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Simple Summary: Alzheimer’s disease (AD) is the most common neurodegenerative disease, inten-
sifying impairments in cognition, behavior, and memory. Histopathological AD variations include
extracellular senile plaques’ formation, tangling of intracellular neurofibrils, and synaptic and neu-
ronal loss in the brain. Multiple evidence directly indicates that oxidative stress participates in an
early phase of AD before cytopathology. Oxidative stress plays a crucial role in activating and causing
various cell signaling pathways that result in lesion formations of toxic substances, which advances
the disease. Antioxidants are widely preferred to combat oxidative stress, and those derived from
natural sources, which are often incorporated into dietary habits, can play an important role in
delaying the onset as well as reducing the progression of AD. However, this approach has not been
extensively explored yet. Moreover, a combination of antioxidants in conjugation with a nutrient-rich
diet might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this
comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of
antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially
improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in
the stated field.

Abstract: Alzheimer’s disease (AD) rate is accelerating with the increasing aging of the world’s popu-
lation. The World Health Organization (WHO) stated AD as a global health priority. According to the
WHO report, around 82 million people in 2030 and 152 million in 2050 will develop dementia (AD
contributes 60% to 70% of cases), considering the current scenario. AD is the most common neurode-
generative disease, intensifying impairments in cognition, behavior, and memory. Histopathological
AD variations include extracellular senile plaques’ formation, tangling of intracellular neurofibrils,
and synaptic and neuronal loss in the brain. Multiple evidence directly indicates that oxidative stress
participates in an early phase of AD before cytopathology. Moreover, oxidative stress is induced by
almost all misfolded protein lumps like α-synuclein, amyloid-β, and others. Oxidative stress plays a
crucial role in activating and causing various cell signaling pathways that result in lesion formations
of toxic substances, which foster the development of the disease. Antioxidants are widely preferred
to combat oxidative stress, and those derived from natural sources, which are often incorporated
into dietary habits, can play an important role in delaying the onset as well as reducing the pro-
gression of AD. However, this approach has not been extensively explored yet. Moreover, there has
been growing evidence that a combination of antioxidants in conjugation with a nutrient-rich diet
might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this
comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of
antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially
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improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in
the stated field.

Keywords: Alzheimer’s disease; antioxidants; oxidative stress; reactive oxygen species; therapeutics

1. Introduction

According to the World Health Organization (WHO), around 50 million individu-
als worldwide suffer from dementia, with roughly 10 million new cases occurring each
year [1]. Alzheimer’s disease (AD) is the most frequent cause of dementia, accounting for
60 percent to 70 percent of all cases [1]. AD is an irreversible, progressive, and accelerating
brain disorder that results in loss of memory, thinking capacity, and, seemingly, the loss
of ability to complete a simple task [2]. Although AD has a multifactorial etiology, it is
characterized histopathologically by the presence of intracellular neurofibrillary tangles
(NFTs) and extracellular senile plaques. NFTs are generated by the hyperphosphorylation
of tau, a microtubule-associated protein localized to the axons and associated with the
proper functioning of the cytoskeletal. When hyperphosphorylated in AD, tau protein
leads to neuron dystrophy, aberrant skeletal framework, injury to axonal transport, and
disrupted cell functions [3,4]. Senile plaques are composed of amyloid-β (Aβ) peptides of
different lengths and are particularly resistant to degradation, resulting from the sequential
proteolytic cleavage of Aβ precursor protein (APP) by β- and γ-secretases. The hydrophilic
portion of the Aβ42 peptide coordinately forms a bond with transition metal ions such
as copper (II), resulting in abnormal yet stable neurotoxic aggregates of Aβ [5]. Further-
more, Aβ has been shown to have the ability to disturb calcium homeostasis in neurons
by activating calcium channels in the intracellular and plasma membrane of neurons [6].
Moreover, Aβ causes lipid peroxidation by interacting with the lipid membrane depending
on the 4-HNE (4-hydroxynonenal) induced oxidation of cysteine residue, which leads to
the interaction of this lipid peroxidation product with the membrane proteins specific to
the brain and disrupts their structure and functionality. Such an escalation can be detri-
mental to the metabolic proteins of the brain. This activity of Aβ suggests the association
between oxidative stress and Aβ deposition [7]. NFTs and senile plaques accelerate the
neuroinflammatory responses, determine cytoskeletal stresses, and promote neuronal dys-
function [8–10]. Hence, one can easily infer that oxidative stress is crucial in inducing or
activating the signaling pathways, leading to AD development. Although multiple ap-
proaches for the treatment of AD have been studied, at present, only a few drugs have been
FDA approved for therapeutic applications (Table 1), so there is scope for novel therapeutic
approaches in this regard. Several research studies have been conducted highlighting
the effect of antioxidants in AD (Figure 1). Therefore, this review discusses the role of
antioxidants and their related therapy for AD.

Table 1. FDA approved drugs for the treatment of AD (Adapted from Medications for Memory
Loss|Alzheimer’s Association).

Drug Name
(Generic/Brand) Manufacturer Drug Type Drug Use Mechanism Side Effects

Aducanumab
Aduhelm™

Biogen, Eisai Co.
Ltd., Tokyo, Japan

Disease-modifying
immunotherapy

Alzheimer’s
disease (MCI or
mild dementia)

Removes abnormal
Aβ helping to reduce

the number of
plaques in the brain

Amyloid-related imaging
abnormalities (ARIA), which
can lead to fluid buildup or

bleeding in the brain;
headache, dizziness, falls,

diarrhea, confusion

Donepezil
Aricept®

Eisai Inc. and
Pfizer Inc., New
York, NY, USA

Cholinesterase
inhibitor

Mild, moderate,
and severe

symptoms of AD

Prevents the
breakdown of

acetylcholine in the
brain

Nausea, vomiting, diarrhea,
muscle cramps, fatigue,

weight loss, loss of appetite,
and increased frequency of

bowel movements.
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Table 1. Cont.

Drug Name
(Generic/Brand) Manufacturer Drug Type Drug Use Mechanism Side Effects

Rivastigmine
Exelon®

Novartis, Basel,
Switzerland

Cholinesterase
inhibitor

Mild to moderate
symptoms of AD

Prevents
acetylcholine and

butyrylcholine from
being degraded in

the brain

Nausea, vomiting, diarrhea,
weight loss, indigestion,

muscle weakness

Galantamine
Razadyne®

Ortho-McNeil
Neurologics,

Johnson & Johnson,
Titusville, NJ, USA.

Cholinesterase
inhibitor

Mild to moderate
symptoms of AD

Prevents the
breakdown of

acetylcholine and
stimulates nicotinic
receptors to release
more acetylcholine

into the brain

Nausea, vomiting, diarrhea,
decreased appetite, dizziness,

headache

Memantine
Namenda®

Allergan plc,
Dublin, Ireland

N-methyl
D-aspartate

(NMDA)
antagonist

Moderate to severe
symptoms of AD

Blocks the toxic
effects associated

with excess
glutamate and

regulates glutamate
activation

Dizziness, headache, diarrhea,
constipation, confusion

Memantine +
Donepezil
Namzaric®

Actavis and
Adamas

Pharmaceuticals,
Dublin, Ireland

NMDA antagonist
and cholinesterase

inhibitor

Moderate to severe
symptoms of AD

Blocks the toxic
effects associated

with excess
glutamate and
prevents the

breakdown of
acetylcholine in the

brain

Nausea, vomiting, loss of
appetite, increased frequency

of bowel movements,
headache, constipation,

confusion, and dizzinessBiology 2022, 11, x FOR PEER REVIEW 4 of 28 
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2. Oxidative Stress and Alzheimer’s Disease

Oxidative stress is defined as an imbalance between oxidants and antioxidants that
causes a rise in oxidant levels [11–14]. It is well recognized as one of the clinical markers
of AD; nevertheless, it is still unclear whether oxidative stress is a cause or a consequence
of the process that occurs in AD patients’ brains. Reactive oxygen species (ROS) and Aβ

are the major mediators of oxidative stress. The increase in the level of non-enzymatic
glycation of cellular proteins, lipoproteins, and nucleic acids results from increased glucose
levels [15]. These products are known as advanced glycation end products (AGEs) [16].
The administration of a diet rich in AGEs in the mouse hippocampus results in oxidative
damage to the vasculature, increments in the level of Aβ, and memory impairments [17].
The receptor for AGEs is RAGE (receptor for advanced glycation end-products), a pattern
recognition receptor that may bind massive ligands produced from the damaged cellular
environment [18] and Aβ [19]. The NADPH oxidase (NOX) is activated by RAGE’s strong
interactions with its ligands, resulting in increased ROS production [20]. AGER (gene
encoding polymorphism in RAGE) has been linked to a hereditary predisposition to
AD [17].

There are several pieces of evidence like APP23 mice carrying APP KM670/671NL
mutation, which proves the early involvement of oxidative stress even before the depo-
sition of Aβ in AD, [21], where triple transgenic mice carrying PS1 M146 V, Tau P301L,
and APP KM670/671NL mutations were studied [22]. In the oxidative condition, Aβ

generation may also be affected by the PS1/γ-secretase complex. It has been reported
that 4-hydroxynonenal (4-HNE) or 4, 4-dithiodipyridine (DTDP) induces the pathogenic
shift in the arrangement of PS1 subdomains within the γ-secretase complex resulting in
enhancement of the aggregation and generation of Aβ species [23–25].

Furthermore, it has been demonstrated in recent research that not only may ROS
regulate Aβ secretion/production, but that Aβ can also encourage the excessive devel-
opment of ROS [26]. Overproduction of Aβ (as a result of APP overexpression) lowers
the respiratory control ratio (RCR) and ATP production. It increases the production of
ROS in HEK293 cells [27], implying the existence of a positive feedback loop between
Aβ and ROS. ROS causes cPLA2 (calcium-dependent phospholipase A2) to be activated
downstream, as well as phospholipid membrane disturbances, arachidonic acid release,
and kinase activation [28–30], which are interlinked with the cause of AD.

The induction of oxidative stress by Aβ/APP has been reported in several studies [31].
For instance, APP KM670/671 NL and APP V717F mutation in the mouse model reported
elevated lipid and protein oxidation markers like 3-NT (3-nitrotyrosine), 4-HNE, and others.
Notably, the oxidative damage appears to become pronounced following the interaction of
the sulfur-free radical with methionine 35 in the Aβ peptide [32,33].

3. Oxidative Stress Biomarkers in Blood Cells

Biomarkers detection helps in the early identification of AD. Brain imaging markers
currently in use are neither cost-effective nor readily available [34]. However, blood-
based markers can nail this as they are cost-effective, easily identifiable, and detectable.
Moreover, detecting a blood-based biomarker can be repeated, and it is easily applicable
in an aging population. Recently, depending upon oxidative stress, blood-based markers,
most prominently cerebrospinal fluid (CSF) neurofilament light protein (NFL), plasma
phospho tau (P-tau), total-tau (T-tau), and CSF Aβ42 are used to identify early AD [35].
Several pieces of the research reported that the imbalance in antioxidant defense and
oxidative stress arising in the brain is reflected in the blood, which can further be easily
accessed and used for early AD diagnosis [34,36–38]. In comparison to controls, ROS levels
were higher in lymphocytes and platelets [39,40]. Protein carbonyls, 3-NT, NOS-2 (nitric
oxide synthase 2), 4HNE, and other oxidative stress indicators appear to correlate with
AD [41,42]. Furthermore, some investigations have explicitly linked oxidative stress to
the early overproduction of Aβ [43–45]. Again, oxidative damage can be seen in proteins,
lipids, and nucleic acids [46,47]. An increase in the levels of 8-hydroxy-2-deoxyguanosine
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(8-OHdG) and 8-hydroxyguanosine (8OHD), which are primarily localized in Aβ plaques,
assesses oxidation in DNA and RNA [44]. Thus, these studies support the hypothesis that
oxidative damage to lipids, nucleic acids, and proteins is a systematic series of events in
peripheral cells in the blood.

4. Antioxidants

Antioxidants are compounds that can lower the harmful effects of oxidative stress. An-
tioxidants effectively decrease the rate of oxidation stress even in mild concentrations [48].
Based on the mechanism of action, antioxidants are mainly classified into two categories:
(1) primary antioxidants and (2) secondary antioxidants. The former is responsible for scav-
enging free radicals and inhibiting the chain reaction resulting in oxidative stress. The latter
undergo oxidation to decompose hydroperoxides into stable forms, thus exhibiting a syn-
ergistic effect with primary antioxidants. Secondary antioxidants are mainly involved in
the regeneration of antioxidants, deactivation of metals, and reduction of singlet oxygen.
As oxidative stress plays a vital role in AD likewise, antioxidants have been beneficial for
AD [49]. An intricate natural antioxidant system in our body protects and prevents us from
the damage caused by pro-oxidants [50]. Several reports show that various dietary sources
can act as antioxidants [51–53]. Thus, the antioxidants system is classified into two types:
(1) endogenous system and (2) exogenous system. Our body makes endogenous antioxi-
dants, but humans procure exogenous antioxidants through diet. Glutathione peroxidase,
catalase (CAT), glutathione reductase, superoxide dismutase (SOD), and others are directly
involved in eliminating ROS. Nevertheless, cellular compounds like NADPH, vitamin C,
mannitol, bilirubin, GSH, β-carotene, and others can be significant antioxidants.

Antioxidants with potential therapeutic applications against AD are shown in Table 2.

Table 2. List of antioxidants with potential therapeutic effects against AD.

Antioxidant Chemical Structure Functions References

Vitamin E
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Table 2. Cont.
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5. Role of Antioxidant-Rich Diet in Alzheimer’s Disease

It is well established that diet affects both mental and physical health. Food sources
have a significant role in treating AD, as reported in many studies [88–90]. Vitamin
C, E, carotenoids, flavonoids, polyphenols, and others are included in natural dietary
antioxidants [91]. Moreover, it is suggested by literature and clinical reports that a proper
diet including vitamins, proteins, and minerals will surely complement the medicine for
the treatment of AD [89–91]. Apple cider has been reported to increase the activity of SOD,
CAT, and glutathione peroxidase (GPx) to reduce lipid peroxidation [92,93].
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Dietary potassium helps reduce ROS, alters the Aβ aggregation pattern, and helps
in improving cognitive abilities [94]. Furthermore, increasing dietary potassium (to the
optimum concentration) benefits individuals by preventing or delaying age and diet-related
neurodegenerative diseases [95]. Garlic and its components show an admirable effect on
brain function and neuronal physiology, leading to pharmacotherapy for AD [96]. Citrus
fruits containing flavanone glycoside may be responsible for the conformational change
of the beta-amyloid precursor protein cleaving enzyme 1 [97]. It has been found that
supplementation of soaked almonds in the AD animal models of C57Bl/6 mice and adults
of Sprague–Dawley rats, after overnight fasting, enhances memory due to the enrichment
of vitamin E [97]. Despite under-conducted research, the cross-sectional studies of the
overall role of diet and its patterns in AD are still questionable. Thus, research in this area
is also needed. Moreover, people’s apprehension of the quantity and quality of individual
bioactive components present in food items is insufficient for significant neuroprotection.
Different classes of antioxidants with potential therapeutic applications against AD are
displayed in Figure 2.
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6.1. Vitamin E

Vitamin E is the most promising antioxidant for peroxyl radicals [98]. It can act on
lipid-soluble membrane lipoproteins and low-density lipoproteins [99]. It has the potential
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to inhibit and delay neuronal death caused by inflammation. Moreover, it eliminates free
radicals present in the red blood cell membrane and inhibits the spread of lipoperoxida-
tion [100]. Furthermore, α-tocopherol is the most abundant form of vitamin E with high
bioavailability in human tissue [101,102]. Vitamin E can be helpful in overcoming the
increased expression of alpha-tocopherol transfer protein (α-TTP) in the patient’s brain
suffering from AD [103]. A meta-analysis report of AD patients shows a reduced level
of vitamin E in the blood plasma [104]. In one of the clinical trials, vitamin E and Ginkgo
biloba extract were potentially significant in improving cognitive function of the brain [11].
Additionally, in another meta-analysis, it has been reported that a low concentration of
serum vitamin E is associated with AD [105]. Moreover, substantial evidence suggested
that vitamin E successfully suppresses tau-induced neurotoxicity in Drosophila [106–108].
In one of the recent studies, it is proposed that vitamin E has significantly reduced oxida-
tive and nitrosative damage in AD [109]. However, the positive effect being evaluated of
vitamin E in AD is still in the ongoing phases of various clinical trials.

6.2. Glutathione

Glutathione also plays a significant role in protein and DNA synthesis, cell cycle
regulation, and storage and transport of cysteine. It has the potential to scavenge lipid
peroxidation products like acrolein, 4-hydroxy-2-nonenal (HNE), and others [110]. It is
used to maintain the thiol redox of cells, detox electrophiles, and metals, and protect from
oxidative stress. It also can form metal complexes that reduce the toxicity of the metals and
facilitate their further excretion from the body [110–112]. Recently, it was reviewed that
cholesterol-mediated depletion of mitochondrial glutathione is linked with increased Aβ-
induced oxidative stress in mitochondria [113]. The introduction of glutathione ethyl ester
in transgenic mice featuring a high expression of sterol regulatory element-binding protein-
2 (SREBP-2) has been shown to prevent neuroinflammation and neuronal damage [114].
Further, one recent study reveals the redox pathway of glutathione antioxidant responsible
for regulating mitochondrial dynamics in axons [115]. However, the mechanistic overview
of the exclusive role of glutathione in AD is still unclear.

6.3. Molecular Hydrogen

Molecular hydrogen is also an antioxidant that can modulate the Keap1-Nrf2-ARE
signaling pathway and reduce inflammation [116]. It has a potential role in the selective
reduction of hydroxyl radicals involved in the demolishing of proteins, nucleic acid and
leads to lipid peroxidation, which is also a reported feature in AD [117]. It has been reported
that molecular hydrogen administration increases short-lived Drosophila’s survival and life
span [118]. At the same time, it is found that the hydrogen-rich water causes the increment
in the level of glutathione and SOD [52]. Having both an indirect and direct role, the
application of molecular hydrogen shows satisfying results for AD. However, more human
trials are required for solid suggestions and recommendations.

6.4. Monoamine Oxidase-b Inhibitor

Monoamine oxidase catalyzes the oxidative deamination of xenobiotic and biogenic
amines. In peripheral tissue and the central nervous system, they play an important role in
the metabolism and control of vasoactive and neuroactive amines. In cerebral blood arteries,
a monoamine oxidase-b inhibitor can rapidly produce the vasodilator nitric oxide [119].
By blocking oxidative deamination, it shields the vascular endothelium from the effects of
Aβ and improves the survival and function of nigral neurons [120,121]. It is also reported
to decrease the progression of AD by reducing neuronal damage [122]. L-deprenyl, a
monoamine oxidase-b inhibitor, enhances nitric oxide production accompanied by vasodi-
lation; however, the study also suggests that L-deprenyl may involve other pathways for
its effectivity [119].
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6.5. Melatonin

Melatonin, a mammalian hormone synthesized in the pineal gland, can scavenge
oxygen and nitrogen-based reactants. It performs by stimulating and promoting the
activity and expression of NO synthase, SOD, and GPx [123]. It has a significant role in
reducing oxidative damage of cells [124]. In recent literature, it has been reported that
antioxidant melatonin can mitigate tau hyperphosphorylation [125–129] and inhibit the
toxicity induced by Aβ [130].

6.6. Ascorbyl Palmitate

It is a lipid-soluble form of vitamin C. It maintains all the vitamin C activity without
creating problems associated with ascorbic acids, such as less recycling capacity of α-
tocopherol in the lipid bilayer, reduced viability in-vivo, and others [122]. Additionally, it
is reported that the demand for vitamin C can be better fulfilled with lipophilic form rather
than hydrophilic form [131]. Ascorbyl palmitate can successfully cross the blood-brain
barrier (BBB) [132] and is reported for its significant role in treating AD [133]. As ascorbyl
palmitate resides in the cell membrane, it can accelerate the production of vitamin E.
However, the protective role of vitamin C is still in debate as it is not yet clear whether
vitamin C is acting alone or in combination for treating AD.

6.7. Curcumin

Multiple desirable features reside in curcumin for a neuroprotective drug, including
antioxidant, anti-protein aggregates, and anti-inflammatory activities [134]. It has been
studied that curcumin reduces inflammation, oxidative damage, and cognitive deficits
in rats where Aβ toxicity has affected their central nervous system. Curcumin possesses
substantial free radical scavenging properties, whereby it targets NO-based radicals to scav-
enge them, which helps inhibit lipid peroxidation [135]. Curcumin has also been reported
to bind with metal ions, which prevents them from causing aggregation of Aβ and reduces
oxidative stress [136]. Moreover, curcumin was also found to restore glutathione levels in
brain tissue and reduce oxidized proteins in mice models with AD [137,138]. However, in
one of the clinical trials, curcumin’s beneficial effect in AD couldn’t be determined; this
may be due to highly poor pharmacokinetics and pharmacodynamics properties [139].

6.8. Coenzyme Q and SK-PC-B70M

Coenzyme Q is currently studied for its role in Parkinson’s disease and amyotrophic
lateral sclerosis [106]. Moreover, it helps in the generation of ATP. It is the only lipid
synthesized directly within the body and can maintain a redox function [140]. Coenzyme
Q has the potential to neutralize free radicals and stabilize the optimal functioning of the
cell membrane. The contribution of coenzyme Q in AD treatment must be explored as
there is a high possibility that it might play an influential, protective, and preventing role
in AD. SK-PC-B70M, an oleanolic-glycoside saponin enriched fraction, is derived from
Pulsatilla Korean. Currently, it has been reported for its neuroprotective activity against
the cytotoxicity effect induced by Aβ in SK-N-SH [141].

6.9. Estrogen, Astaxanthin, and Quercetin

Estrogen protects neurons against the toxicity of Aβ by acting as an antioxidant [142].
It appears to have a neuroprotective effect [52] without improving function or cognition
in people with AD [142]. Astaxanthin is a powerful carotenoid that can prevent apop-
tosis, oxidative stress, inflammation, memory loss, and protect against Aβ’s neurotoxic
effects [94,142–144]. Quercetin is the most prominent and significant dietary antioxidant
effective on health as it protects against severe diseases like lung cancer, cardiovascular
disease, osteoporosis, and others [145]. There are ongoing clinical trials for estimating its
accurate effect on AD [146].
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6.10. Lipoic Acid

The medicinal antioxidant lipoic acid (α-lipoic acid) is found in the mitochondria.
Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase both use it as a cofactor.
However, it is also involved in the recycling of other antioxidants such as vitamin C and E,
as well as glutathione, in order to boost ACh production [53]. Lipoic acid is also implicated
in some redox-active chelating metals, which helps to prevent lipid peroxidation from
building up [147]. When used in combination with acetylcarnitine, lipoic acid was found
to protect neuronal cells through cell-signaling pathways, including specific extracellular
kinase pathways, mainly the Ras-MAPK pathway that were dysregulated in AD [148].
Studies undertaken on the brain of control and AD mouse models showed that lipoic acid
reduced the expression of F2 isoprostanes and neuroprostanes, which are oxidative stress
markers [149]. Lipoic acid also induces the transcription factor Nrf2, which regulates a
number of different antioxidant enzymes involved in protection from oxidative stress [150].
Lipoic acid improved memory and reversed oxidative stress indices in the senescence-
accelerated mouse-prone 8 (SAMP8) models [151]. Lipoic acid is a potent antioxidant as it
can traverse the BBB, making it ideal for therapeutic applications in AD [152].

6.11. Resveratrol

Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) is a polyphenolic compound found
in a number of plants, like red grapes, blueberries, dark chocolate, and peanut butter.
Resveratrol has been reported to possess antioxidant properties and was found to dimin-
ish malondialdehyde and nitrite levels and restore glutathione levels [84]. Studies in a
number of cell lines expressing mutant AβPP695 reported that resveratrol exhibited anti-
amyloidogenic activity through reduction in secreted intracellular Aβ peptide levels [153].
Levels of intracellular antioxidant enzymes SOD, CAT, GPx, and HO-1 were increased
by resveratrol while simultaneously reducing lipid peroxidation [79]. Another essential
function of resveratrol was diminishing ROS production in brain tissue by preventing
disruption in the mitochondrial membrane potential [154]. The binding of metal ions to
Aβ and NFTs enhances their aggregation and increases ROS production. Resveratrol coun-
teracts this through dysregulation of the metal ion balance [84]. Along with antioxidant
properties, resveratrol has been reported to promote an anti-inflammatory response, reduce
levels of tau protein phosphorylation and increase the activity of SIRT-1 [154]. This makes
resveratrol an interesting natural antioxidant in combating AD pathogenesis.

6.12. MitoQ

MitoQ is an antioxidant that targets the mitochondria in AD. MitoQ is made by adding
the lipophilic triphenylphosphonium (TPP+) cation to ubiquinone, a component of the
mitochondrial electron transport chain, via a ten-carbon chain [155]. TPP+ facilitates entry
of ubiquinone into the mitochondrial matrix, where the complex II reduces ubiquinone
to ubiquinol, the active antioxidant form, decreasing lipid peroxidation, which reduces
oxidative damage [156]. MitoQ is able to traverse the BBB rapidly and has been found to
accumulate several hundred folds in the mitochondrial membrane. The uptake of MitoQ
in the mitochondria is driven by the high membrane potential of the inner mitochondrial
membrane [157]. MitoQ has been found to reduce free radicals and oxidative damage
while helping to regulate mitochondrial functions of the cells [158]. MitoQ was found to
lower Aβ peptide levels, minimize synaptic loss and astrogliosis and improve cognitive
functions in AD mouse model studies wherein the administration of MitoQ was initiated at
a young age [155,159]. MitoQ was also reported to enhance neurite outgrowth in neurons
and protection against Aβ peptide toxicity in cells of AD mouse models [160].

6.13. Catechins

Catechins are the bioactive components found in tea—most abundant in green tea
(green tea catechins or GTC)—which includes four different types of catechins: viz. epicate-
chin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate
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(EGCG) [153]. Catechins exhibit antioxidative effects by scavenging ROS and chelating
metal ions like copper, iron, and zinc, thereby reducing their accumulation in the brain of
AD patients [86]. EGCG was reported to reduce caspase levels and oxidative stress along
with reducing lipid peroxidation in the hippocampus of the rat model [161]. A long-term
study on male Wistar rats revealed that the administration of 0.5% GTC in water resulted in
counteracting Aβ-induced cognitive impairment, along with reduced levels of plasma lipid
peroxide and ROS levels [162]. In addition toantioxidant properties, catechins were also re-
ported to exhibit anti-inflammatory properties, along with inhibition of acetylcholinesterase
(AChE) activity. At the same time, EGCG was found to directly interact with Aβ peptides
and prevent the formation of aggregates [86,163,164]. Furthermore, catechins are BBB
permeable, as found in rodent models, making them a potential therapeutic candidate for
AD treatment [86].

6.14. Silibinin

Silibinin, an antioxidant flavonolignan obtained from Silybum marianum, can boost
the amount of newly formed microglia, astrocytes, neurons, and neural precursor cells in
the brain [165]. In one study, silibinin was found to be a dual inhibitor of AChE and Aβ

peptide aggregation, implying a therapeutic method for treating Alzheimer’s disease [165].
It can potentially prevent the injuries caused by Aβ1-42-indued oxidative stress by low-
ering the production of H2O2 in Aβ1-42-stressed neurons [166]. Another study reported
that streptozotocin-induced tau hyperphosphorylation (ser404) in the hippocampus was
substantially reduced by silibinin [167]. Though these results indicate that silibinin may be
a novel therapeutic agent for treating AD, no clinical trials are on board.

6.15. Palmatine

Palmatine, an isoquinoline alkaloid, acts against Aβ induced neurotoxicity [168]. It is
reported that palmatine activated the Nfr2 knockdown and AMPK pathway [168]. It is
reported for having anti-inflammatory, antioxidative and antiproliferative effects [169].
Another study reported the combined impact of palmatine and berberine on the inhibition
of AChE [169,170]. Though it is reported in several in-silico and in-vivo studies, there
is still a massive absence of its proper application in AD. Moreover, the mode of action
underlying their neuroprotective effect is poorly characterized in vivo.

6.16. Serotonin

Serotonin, an indoleamine neurotransmitter, can disassemble performed Aβ fib-
rils [171]. Ample evidence reflects that a combination of disturbances in serotonergic
and cholinergic function may possess a vital role in cognitive impairment in AD [172].
In one study, it is indicated that alterations of the serotonergic system contribute to neu-
ropsychiatric symptoms in AD as their results suggest that a decline in neurons expressing
5-HT2A plays a role in the etiopathology of neuropsychiatric symptoms in AD [173]. Fur-
thermore, while many of these compounds will likely be used as adjuvant therapy in the
treatment of AD symptoms, there are currently just a few pharmacological entities with
activity against serotonin receptors that have the potential to slow the illness’s progression.

6.17. Gintonin

Gintonin, a glycol-lipoprotein, can help in maintaining the integrity of BBB [174].
It can suppress the activated inflammatory mediators and microglial cells in the brains of
Aβ-injected mice [175]. Recent findings suggest that treatment with gintonin in AD results
in improved synaptic and memory functions in the brain [176]. It reflects an emerging
role as a modulator of neurogenesis and synaptic transmission, and it has the potential to
regulate autophagy in primary cortical astrocytes [176,177]. Moreover, as a novel agonist
of lysophosphatidic acid receptors, gintonin regulated several GPCR, including GPR55 and
GPR40 [177]. Nevertheless, further exploration is still required to understand gintonin’s
underlying mode of action in AD.
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7. Role of Other Nutrients in Alzheimer’s Disease

Apart from antioxidant activities, natural products have exhibited other vital prop-
erties to combat AD progression through anti-inflammatory response, prevention of Aβ

aggregation, accumulation of tau protein, and the promotion of cholinergic signaling [178].
Alkaloids, such as cryptolepine and tetrandrine, have been reported to be involved in the
inhibition of NF-κB, thereby acting as anti-inflammatory agents [179]. Flavonoids, owing
to their characteristic property of inhibiting inflammatory response, have shown potential
for working against AD progression [180]. Studies in animal models of AD have reported
terpenoids, such as artemisinin, parthenolide, and carnosol can inhibit NF-κB and p38
MAPK pathways [181–183]. Ginsenoside Rg1, a compound obtained from the roots of
the Ginseng plant, has been reported to cause a significant drop in levels of Aβ peptide
levels in AD mice [184]. Natural plant products like crocin, α-cyperone, chrysophanol, and
aloe-emodin have been found to exhibit properties that inhibit tau protein formation and
reduce AD progression [185–187]. Caffeine, one of the most widely consumed alkaloids,
has been found to inhibit Aβ deposition in vitro [188]. It was also found to reduce ROS
production and enhance SOD levels in human neuroblastoma cells cultured with Aβ [189].
Caffeine has also been shown to exhibit anti-neuroinflammatory properties as well as de-
creasing tau protein phosphorylation in the hippocampus [190]. In low to moderate doses,
caffeine inhibits AChE, thereby improving cognitive actions and reducing the progression
of AD [191]. Eugenol, found in cloves, has been reported to reduce amyloid plagues and
increase memory in rat models induced with Aβ peptides [192]. Dietary patterns have also
been found to impact the onset and progression of AD. A Western diet characterized by
higher meat intake was associated with an increased risk of AD [193]. In contrast to this,
the Mediterranean diet, characterized by higher consumption of fruits, vegetables, and fish
with lower meat intake, was found to reduce the risk of AD in the population [194].

8. Limitations and Future Perspectives

Antioxidants have been shown to be effective against AD. The clinical trials for evalu-
ating the therapeutic potential for several antioxidants in AD are shown in Table 3. But the
availability of data related to pre-clinical studies falls short to justify their widespread
application [195]. Antioxidants have been shown to lower the damage by oxidative stress
in the brain though limited human trials and make it difficult to conclude accordingly.
The research interventions for AD should mainly focus on the patient’s lifestyle, keeping
in mind their cognitive status. The application of antioxidants and their effect could be
monitored in AD patients through the nutrient-rich diet they are being advised for in-
take [196]. A holistic approach towards the treatment of AD has become the need of the
hour. AD treatment needs to be addressed at the right time to minimize the chances of
failure. Genomic sequencing commenced by the National Institutes of Health (NIH) in 2012
has opened up new avenues in developing a more contemporary and specialized treatment
for AD [197]. Inflammatory responses have been an innate part of AD pathogenesis that
needs to be addressed with much-advanced technology as soon as possible. ROS poses
a significant threat to neurons. Oxidative damage is a prominent pathological symbol
for AD. Antioxidants have ROS scavenging ability, making them a feasible candidate in
the fight against AD [198]. Nonetheless, inconclusive results from human trials make it
difficult for the physician to recommend AD treatment. The synergistic administration of
various antioxidants could counter oxidative stress with much efficiency. The concentration
of antioxidants administered should be taken care of since high doses could disrupt the
normal physiological process where ROS plays a prominent role. Extensive studies should
be carried upon placing a closer look at toxicity, bioavailability issues, and long-term
exposure of antioxidants in AD patients [199]. The most important aspects to look for
while carrying out antioxidant-based research for AD are the time-span of consumption
and the age group of people above 60 for the administration of antioxidants. The onset
of dementia might get initiated even before the appearance of definitive symptoms [200].
The requirement of biomarker identification and neuropathological assessment has become
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a must for diagnosing and providing the antioxidant at the required time-span before the
onset of AD [201]. Limitations of antioxidants, such as lower bioavailability of polyphenols,
resveratrol, and others require proper research interventions [202]. Mixing polyphenols
with juice or extracts from fruits could be looked for extensively, in order to mediate the
shortcomings of polyphenol therapy for AD [203]. The viable method of administering
antioxidants needs to be addressed with further pharmacological studies since some pa-
tients may not be comfortable with tablets, and some may not be with extracts. Thus, the
viable mode needs to be addressed according to the patient’s needs [204]. Additionally, the
intervention of nanotechnology could be crucial towards the enhancement of bioavailability
and moving past the BBB, which is another shortcoming of antioxidants being administered
conventionally [205]. The role of antioxidants could be vital in the battle against a plethora
of neurodegenerative diseases. Therefore, extensive human trials are required to test the
efficacy of the antioxidant in AD patients.

Table 3. Completed clinical trials conducted for antioxidants relevant to AD (“Completed” status
here means the study has ended, and participants are no longer being examined or treated (that is,
the last participant’s last visit has occurred).

Sl. No. NCT Number Conditions Interventions Outcome Measures Phases

1

NCT00117403
(https:

//clinicaltrials.gov/
show/NCT00117403,

accessed on 20
December 2021)

AD

Drugs: Vitamin E, Vitamin C,
and Alpha-lipoic Acid

Drug: Coenzyme Q
Drug: Placebo capsules
Drug: Placebo wafers

Effect on CSF biomarkers
related to oxidative damage
change in plasma and CSF

concentrations of Aβ42
and Aβ40

Phase 1

2

NCT00090402
(https:

//clinicaltrials.gov/
show/NCT00090402,

accessed on 20
December 2021)

AD
Oxidative Stress

Dementia
Hyperlipidemia

Inflammation

Dietary Supplement: Fish Oil
Dietary Supplement:

Lipoic Acid
Other: Fish Oil Placebo

Other: Lipoic Acid Placebo

F2-isoprostane Level: Urine
F2-Isoprostanes

Change in Mini-Mental State
Exam (MMSE) Score From

Baseline to 12 Months
Change in Activities of Daily

Living/Instrumental
Activities of Daily Living
(ADL/IADL) Scores From

Baseline to 12 Months

Phase 1
Phase 2

3

NCT00678431
(https:

//clinicaltrials.gov/
show/NCT00678431,

accessed on 20
December 2021)

AD

Dietary Supplement:
Resveratrol with Glucose

and Malate
Dietary Supplement: Placebo

Alzheimer’s Disease
Assessment Scale (ADAScog)

CGIC
Phase 3

4

NCT00000173
(https:

//clinicaltrials.gov/
show/NCT00000173,

accessed on 20
December 2021)

AD Drug: Donepezil
Drug: Vitamin E Phase 3

5

NCT00951834
(https:

//clinicaltrials.gov/
show/NCT00951834,

accessed on 20
December 2021)

AD
Drug:

Epigallocatechin-Gallate
Drug: Placebo

ADAS-COG (Score 0–70)
(Baseline to treatment)

Safety and tolerability of
the verum

MMSE (Score 0–30) after 18
months compared to baseline
Time to hospitalization and
Time to death related to AD
Brain atrophy assessed by

brain MRI
Baseline-ADAS-COG and

Baseline-MMSE as covariates
CIBIC+ and WHO-QOL-Bref
Trail Making Test and MVGT

Phase 2
Phase 3

https://clinicaltrials.gov/show/NCT00117403
https://clinicaltrials.gov/show/NCT00117403
https://clinicaltrials.gov/show/NCT00117403
https://clinicaltrials.gov/show/NCT00090402
https://clinicaltrials.gov/show/NCT00090402
https://clinicaltrials.gov/show/NCT00090402
https://clinicaltrials.gov/show/NCT00678431
https://clinicaltrials.gov/show/NCT00678431
https://clinicaltrials.gov/show/NCT00678431
https://clinicaltrials.gov/show/NCT00000173
https://clinicaltrials.gov/show/NCT00000173
https://clinicaltrials.gov/show/NCT00000173
https://clinicaltrials.gov/show/NCT00951834
https://clinicaltrials.gov/show/NCT00951834
https://clinicaltrials.gov/show/NCT00951834
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Table 3. Cont.

Sl. No. NCT Number Conditions Interventions Outcome Measures Phases

6

NCT01707719
(https:

//clinicaltrials.gov/
show/NCT01707719,

accessed on 20
December 2021)

AD
Oxidative-Stress
Adrenocortical-
hyperfunction

Malondialdehyde assay
Relationship between urinary

excretion of cortisol and
levels of malondialdehyde

7

NCT00628017
(https:

//clinicaltrials.gov/
show/NCT00628017,

accessed on 20
December 2021)

AD
Mild Cognitive

Impairment

Dietary Supplement: omega-3
polyunsaturated fatty acids

(EPA+DHA)

The Clinician’s
Interview-Based Impression
of Change Scale (CIBIC-plus)
The cognitive portion of the

Alzheimer’s Disease
Assessment Scale (ADAS-cog)

Mini-Mental Status
Examination (MMSE) score

17-item Hamilton Depression
Scale (HDRS)

18-adverse events

Not Applicable

8

NCT00099710
(https:

//clinicaltrials.gov/
show/NCT00099710,

accessed on 20
December 2021)

AD Dietary Supplement:
Curcumin C3 Complex

Side effect checklist
Oxidative damage

Inflammation/gliosis
A-beta levels

Tau levels
Total plasma cholesterol, LDL

and HDL; ApoE
Plasma curcumin
and metabolites
Cognitive and

behavioral measures

Phase 2

9

NCT00597376
(https:

//clinicaltrials.gov/
show/NCT00597376,

accessed on 20
December 2021)

Subjective
Memory Loss in
Older Persons

Other: Cerefolin NAC (a
medical food)

Other: Cerefolin NAC
placebo

Six-month blood levels of
Homocysteine, Glutathione,

and the Ratio of Aβ42 to
Aβ40 (as a Percent of Baseline
Levels) After Daily Intake of

Cerefolin NAC Plus a
Multivitamin Versus a

Multivitamin Only
Tolerability of Cerefolin NAC
and a Multivitamin Versus a

Multivitamin Only
Six Month Levels of

Inflammation and Oxidative
Stress Markers (as a Percent

of Baseline Levels) After
Daily Treatment with
Cerefolin NAC and a

Multivitamin or a
Multivitamin Only

Not Applicable

10

NCT00940589
(https:

//clinicaltrials.gov/
show/NCT00940589,

accessed on 20
December 2021)

AD
Sleep Disorder

Drug: Circadin
Drug: Placebo

Change From Baseline to 24
Weeks in ADAS-cog

Change From Baseline to 24
Weeks in iADL

Change From Baseline to 24
Weeks in MMSE

Phase 2

11

NCT00000171
(https:

//clinicaltrials.gov/
show/NCT00000171,

accessed on 20
December 2021)

AD
Dyssomnias Drug: Melatonin Phase 3

https://clinicaltrials.gov/show/NCT01707719
https://clinicaltrials.gov/show/NCT01707719
https://clinicaltrials.gov/show/NCT01707719
https://clinicaltrials.gov/show/NCT00628017
https://clinicaltrials.gov/show/NCT00628017
https://clinicaltrials.gov/show/NCT00628017
https://clinicaltrials.gov/show/NCT00099710
https://clinicaltrials.gov/show/NCT00099710
https://clinicaltrials.gov/show/NCT00099710
https://clinicaltrials.gov/show/NCT00597376
https://clinicaltrials.gov/show/NCT00597376
https://clinicaltrials.gov/show/NCT00597376
https://clinicaltrials.gov/show/NCT00940589
https://clinicaltrials.gov/show/NCT00940589
https://clinicaltrials.gov/show/NCT00940589
https://clinicaltrials.gov/show/NCT00000171
https://clinicaltrials.gov/show/NCT00000171
https://clinicaltrials.gov/show/NCT00000171
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Table 3. Cont.

Sl. No. NCT Number Conditions Interventions Outcome Measures Phases

12

NCT01058941
(https:

//clinicaltrials.gov/
show/NCT01058941,

accessed on 20
December 2021)

AD
Drug: Lipoic acid and fish oil

concentrate
Drug: Placebo

Change From Baseline in
Activities of Daily Living

(ADL) at 18 Months
Change From Baseline in

Alzheimer’s Disease
Assessment Scale—Cognitive

Subscale (ADAS-cog) at
18 Months

Phase 1
Phase 2

13

NCT01370954
(https:

//clinicaltrials.gov/
show/NCT01370954,

accessed on 20
December 2021)

Early Memory
Loss
MCI
AD
VaD

Other: CerefolinNAC®

To determine if
CerefolinNAC® affects a
subject’s quality of life as

measured by the Quality of
Life-Alzheimer’s Disease

Scale (QOL-AD)
To determine overall patient

satisfaction with
CerefolinNAC® using a
9-point satisfaction scale

14

NCT01504854
(https:

//clinicaltrials.gov/
show/NCT01504854,

accessed on 20
December 2021)

AD Drug: Resveratrol
Drug: Placebo

Number of Adverse Events
Change From Baseline in

Volumetric Magnetic
Resonance Imaging (MRI)

Change in Alzheimer’s
Disease Cooperative

Study-Activities of Daily
Living (ADCS-ADL)

Comparison of the Response
to Treatment of Resveratrol
Based on ApoE Genotype

Phase 2

15

NCT00040378
(https:

//clinicaltrials.gov/
show/NCT00040378,

accessed on 20
December 2021)

AD

Drug: alphatocopherol
Drug: Selenium

Drug: Placebo replacement
for vitamin E

Drug: Placebo replacement
for Selenium

Incidence of dementia
(including Alzheimer’s

disease)

16

NCT00235716
(https:

//clinicaltrials.gov/
show/NCT00235716,

accessed on 20
December 2021)

AD
Drug: dl-alpha-tocopherol

Drug: Memantine
Drug: Placebo

Alzheimer’s Disease
Cooperative Study/Activities
of Daily Living (ADCS/ADL)

Inventory Change
From Baseline

Mini-Mental State
Examination Change

From Baseline
Alzheimer’s Disease

Assessment Scale—Cognitive
(ADAS-cog) Change

From Baseline
Neuropsychiatric Inventory

Change From Baseline
Caregiver Activity Survey

Change From Baseline
Dependence Scale: Time to
Event Analysis (Increase of

One Dependence Level)

Phase 3

https://clinicaltrials.gov/show/NCT01058941
https://clinicaltrials.gov/show/NCT01058941
https://clinicaltrials.gov/show/NCT01058941
https://clinicaltrials.gov/show/NCT01370954
https://clinicaltrials.gov/show/NCT01370954
https://clinicaltrials.gov/show/NCT01370954
https://clinicaltrials.gov/show/NCT01504854
https://clinicaltrials.gov/show/NCT01504854
https://clinicaltrials.gov/show/NCT01504854
https://clinicaltrials.gov/show/NCT00040378
https://clinicaltrials.gov/show/NCT00040378
https://clinicaltrials.gov/show/NCT00040378
https://clinicaltrials.gov/show/NCT00235716
https://clinicaltrials.gov/show/NCT00235716
https://clinicaltrials.gov/show/NCT00235716
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Table 3. Cont.

Sl. No. NCT Number Conditions Interventions Outcome Measures Phases

17

NCT01716637
(https:

//clinicaltrials.gov/
show/NCT01716637,

accessed on 20
December 2021)

AD

Biological: Etanercept
Dietary Supplement: Cur-

cum.Luteol.Theaflav.Lip.Acid,
FishOil, Quercet., Resveratr.

The difference in effects of
treatment for 6 weeks with

etanercept + nutritional
supplements versus

nutritional supplements alone
on the Mini-Mental Status

Examination (MMSE) score;
The difference in the effects of
treatment for six weeks with

etanercept + nutritional
supplements versus

nutritional supplements alone
on the Alzheimer’s Disease
Assessment Scale-Cognitive
Subscale (ADAS-cog) score;

The difference in the effects of
treatment for six weeks with

etanercept + nutritional
supplements versus

nutritional supplements alone
on the Montreal Cognitive
Assessment (MoCA) score

Phase 1

18

NCT00692510
(https:

//clinicaltrials.gov/
show/NCT00692510,

accessed on 20
December 2021)

AD

Drug: AZD3480
Drug: Placebo

Drug: Cocktail mix (Caffeine,
Bupropion, Rosiglitazone,
Omeprazole, Midazolam,

Bilirubin)

PK variables
Safety variables (adverse

events, blood pressure, pulse,
safety lab)

Phase 1

19

NCT01594346
(https:

//clinicaltrials.gov/
show/NCT01594346,

accessed on 20
December 2021)

AD
DS

Drug: Alpha-Tocopherol
Drug: Sugar Pill

The Brief Praxis Test
The Fuld Object Memory Test

New Dot Test
Orientation Test
Vocabulary Test

Behavior and Function
Clinical Global Impression

Incident Dementia

Phase 3

20

NCT01780974
(https:

//clinicaltrials.gov/
show/NCT01780974,

accessed on 20
December 2021)

Treated
Hypertension

Drug: Lipoic Acid plus
Omega-3 Fatty Acids

Drug: Placebo

Trails Making Test Part B
(Executive Function)

White Matter Hyperintensity
Volume (Brain MRI)

Phase 1
Phase 2

21

NCT01699711
(https:

//clinicaltrials.gov/
show/NCT01699711,

accessed on 20
December 2021)

DS
Dietary Supplement:

Epigallocatechin-3-gallate
(EGCG)

Change in Cognitive
Evaluation and Amyloidosis

Biomarker
Treatment compliance

Change in Biomarkers of lipid
oxidation and DYRK1A

activity biomarkers
COMT val158met genetic
polymorphism (catechol

methyl transferase) (Taqman)
Change in AST (SGOT-serum

glutamic oxaloacetic
transaminase-) and ALT
(SGPT-Serum Glutamic

Pyruvate Transaminase-)
(Pentra Autoanalyzer, and

ELISA Mercodia for LDLox)
Change in Body Composition

by electrical impedance
(TANITA-MC-180)

Changes in Neurophysiology

Phase 2

Aβ, amyloid-β; Acetylcholinesterase, AChE; AD, Alzheimer’s disease; APOE, apolipoprotein E; CSF, cere-
brospinal fluid; DS, Down syndrome; MMSE, mini-mental state examination; VaD, vascular dementia; MCI, Mild
Cognitive Impairment.

https://clinicaltrials.gov/show/NCT01716637
https://clinicaltrials.gov/show/NCT01716637
https://clinicaltrials.gov/show/NCT01716637
https://clinicaltrials.gov/show/NCT00692510
https://clinicaltrials.gov/show/NCT00692510
https://clinicaltrials.gov/show/NCT00692510
https://clinicaltrials.gov/show/NCT01594346
https://clinicaltrials.gov/show/NCT01594346
https://clinicaltrials.gov/show/NCT01594346
https://clinicaltrials.gov/show/NCT01780974
https://clinicaltrials.gov/show/NCT01780974
https://clinicaltrials.gov/show/NCT01780974
https://clinicaltrials.gov/show/NCT01699711
https://clinicaltrials.gov/show/NCT01699711
https://clinicaltrials.gov/show/NCT01699711
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9. Conclusions

With a long asymptomatic period, AD is a chronic neurodegenerative condition.
Multiple literature and evidence infer that oxidative damage or stress plays a significant
role in the pathogenesis of AD through various mechanisms and pathways. Thus, new
treatment strategies are required to either prevent or reduce oxidative damage and may
provide therapeutic efficacy against AD. Natural bioactive, often incorporated into the
diet, can become a widely adopted approach to avoid the onset of AD. Moreover, this
approach can be conjugated with approved drugs for patients with progressive AD. The
integrated system of antioxidants with multiple drugs may provide higher effectiveness.
Some antioxidants have proven positive effectors on AD, but some still need attention and
work. Moreover, there is limited data on the role of antioxidants in AD from human clinical
trials and epidemiological studies. Additionally, some antioxidants show significant effects
on an animal model but exhibit diminished efficacy on humans during clinical trials. Due to
this, there is a lot of skepticism about the success of antioxidant therapy for AD. It is quite
necessary to explore a more definitive and precise approach integrated with antioxidants
for lowering or inhibiting the progression of AD. The link between inflammation and
AD is unavoidable, so antioxidants’ integrated role in decreasing inflammation must be
considered. Thus, further advanced studies and human clinical trials are necessary to
determine and estimate the antioxidants potential for AD.
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