 1.77E+03 1.78E+031.89E+032.34E+03 0.99 0.81 1.23 Yes High (post)

Model 2

Oseltamivir +/-
Model 1 8.70E+03 8.20E+036.07E+036.22E+03 1.06 0.98 1.09 6.50E+02 6.05E+024.41E+025.51E+02 1.07 0.80 1.34 Yes Moderate

Model 2

Imatinib +/-
Model 1 2.21E+04 2.21E+043.32E+043.63E+04 1.00 0.91 1.09 1.33E+03 1.68E+032.41E+032.82E+03 0.79 0.85 0.93 Yes High (post)

Model 2 2.11E+04 2.06E+043.32E+043.63E+04 1.02 0.91 1.12 1.66E+03 1.76E+032.41E+032.82E+03 0.94 0.85 1.10 Yes High (post)

Cimetidine +/-
Model 1 5.06E+03 5.22E+034.15E+034.88E+03 0.97 0.85 1.14 1.06E+03 1.35E+038.00E+028.90E+02 0.79 0.90 0.87 High (post)

Model 2 5.18E+03 5.07E+034.58E+035.35E+03 1.02 0.86 1.19 8.19E+02 9.10E+028.00E+028.90E+02 0.90 0.90 1.00 Yes High (post)

d-Sotalol +/-
Model 1 1.22E+04 1.40E+041.26E+041.55E+04 0.87 0.81 1.07 9.20E+02 1.10E+031.00E+031.20E+03 0.84 0.83 1.00 Yes High (post)

Model 2

Nefazodone IR Soln.
Model 1 1.97E+03 2.06E+03 9.58E+02 1.00E+03

Model 2 3.23E+03 2.06E+03 9.03E+02 1.00E+03

Nefazodone

HCl 4 +/-
Model 1 7.69E+02 9.81E+021.24E+031.54E+03 0.78 0.80 0.98 2.66E+02 3.23E+022.95E+023.01E+02 0.82 0.98 0.84 Yes High (pre)

Model 2 3.80E+03 3.23E+031.24E+031.54E+03 1.18 0.80 1.47 9.28E+02 9.03E+022.95E+023.01E+02 1.03 0.98 1.05 Yes Moderate

Etoricoxib -
Model 1 3.58E+04 3.58E+044.22E+044.44E+04 1.00 0.95 1.05 1.42E+03 1.77E+031.44E+031.89E+03 0.80 0.76 1.05 Yes High (pre)

Model 2 2.96E+04 2.94E+044.22E+044.44E+04 1.01 0.95 1.06 2.62E+03 3.25E+031.44E+031.89E+03 0.80 0.76 1.05 Yes High (pre)

Nifedipine -
Model 1 2.24E+02 2.01E+021.49E+021.45E+02 1.11 1.02 1.09 6.24E+01 1.12E+025.87E+017.89E+01 0.56 0.74 0.75 Yes High (pre)

Model 2 1.67E+02 1.58E+021.49E+021.45E+02 1.06 1.02 1.03 5.10E+01 7.06E+015.87E+017.89E+01 0.72 0.74 0.97 Yes High (pre)

Fluoxetine

HCl
-

Model 1 2.50E+03 2.50E+031.34E+031.93E+03 1.00 0.69 1.44 3.06E+01 3.05E+013.57E+013.93E+01 1.00 0.91 1.10 Yes High (pre)

Model 2 1.73E+03 2.04E+031.34E+031.93E+03 0.85 0.70 1.22 3.89E+01 3.60E+013.57E+013.93E+01 1.08 0.91 1.19 Yes High (pre)

Furosemide -
Model 1 1.70E+03 1.75E+031.67E+032.09E+03 0.97 0.80 1.21 3.40E+02 6.92E+024.28E+027.54E+02 0.49 0.57 0.87 Yes High (post)

Model 2 3.20E+03 2.98E+031.59E+031.94E+03 1.07 0.82 1.31 6.00E+02 5.82E+024.28E+027.54E+02 1.03 0.57 1.82 Yes High (pre)

Panobinostat -
Model 1 1.87E+02 1.79E+021.08E+021.28E+02 1.05 0.85 1.24 7.01E+00 2.06E+019.80E+001.75E+01 0.34 0.56 0.61 Yes High (pre)

Model 2 1.61E+02 1.52E+021.08E+021.28E+02 1.06 0.85 1.25 4.01E+01 5.05E+019.80E+001.75E+01 0.79 0.56 1.42 Yes High (pre)

Zidovudine -
Model 1 1.58E+03 1.58E+032.17E+032.48E+03 1.00 0.87 1.15 5.59E+02 1.03E+036.32E+021.13E+03 0.54 0.56 0.97 Yes High (pre)

Model 2

Isoniazid -
Model 1 1.96E+04 2.29E+041.95E+042.46E+04 0.86 0.79 1.08 2.91E+03 3.95E+032.50E+035.00E+03 0.74 0.50 1.48 Yes Moderate

Model 2 1.50E+04 2.05E+041.48E+041.85E+04 0.73 0.80 0.91 2.52E+03 3.72E+032.73E+035.87E+03 0.68 0.47 1.46 Yes Moderate

Dabrafenib --
Model 1Fasted model Fasted model No Low

Model 2 not verified 1.81E+038.47E+031.21E+04 0.70 not verified 2.47E+021.07E+032.16E+03 0.49 No Low

Danirixin ---
Model 1 1.47E+04 1.50E+041.27E+041.94E+04 0.98 0.65 1.51 1.70E+03 2.33E+031.38E+033.24E+03 0.73 0.43 1.70 Yes High (pre)

Model 2

Trospium XR 5 ---
Model 1 8.00E+00 1.40E+011.42E+012.21E+01 0.57 0.64 0.89 3.58E-01 1.12E+005.42E-01 1.45E+00 0.32 0.37 0.85 Yes High (post)

Model 2 3.19E+00 7.03E+011.42E+012.21E+01 0.05 0.64 0.07 5.55E-01 5.75E+005.42E-01 1.45E+00 0.10 0.37 0.26 No Low

Trospium IR 5 ---
Model 1 5.52E+00 2.10E+018.40E+005.07E+01 0.26 0.17 1.59 2.91E-01 2.02E+004.68E-01 4.03E+00 0.14 0.12 1.24 Yes Moderate

Model 2 2.32E+00 4.92E+018.40E+005.07E+01 0.05 0.17 0.28 3.83E-01 3.76E+004.68E-01 4.03E+00 0.10 0.12 0.88 No Low

Bold italicized text indicates AUC(0-t), not AUC(0-inf)
1The model-specific discrepancy in confidence for alectinib is not currently well understood
2Although ziprasidone qualifies as high confidence given AUC and Cmax ratios of ratios which fall within bioequivalence criteria, the
simulated, fed-state plasma concentration-time profile poorly captured observed data. As such, ziprasidone was qualified as moderate
confidence
3Although clarithromycin model 2 demonstrated superior food effect prediction accuracy, model 2 required optimization to capture fasted
clinical data. As model 1 utilized a purely bottom-up approach, confidence in that model is higher
4 Simulation of clinical nefazodone concentration-time data initially resulted in overprediction, possibly explained by partial gastric emptying
in vivo. Model 1 but not model 2 incorporated partial gastric emptying, explaining the final model-specific discrepancy in confidence
5The use of different methods to optimize individual segmental Peffs between models 1 and 2 may explain the model-specific discrepancy in
confidence for trospium IR and XR formulations
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Tmax ratios were 1.51, 1.06, and 1.00, and thus within 2-fold of
observed. As in the fasted state, absorption of nifedipine
under fed conditions was predicted to be complete.

Additional examples of bottom-up with successful pre-
diction of food effect risk without the need for optimization
with clinical food effect data included etoricoxib (negative
FE), fluoxetine (no FE), and zidovudine (negative FE).
Detailed descriptions of the modeling approach and outcome
for these compounds are provided in an accompanying
manuscript published in this issue.

PBPK Predictions to Waive Food Effect Studies—Middle-
Out Application

Case Example: Aprepitant (High Confidence)

Aprepitant is a poorly soluble compound with moderate
to high permeability and is non-ionized at intestinal pH
values. Micronized aprepitant showed significant positive
food effect (2.8-fold increase in AUC, 2.2-fold increase in
Cmax) in healthy human volunteers given a high-fat breakfast.

Table III. Summary of the Proposed Mechanism of Food Effect and the Associated Confidence Category in the PBPK Prediction of Food
Effect. Color Coding Indicates Confidence in the PBPK Food Effect Prediction; Green: High; Yellow: Moderate; Red: Low

Compound Food EffectBCSConfidence in PBPK Prediction Mechanism of Food Effect

Alectinib Positive II Low Changes in microenvironment pH and complex effect of formulation

Amiodarone Positive II Low Salt form

Aprepitant Positive II/IV High (middle-out) Bile acids and phospholipids

Cimetidine None III High (middle-out) No food effect

Clarithromycin None II Moderate No food effect

Dabrafenib Negative II Low Salt form; effect on microenvironment pH

Danazol Positive II Low Uncertainty in solubility (in vivo)

Danirixin Negative II High (bottom-up) Ion-pairing

d-Sotalol None III High (middle-out) No food effect

Etoricoxib Negative II High (bottom-up) GI motility changes in presence of food

Fluoxetine HCl None I High (bottom-up) No food effect

Furosemide Negative III High (bottom-up) GI motility changes in presence of food

Imatinib None II High (middle-out) No food effect

Isoniazid Negative I Moderate Drug-food interaction

Itraconazole Positive II High (middle-out) Buffer capacity alters dissolution

Ivacaftor Positive II/IV High (middle-out) Bile acids and phospholipids

Metoprolol Positive I Moderate Effect of hepatic and splanchnic blood flow

Nefazodone HCl Negative II Moderate Effect of hepatic and splanchnic blood flow

Nelfinavir Mesylate Positive II/IV Moderate Precipitation kinetics affected by food

Nifedipine None II High (bottom-up) No food effect

Oseltamivir None III Moderate No food effect

Panobinostat None II High (bottom-up) No food effect

Pazopanib Positive II/IV Low Impact of biorelevant buffer species on solubilization
*
; Salt form 

Phenytoin Positive II High (middle-out) Bile acids and phospholipids

Telaprevir Positive II Low Impact of biorelevant buffer species on solubilization
*

Tezacaftor None II High (middle-out) No food effect

Trospium IR/XR Negative III Low Changes in hydrodynamics (viscosity) in the presence of food

Venetoclax Positive IV Moderate Lymphatic uptake

Zidovudine Negative III High (bottom-up) GI motility changes in presence of food

Ziprasidone HCl Positive II Moderate Salt form

*Specialized biorelevant media required to capture food effect
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The bottom-up absorption model for the micronized
formulation was built according to working group guidelines.
Intrinsic and biorelevant solubility data of thermodynamically
stable form and micronized drug substance were taken from
literature as the drug substance was not commercially
available and data was generated using the same approach
as described above (13,14). Partitioning of neutral and ionic
species into bile micelles (i.e., logKm:w) and DLM scalars
were estimated using SIVA (14,44,45). Clearance and dispo-
sition parameters were estimated from IV PK data (46).

The model was used to simulate oral PK of 100 mg
micronized aprepitant in fasted subjects. When the solubility
measured in US Pharmacopeia Simulated Intestinal Fluids
(SIFsp pH 6.8, 0.7 μg/ml) was used as intrinsic solubility for
simulations, PK parameters for the fasted condition were
underpredicted (AUC predicted (3354 ng.hr./ml) vs observed

(8571 ng.h/ml), Cmax predicted (125 ng/ml) vs observed
(496 ng/ml). Therefore, an average of solubility values
reported for thermodynamically stable form in water at
pH 8.0 (7 μg/ml) and in SIFsp was used as intrinsic solubility
which allowed for the prediction of AUC and Cmax values
within the pre-specified tolerance (i.e., AUC predicted
(11,142 ng.h/ml) vs observed (8571 ng.h/ml), Cmax predicted
(455 ng/ml) vs observed (496 ng/ml)). The model was
subsequently used to predict the effect of food on PK of a
100 mg micronized aprepitant. The predicted increase in
AUC and Cmax was within 0.80–1.25-fold of the observed
values (AUC predicted (26,673 ng.h/ml) vs observed
(24,057 ng.h/ml), Cmax predicted (1237 ng/ml) vs observed
(1098 ng/ml)) (44). Overall, the PBPK model was able to
predict the observed positive food effect due to enhanced
solubilization and dissolution.

Fig. 3. AUC ratio of ratios for the modeled compounds. Models 1 and 2 refer to the two
software programs used for prediction. Where confidence did not agree between the two
software, the outcome from the model with lower confidence was used to assign confidence
in the prediction

Fig. 4. Cmax ratio of ratios for the modeled compounds. Models 1 and 2 refer to the two
software programs used for prediction. Where confidence did not agree between the two
software, the outcome from the model with lower confidence was used to assign confidence
in the prediction
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Additional examples with the successful prediction of
food effect risk using a middle-out approach include furose-
mide (negative FE), nefazodone (negative FE), nelfinavir
(positive FE), and phenytoin (positive FE). Detailed descrip-
tions of the modeling approach and outcome for these
compounds are provided in an accompanying manuscript
published in this issue.

Food Effect Predictions with Low Confidence

Case Example: Pazopanib

Pazopanib is a BCS class II/IV compound (basic pKa 2.1
and 6.4) that exhibits low solubility across the physiological
pH range. Clinically, pazopanib is dosed as the hydrochloride
salt. At 800 mg dose, fasted bioavailability was low and
variable at ~ 21% (range 14–39%) and the compound
exhibited a significant positive food effect (2.3-fold increase
in AUC0-72h and 2.1-fold increase in Cmax with a high-fat
meal) (47). The compound is recommended to be taken
without food (at least 1 h before or 2 h after a meal) (48).

Bottom-up absorption models were developed following
the standardized workflow. Human permeability was

projected based on Caco-2 data (Table I). Bile salt solubili-
zation was estimated based on FaSSIF and FeSSIF data. The
models (regardless of the software used) significantly
underpredicted the fasted state plasma concentration profiles
and did not predict the positive food effect. Both bottom-up
models underpredicted the fasted state AUC at 800 mg
pazopanib-HCl by more than 2-fold. When the models were
applied to predicting the effect of food on pazopanib’s PK,
they predicted a slight FE (AUC ratio fed/fasted = 0.86 to
1.09), whereas the observed FE was approximately 2.3-fold.
Further model optimization in accordance with the decision
tree (Fig. 2) by adjusting the precipitation rate constant
(essentially reducing in vivo precipitation) resulted in closer
prediction of the fasted state profile (within 2-fold of AUC).
However, the adjusted model failed to predict the significant
positive food effect. Models predicted either no food effect or
negative food effect, depending on the software used and the
stomach pH settings. For both models, the default fed
physiology was applied. Thus, the standardized optimization
workflow failed to directionally replicate the observed food
effect.

The inability to capture the in vivo pharmacokinetics of
pazopanib may be due to challenges with modeling

Fig. 5. Proposed mechanisms of food effect and their association with confidence in PBPK
modeling for 30 modeled compounds. The inner layer of the plot depicts the confidence category,
followed by direction of food effect in the second row, the BCS class in the third row, and the
mechanism of food effect in the fourth row. The numbers in the first to third row indicate the
number of compounds (out of 30) that fall in each category. More details around compound name
and mechanism are provided in Table III
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dissolution of salts that may be dissolving faster and/or to a
greater extent than what the solubility measurements using
standard methodologies suggest. Additionally, exploratory
experiments suggest that the buffer species has a significant
impact on the solubility and precipitation behavior of
pazopanib (49). Dissolution measurements in FaSSIF and
FeSSIF exhibited some supersaturation followed by precipi-
tation. However, the translation of such in vitro observations
to a PBPK setting is not straightforward. Additional discus-
sion of pazopanib modeling as related to future opportunities
in in vitro assays and model refinement are outlined below
and a more detailed description of the modeling approach
and outcome for pazopanib and trospium chloride is provided
in an accompanying manuscript published in this issue.

DISCUSSION

In this study, a unique prospective approach was
proposed to build and verify mechanistic PBPK models for
30 compounds while controlling for common variables, such
as model input parameters, method of data generation, and
subjective optimization and/or verification. To focus the
model development and verification around absorption
parameters, compounds with known IV clearance were used.
However, we believe in practice the models can be applied
even in the absence of IV data if the food effect mechanism is
primarily related to absorption events. The focus of this work
was to identify mechanisms where high, moderate, and low
confidence in the prediction of food effect can be expected.
The levels of confidence were defined based on modeling
approach and an assessment of how well the PK parameters
and profiles were captured. In total, the food effect of 15
compounds was predicted with high confidence, 8 with
moderate confidence, and 7 with low confidence. Areas of
high to moderate confidence were mainly associated with
food effect related to changes in GI luminal fluid and
physiology, while lower confidence was commonly associated
with complex mechanisms and/or interplay between multiple
mechanisms for which standardized in vitro assays and model
input are not available to characterize the food effect, as well
as to develop and verify models and/or gaps exist in capturing
these mechanisms in the modeling software utilized.

Compound types where food effect was not appropri-
ately captured using the standardized approach proposed in
this work were salts and some weak bases, for which
optimizing the precipitation time of the drug could not
address the low confidence in capturing the absorption profile
and extent of food effect. One key point for the misprediction
of food effect is the current gaps in software and/or
biorelevant media to adequately reflect the impact of food
and food components for poorly soluble drugs; while
biorelevant media are widely accepted for providing a good
estimate of the luminal solubility of poorly soluble drugs
under fasted and fed state, there seem to be cases where the
in vitro solubility of these media is not in line with the
solubility in human intestinal fluids (50), and cases where the
buffer species has a pronounced impact on the in vitro
solubility and precipitation behavior of certain compounds
(49). Specifically, the outcome of our modeling exercise
suggests that the in vivo solubility of pazopanib in the GI
tract may be higher compared with the measured in vitro

FaSSIF solubility. Therefore, there is a need to further
investigate more biorelevant media to improve PBPK-based
absorption predictions at various prandial states.

In a typical clinical development paradigm, early assess-
ment of food effect could be generated as early as the first-in-
human single ascending dose studies. In oncologic drug
development, dosing with food (typically a light meal) may
be pursued from the beginning, particularly if an increase in
exposure is needed or GI-related toxicity can be mitigated.
Under current global regulatory paradigms, most companies
are expected to re-characterize the food effect on the to-be-
marketed formulation. Tistaert et al. previously proposed that
following validation of the model against fasted and fed data
that have been generated in early development, one could
apply the model prospectively to account for food effect of
new doses, formulations, or API forms (9). In this manuscript,
we have built on these recommendations by highlighting
opportunities where we find the translation of these models
across formulations may be appropriate and where in vitro
methodology and PBPK models may require further ad-
vancements in their approach to be adequately predictive.
When the mechanisms of food effect can be categorized as
high confidence, bottom-up, the PBPK models may be used
for decision-making around food effect prior to FIH and also,
it may not be required to perform a clinical anchor study (i.e.,
a specific food effect study in healthy volunteers under well-
controlled conditions and powered to show bioequivalence).
In such cases, the high confidence PBPK FE projections could
still be confirmed with clinical data (e.g., an arm of fed
subjects in a Ph1 study or a PopPK analysis of patient data)
(51). It is also worth noting that the relevant food effect in
clinical use in the patient population may differ from that
measured in an anchor study in healthy volunteers with a
standard meal. Such drugs may include compounds where
solubility is generally not rate-limiting and food effect
(typically negative for Cmax) is primarily dictated by gastric
emptying.

Mechanisms categorized as high confidence, middle-out
may need to be verified using an anchor study before being
used to predict food effect with high accuracy. However, there
is still the possibility to avoid additional clinical studies
around food effect after certain formulation or dose changes.
Similarly, when models and mechanisms categorized as
having moderate confidence (within 2-fold) are verified with
an anchor study, there may be cases where minor formulation
changes can be made without the need for additional FE
studies. At this point, the nature of the formulation change
should be considered. Formulation changes are commonplace
during clinical development. While, on some occasions, major
formulation changes may be pursued to address specific
clinical needs (e.g., an “enabled” formulation to address the
poor bioavailability of an early crystalline formulation), most
formulation changes undertaken are more subtle. The
formulation technology is typically decided early on and
optimization focuses on the composition and manufacturing
process. Based on the work presented in this manuscript, we
propose that if the formulations follow the same dissolution/
absorption principles (e.g., both formulations are based on
crystalline API), translation of the models from early to late
stage is possible especially when the mechanism of food effect
(or lack thereof) is well understood (i.e., the defined
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confidence categories should hold). For many of the examples
highlighted in this work, the formulation dissolution rate is
not the determining factor for food effect. For rapid-
dissolving formulations, food effect may be dictated by gastric
emptying time (if sufficient solubility or administered as non-
precipitating oral solution) or by the saturation solubility of
the API in the fasted and fed condition. This is mostly
independent of the formulation and would not be affected by
many formulation changes. However, the authors
acknowledge that the proposal to avoid clinical studies for
minor formulation changes has been supported by only
limited published examples (9,52) and further work is
recommended to verify this with a broader range of clinical
data. While the primary application of such models is to
describe the food effect in the context of biopharmaceutics
characterization, on a case-by-case basis, these models can be
considered for prospective application dependent on thera-
peutic margins and exact mechanism of food effect verified
with the anchor study.

Like formulation changes, we believe that PBPK models
could be applied to the projection of food effect at different
doses than previously established. A properly qualified PPBK
model across different doses would accurately account for
absorption limitations (if applicable) and thus would be well-
positioned to assess the impact of food at different doses than
previously studied. An interesting question would be the
application of food effect models to different meals (e.g., a
moderate-fat, moderate-calorie meal). There are currently a
relatively limited number of published examples systemati-
cally looking at parameterization of the models as a function
of the meal content. The most detailed example is probably
the study by Sutton et al. (53) where the authors proposed
adjustments to the gastric emptying and bile salt concentra-
tion settings in the PBPK model for different meals. Adopting
such a model may be considered to interpolate exposures
between the typically tested prandial states (i.e., fasted and
high-fat/high-calorie meal). While this could help with
simulating more real-life dosing conditions, it was out of
scope of the work presented here.

Food effect prediction with a PBPK model seamlessly
integrates in vitro data with knowledge of human physiology.
Prior work has attempted food effect prediction from only
in vitro data (54–56) or directly from animal models (56–58).
While these methods have shown some success in predicting
the direction of food effect, their ability to accurately capture
the extent of food effect, and the impact of food on PK
parameters and, especially, profiles have not been consistently
demonstrated. While it makes sense to use all available data,
including pre-clinical data (e.g., dog FE data), to inform
predictions of human food effect, the focus of this study was
to explore the predictive ability of PBPK models following a
pure in vitro to in vivo approach. We present the application
of standard PBPK platforms to accurately capture not only
the direction of food effect but also the extent of the effect on
the human PK profile. Given the complex nature of food
effect, it is anticipated that an integrated approach such as
PBPK, which captures the complexity of human physiology
and disparate food effect mechanism, can serve as a key
platform for the support of food effect predictions.

The study of food effect on the absorption of orally
administered drugs is widespread and a key driver of study

design, data analysis, and labeling language. Within the
pharmaceutical industry, significant resources are invested to
predict and characterize a clinically meaningful food effect,
including the use of PBPK models to gain mechanistic insight
into potential food effect. Here, the predictive performance
of PBPK food effect models was assessed using de novo
mechanistic absorption models for 30 compounds generated
in accordance with controlled, pre-defined in vitro and
modeling methodology, as well as an aligned decision tree
for model design, verification, and optimization. Mechanistic
PBPK models enabled food effect modeling of most of the
compounds with high (50%) or moderate (27%) confidence,
with a small subset of compounds showing low (23%)
confidence in the prediction of food effect. A correlation
was observed between the confidence in the model and the
mechanism of food effect, whereby models generally showed
high confidence in prediction where food effect was related to
changes in GI fluid volume, motility, or luminal fluid
composition, while food effects related to drug interactions
with intestinal microenvironment and/or food-drug/micelle-
drug interactions were more difficult to predict with high
confidence. This analysis did not include prodrugs and
compounds whose absorption is known to be limited by
intestinal active transport; however, such compounds are not
expected to make up a significant subset of clinical com-
pounds displaying food effect. While the correlation between
model confidence and mechanism of food effect was
established for 30 compounds in this study, it is only the first
step in understanding this correlation. Future work should
focus on further strengthening the validity of these conclu-
sions by expanding this analysis to additional compounds.

CONCLUSION

Considering these findings, it is recommended that
appropriately verified, mechanistic PBPK models be lever-
aged as a key approach to studying potential food effect,
especially related to mechanisms associated with high to
moderate confidence, thereby replacing the need to conduct
clinical food effect studies.
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