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Abstract

In the field of machine learning, building models and measuring their performance are two

equally important tasks. Currently, measures of precision of regression models’ predictions

are usually based on the notion of mean error, where by error we mean a deviation of a pre-

diction from an observation. However, these mean based measures of models’ performance

have two drawbacks. Firstly, they ignore the length of the prediction, which is crucial when

dealing with chaotic systems, where a small deviation at the beginning grows exponentially

with time. Secondly, these measures are not suitable in situations where a prediction is

made for a specific point in time (e.g. a date), since they average all errors from the start of

the prediction to its end. Therefore, the aim of this paper is to propose a new measure of

models’ prediction precision, a divergence exponent, based on the notion of the Lyapunov

exponent which overcomes the aforementioned drawbacks. The proposed approach

enables the measuring and comparison of models’ prediction precision for time series with

unequal length and a given target date in the framework of chaotic phenomena. Application

of the divergence exponent to the evaluation of models’ accuracy is demonstrated by two

examples and then a set of selected predictions of COVID-19 spread from other studies is

evaluated to show its potential.

Introduction

Making (successful) predictions certainly belongs among the earliest intellectual feats of mod-

ern humans. They had to predict the amount and movement of wild animals, places where to

gather fruits, herbs, or fresh water, and so on. Later, predictions of the flooding of the Nile or

solar eclipses were performed by early scientists of ancient civilizations, such as Egypt or

Greece. The latter civilization gave birth to determinism, a philosophical view that all events in

the future could be fully determined if we had knowledge of the current state of all matter and

of all laws governing that matter [1].

However, at the end of the 19th century, the French mathematicians Henri Poincare and

Jacques Hadamard discovered the first chaotic systems and that they are highly sensitive to ini-

tial conditions. Small differences in initial conditions (due to errors in measurements or

rounding errors) in such systems lead to widely diverging outcomes, rendering (precise) long-

term predictions impossible in general [2]. Chaotic behavior can be observed in fluid flow,
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weather and climate, road and Internet traffic, stock markets, population dynamics, or a

pandemic.

Since absolutely precise predictions (of not-only chaotic systems) are practically impossible,

a prediction is always burdened by an error. The smaller this error, the more valuable and

helpful the prediction, while bad predictions are not only useless, but can be even harmful [3].

The precision of a regression model prediction is usually evaluated in terms of explained

variance (EV), coefficient of determination (R2), mean squared error (MSE), root mean

squared error (RMSE), magnitude of relative error (MRE), mean magnitude of relative error

(MMRE), and the mean absolute percentage error (MAPE), etc., see e.g. [4, 5]. These measures

are well established both in the literature and research, however, they also have their limita-

tions. The first limitation emerges in situations when a prediction of a future development has

a date of interest (a target date, target time). In this case, the aforementioned mean measures of

prediction precision take into account not only observed and predicted values of a given vari-

able on the target date, but also all observed and predicted values of that variable before the tar-

get date, which are irrelevant in this context. The second limitation, even more important, is

connected to the nature of chaotic systems. The longer the time scale on which such a system

is observed, the larger the deviations of two initially infinitesimally close trajectories of this sys-

tem. However, standard (mean) measures of prediction precision ignore this feature and treat

short-term and long-term predictions equally.

Therefore, the aim of this paper is to propose an alternative approach to the evaluation of

prediction precision dealing with chaotic systems, where a prediction is related to a given tar-

get date, which utilizes the notion of the Lyapunov exponent, see [6, 7]. In analogy to the Lya-

punov exponent, a newly proposed divergence exponent expresses how much a (numerical)

prediction diverges from observed values of a given variable at a given target time, taking into

account only the length of the prediction and predicted and observed values at the target time.

The larger the divergence exponent, the larger the difference between the prediction and

observation (prediction error), and vice versa. Thus, the presented approach avoids the short-

comings mentioned in the previous paragraph.

This new approach is demonstrated in the framework of the COVID-19 pandemic. After its

outbreak, many researchers have tried to forecast the future trajectory of the epidemic in terms

of the number of infected, hospitalized, recovered, or dead. For the task, various types of pre-

diction models have been used, such as compartmental models including SIR, SEIR, SEIRD

and other modifications, see e.g. [8–12], artificial neural network models [13–16], Gompertz

and logistics functions [17–19], ARIMA models [13, 20], and many other approaches, see e. g.

[21–24]. A survey on how deep learning and machine learning is used for COVID-19 forecasts

can be found e.g. in [25, 26]. General discussion on the state-of-the-art and open challenges in

machine learning can be found e.g. in [27].

Since a pandemic spread is, to a large extent, a chaotic phenomenon, and there are many

forecasts published in the literature that can be evaluated and compared, the evaluation of the

COVID-19 spread predictions with the divergence exponent is demonstrated in the numerical

part of the paper.

The data sources for this study included the Worldometers website [28], University of John

Hopkins resource center [29] and CDC (Centers for Disease Control and Prevention) database

[30].

The paper is organized as follows: in Section 2 Lyapunov and divergence exponents are

introduced and their application is demonstrated with examples, Section 3 provides a numeri-

cal evaluation of selected models’ predictions, Section 4 is devoted to a discussion and the Con-

clusions section closes the article.

PLOS ONE The evaluation of COVID-19 prediction precision

PLOS ONE | https://doi.org/10.1371/journal.pone.0252394 May 28, 2021 2 / 9

within the Institutional Support for Long-term

Development of a Research Organization in 2021.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0252394


Lyapunov and divergence exponents

The Lyapunov exponent quantitatively characterizes the rate of separation of (formerly) infini-

tesimally close trajectories in dynamical systems. Formally, the Lyapunov exponent is defined

as follows [6, 7]:

Definition 1

Let δZ(t) be a separation vector of two trajectories in a given phase space at the time t and let
δZ(0) be an initial separation vector of the two trajectories at the time t = 0. Then, the Lyapunov
exponent λ is defined via the following equation:

dZðtÞ ¼ elt � dZð0Þ: ð1Þ

Since physical systems are usually multi-dimensional, Lyapunov exponents from each

dimension of a phase space form a spectrum, and the predictability of a system is determined

by the Maximal Lyapunov exponent (MLE). The MLE is defined as follows [6, 7]:

lMLE ¼ lim
t!þ1

lim
dZ0!0

1

t
ln
dZðtÞ
dZ0

�
�
�
�

�
�
�
� ð2Þ

The higher the Lyapunov exponent, the more chaotic the given dynamical system. Lyapu-

nov exponents for classic physical systems are provided e.g. in [6, 7, 31, 32].

A prediction of a pandemic spread and the real data about the spread can be analogically

considered using two trajectories in a one-dimensional phase space (a <+ space) which start at

the time t = 0, when both trajectories are identical, and then they inevitably diverge at some

time t> 0.

Drawing upon the analogy with the Lyapunov exponent in (1–2), we introduce a “diver-

gence exponent” λ.

Definition 2

Let P(t) be a prediction of a pandemic spread (given as the number of infections, deaths, hospi-
talized, etc.) in the time t> 0, and let N(t) be a true (observed) value of a pandemic spread in the
time t> 0. Then, the divergence exponent λ is given as

PðtÞ ¼ ejljt � NðtÞ; ð3Þ

which, after rearrangement, gives

l ¼

ln
PðtÞ
NðtÞ

� �

t

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

: ð4Þ

The larger the λ, the worse the prediction. In the case of an absolutely precise prediction,

λ = 0.

For the sake of comparisons with the λ, one of the most common measures of prediction

precision is the mean relative error (MRE):

MRE ¼
1

n

Xi¼n

i¼1

PðiÞ � NðiÞ
NðiÞ

�
�
�
�

�
�
�
� ð5Þ

where P(i) denotes the predicted value and N(i) the observed value at the point i.
The following (extremely oversimplified) example shows how the λ is calculated and one of

its virtues.
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Consider the pandemic spread from Table 1. At the beginning (t = 0) the variable N(t),
which denotes the observed number of new daily infection cases, is set to 1 unit (for example

1,000 people). Two prediction models, P1, P2 were constructed to predict future values of N(t),
for five days ahead. While P1 predicts exponential growth by the factor of 2, P2 predicts that

the spread will exponentially decrease by the factor of 2. After the predictions are made, reality

shows that the spread is constant in time for t 2 {1, 2, 3, 4, 5}.

Now, let’s evaluate the precision of the model P1: l ¼
lnðPðtÞNðtÞÞ

t

�
�
�
�

�
�
�
� ¼

lnð32
1
Þ

5

�
�
�

�
�
�t = 0.693. Values of

the prediction P1(t) grow exponentially by the factor δ = 2. The factor δ can be easily obtained

from the λ, see relation (3), as follows:

d ¼ ejlj ¼ 2 ð6Þ

Therefore, from the divergence exponent λ the coefficient δ can be reconstructed, and vice

versa. The coefficient δ is a base of a corresponding power series expressing the divergence of a

prediction.

Now, consider the prediction P2(t). This prediction is arguably equally imprecise as the pre-

diction P(t), as it provides values halving with time, while P(t) provided doubles. As can be

checked by formula (4), the divergence exponent for P2(t) is 0.693 again. Therefore, over-esti-

mating and under-estimating predictions are treated equally.

However, when we calculate the MRE of both predictions, we obtain: MRE(P1) = 6.5, while

MRE(P2) = 0.766, which suggests that the prediction P2 is much better.

Another virtue of the evaluation of prediction precision with a divergence exponent is that

it enables a comparison of predictions with different time frames, which is demonstrated in

the following example.

Consider a fictional pandemic spread from Table 2. Again, in the time t = 0, N(0) = 1, the

prediction model P3 is built and gives predictions for t from 1 to 8 days. We evaluate λ and

MRE:

lðP3Þ ¼
ln PðtÞ

NðtÞ

� �

t

�
�
�
�
�
�

�
�
�
�
�
�
¼

ln 256

1

� �

8

�
�
�
�

�
�
�
� ¼ 0:693:

MREðP3Þ ¼
1

8

2 � 1

1
þ

4 � 1

1
þ :::

� �

¼ 62:75:

Table 2. Fictional pandemic spread. The variable N(t) denotes observed new daily cases, P(t) denotes the prediction of new daily cases, and t is the number of days.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

N(t) 1 1 1 1 1 1 1 1 1

P3(t) 1 2 4 8 16 32 64 128 256

https://doi.org/10.1371/journal.pone.0252394.t002

Table 1. Fictional pandemic spread. The variable N(t) denotes observed new daily cases, P(t) denotes the prediction

of new daily cases, and t is the number of days.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

N(t) 1 1 1 1 1 1

P1(t) 1 2 4 8 16 32

P2(t) 1 1/2 1/4 1/8 1/16 1/32

https://doi.org/10.1371/journal.pone.0252394.t001
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According to the MRE value, the prediction model P3 is much worse than P1 (see Example

1), since its MRE value is much higher. However, an attentive reader may have noticed that

the model P3 is exactly the same as the model P1, but provides a prediction for three additional

days (on the contrary, the divergence exponent λ provides the same value for P1 and P3).

The root of the problem with different values of MRE for the predictions P1 and P3, which

are in fact identical, rests in the fact that MRE does not take into account the length of a predic-

tion, and treats all predicted values equally (in the form of the sum in (5)). However, the length

of a prediction is crucial in forecasting real chaotic phenomena, since prediction and observa-

tion naturally diverge more and more with time, and the slightest change in the initial condi-

tions might lead to an enormous change in the future (Butterfly effect). A weather forecast one

hour ahead is easy, a forecast for three days ahead is difficult, a forecast for a week ahead is

extremely difficult, and a forecast for one month ahead is impossible due to the chaotic behav-

ior of the Earth’s atmosphere. Therefore, since MRE and similar measures of prediction accu-

racy do not take into account the length of a prediction, they are not suitable for the evaluation

of chaotic systems, including a pandemic spread.

A comparison of selected COVID-19 predictions

In this section, selected predictions about the COVID-19 pandemic are evaluated and com-

pared via the divergence exponent λ (and the relative error RE) introduced in the previous sec-

tion. There have been hundreds of predictions of the COVID-19 spread published in the

literature so far, hence for the evaluation and comparison of predictions only one variable was

selected, namely the total number of infected people (or total cases, abbr. TC), and selected

models with corresponding studies are listed in Table 3. The selection of these studies was

based on two merits: first, only real predictions into the future with the clearly stated dates D0

and D(t) (see below) were included, and, secondly, the diversity of prediction models was

preferred.

The data in Table 3 include the model’s number, name of the lead author, model’s specifica-

tion, forecasted country, date when the prediction was made (D0), target date of the prediction

(Dt), length of the prediction in days (t), predicted number of total cases at a target day (P(t)),
observed number of total cases at a target day (N(t)), divergence exponent (λ) and relative

error (RE).

Fig 1 provides a graphical comparison of results in the form of a scatterplot, where each

model is identified by its number, and models are grouped into five categories (distinguished

by different colors): artificial neural network models, Gompertz models, compartmental mod-

els, Verhulst models and other models. Two models’ outputs (models 13 and 24) were identi-

fied as outliers, and were removed from Fig 1.

As can be seen both from Table 3 and Fig 1, the most successful prediction with respect to λ
was provided by models (8) and (28), while the worst prediction came from (24). The most

successful model with respect to RE was model (8) followed by model (2), while the worst pre-

dictions came from models (13) and (24).

Pearson’s correlation coefficient between λ and RE was 0.55, indicating a medium strength

of the linear relationship between both variables.

Discussion and limitations of the proposed approach

The evaluation of models’ prediction precision by the divergence exponent (4) was illustrated

in Section 3. Twenty-eight models’ predictions with target dates published recently in the liter-

ature were evaluated and compared, see Table 3 and Fig 1. The primary purpose of this evalua-

tion was to show the application and potential of the divergence exponent, not to draw some
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Table 3. The evaluation of prediction precision for selected models.

Study Country Model D0 D(t) t N(t) P(t) λ RE

(1) Mazurek [18] World Gompertz May 2 July 13 72 13,631,634 8,000,000 0.0074 0.413

(2) Mazurek [18] UK Gompertz May 2 June 30 59 283,253 278,100 0.0003 0.018

(3) Mazurek [18] Russia Gompertz May 2 June 3 34 432,277 300,000 0.0107 0.306

(4) Li, M. [21] Italy PSO March 13 March 31 18 105,776 100,000 0.0031 0.055

(5) Li, M. [21] Iran PSO March 13 March 31 18 44,605 33,000 0.0167 0.260

(6) Li, L. [22] World Eureqa March 1 May 22 82 5,522,504 5,746,000 0.0005 0.040

(7) Koczkodaj [33] World LS March 18 March 31 13 878,998 1,000,000 0.0099 0.138

(8) Sanchez-Cab. [23] Spain Verhulst April 4 April 30 26 231,531 230,000 0.0003 0.007

(9) Sanchez-Cab. [23] Italy Verhulst April 4 April 30 26 205,449 200,000 0.0010 0.027

(10) Sanchez-Cab. [23] France Verhulst April 4 April 30 26 129,581 189,000 0.0145 0.459

(11)Sanchez-Cab. [23] UK Verhulst April 4 May 30 56 247,171 160,000 0.0078 0.353

(12) Bedi [9] USA SEIRD Sep. 9 Dec. 31 113 20,306,221 12,337,873 0.0044 0.392

(13) Bedi [9] India SEIRD Sep. 9 Dec. 31 113 10,267,283 33,994,849 0.0106 2.311

(14) Bedi [9] Brazil SEIRD Sep. 9 Dec. 31 113 7,619,970 6,947,629 0.0008 0.088

(15) Bedi [9] Russia SEIRD Sep. 9 Dec. 31 113 3,159,297 1,576,715 0.0062 0.501

(16) Arias [17] USA Gompertz April 5 April 25 20 980,753 1,000,000 0.0010 0.020

(17) Sun [12] USA D-SEIQ April 27 May 27 30 1,783,730 1,375,000 0.0087 0.229

(18) Sun [12] Italy D-SEIQ April 27 May 27 30 231,138 207,000 0.0037 0.104

(19) Sun [12] France D-SEIQ April 27 May 27 30 145,746 156,000 0.0023 0.070

(20) Sun [12] Germany D-SEIQ April 27 May 27 30 181,895 177,000 0.0009 0.027

(21) Gupta [11] India SEIR May 10 May 31 21 190,648 174,293 0.0043 0.086

(22) Gupta [11] India Regression May 10 May 31 21 190,648 205,768 0.0036 0.079

(23) Tamang [14] USA ANN May 9 May 18 10 1,464,232 1,955,865 0.0289 0.336

(24) Tamang [14] France ANN May 9 May 18 10 140,036 342,272 0.0894 1.444

(25) Devaraj [13] World ARIMA May 9 June 30 52 10,417,063 9,493,908 0.0018 0.087

(26) Devaraj [13] World LSTM May 9 June 30 52 10417063 9400000 0.0020 0.098

(27) Devaraj [13] World SLSTM May 9 June 30 52 10,417,063 9,900,000 0.0010 0.050

(28) Devaraj [13] India SLSTM May 9 June 30 52 3,679,782 3,800,000 0.0003 0.033

https://doi.org/10.1371/journal.pone.0252394.t003

Fig 1.

https://doi.org/10.1371/journal.pone.0252394.g001
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general conclusions about models’ performances in predicting the COVID-19 spread. This

would require significantly more data. Since the pandemic is not over, there are undoubtedly

many forecasting studies yet to be published, hence a comprehensive study on models’ perfor-

mance with respect to the COVID-19 spread is conceivable in the near future.

Though the evaluation of models’ prediction precision with the divergence exponent can be

applied in many other scientific fields where chaotic phenomena emerge, it has its limitations.

It should be used only under specific circumstances, namely when a (numerical) characteristic

of a chaotic system is predicted over a given time-scale and a prediction at a target time is all

that matters. There are many situations where these circumstances are not satisfied, hence the

use of the divergent exponent would not be appropriate. Consider, for example, daily car sales

to be predicted by a car dealer for the next month. Suppose that the car dealer sells from zero

to three cars per day, with two cars being the average daily sale. In this case, all days of the next

month matter, and it is unrealistic to assume that sales at the end of the next month may reach

hundreds or thousands, thus diverging substantially from the average.

In addition, standard measures of prediction precision (or rather prediction error), such as

MAPE, have a nice interpretation in the form of a ratio, or a percentage. If, for example,

MAPE = 8%, it means that a prediction deviates from an observation by 8% and an expert can

conclude that the prediction was successful, since, according to the rule of thumb by Lewis [34],

a prediction with MAPE under 10% is considered highly accurate. On the other hand, a predic-

tion with MAPE over 50% is considered inaccurate [34]. Currently, there is no similar rule of

thumb for the divergence exponent, so knowing its value does not provide a modeller with

explicit information about the model’s performance. Information acquired from the divergence

exponent provides, however, a way for a relative comparison of different models’ performances.

Conclusions

In this paper, a new measure of prediction precision for regression models and time series, a

divergence exponent, was introduced. This new measure has two main advantages. Firstly, it

takes into account the time-length of a prediction, since the time-scale of a prediction is crucial

in the so-called chaotic systems. Secondly, it evaluates the model’s prediction performance

only with respect to the end time of the prediction (a target time, or a target date), and the final

deviation of the prediction from the observation.

Models’ performance evaluation with the divergence exponent was illustrated on predic-

tions of the COVID-19 spread published recently in the literature. Altogether, twenty-eight

different models were compared. Verhulst and Gompertz models performed among the best,

but no clear pattern revealing the types of models that performed best or worst was found.

The future research can focus on a comparison of different kinds of machine learning mod-

els in different environments where chaotic systems prevail, including various fields, such as

epidemiology, engineering, medicine, or physics.
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