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Abstract: This work is devoted to the development and optimization of the parameters of graphene-
based sensors. The graphene films used in the present study were grown on semi-insulating 6H-SiC
substrates by thermal decomposition of SiC at the temperature of ~1700 ◦C. The results of mea-
surements by Auger and Raman spectroscopies confirmed the presence of single-layer graphene
on the silicon carbide surface. Model approach to the theory of adsorption on epitaxial graphene
is presented. It is demonstrated that the Green-function method in conjunction with the simple
substrate models permit one to obtain analytical results for the charge transfer between adsorbed
molecules and substrate. The sensor structure was formed on the graphene film by laser. Initially,
a simpler gas sensor was made. The sensors developed in this study demonstrated sensitivity to
the NO2 concentration at the level of 1–0.01 ppb. The results obtained in the course of development
and the results of testing of the graphene-based sensor for detection of protein molecules are also
presented. The biosensor was fabricated by the technology previously developed for the gas sensor.
The working capacity of the biosensor was tested with an immunochemical system constituted by
fluorescein and monoclonal antibodies (mAbs) binding this dye.

Keywords: graphene; SiC; sublimation; Auger and Raman spectroscopies; Green-function method;
graphene gas sensor; grapheme biosensor

1. Introduction

The discovery of graphene and the study of its properties is one of the brightest pages
in the development of solid-state physics over the past 15 years. This discovery sparked
the emergence of a whole class of two-dimensional structures, of which graphene is still
the most-studied material. The exfoliation method, used by K. Novoselov and A. Geim in
their first work on the preparation and study of graphene, is reduced to the separation of
a one-atom-thick flake from a graphite crystal. Until now, graphene samples obtained by
this technology have had the best structural perfection. It was on these samples that the
most important results were obtained, which confirmed the two-dimensional nature of this
material. However, their small size and irregular and unpredictable geometrical shape in
advance do not allow the exfoliation method in industry.

Graphene films obtained by thermal destruction of the surface of silicon carbide are
the second in terms of structural perfection. Thus, it is possible to obtain structures up
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to industrially important dimensions; in this case, the dimensions are limited only by the
initial SiC substrate, i.e., up to 6 inches (150 mm) in diameter.

Theoretical and experimental studies show that graphene has a unique set of electro-
physical properties:

• High mobility of charge carriers in combination with their low concentration;
• The maximum possible ratio of surface area to volume;
• Low noise level.

The combination of these properties leads to the fact that the addition of a minimal
amount of impurity to the graphene surface can noticeably change the conductivity of the
graphene film. Thus, graphene is a very promising material for the manufacture of various
types of sensors.

In this work, we discuss the technology of forming a biosensor based on a graphene
film obtained by thermal destruction of the surface of silicon carbide. A brief review of
the model approach to the theory of adsorption on epitaxial graphene is presented. New
results obtained by detecting various types of biological molecules with a graphene sensor
are analyzed.

2. Theoretical Background: Models of Adsorption on Epitaxial Graphene

After appearing in a previous paper [1], where it was shown that using graphene
as a substrate makes it possible to detect a single gas molecule, a great interest in the
performance of graphene-based gas sensors [2–4] and biosensors [4–9] arose. To fulfill
this program, corresponding adsorption theory is needed (see, for example, [10–13] and
references on the earlier papers therein). Most of the theoretical works are first-principal
numerical calculations, based on the different versions of (DFT). Here we will describe
model approaches to the problem using Green’s function method [14].

We begin with the adsorption on single-layer free-standing graphene. As far as we
know, the first corresponding model was put forward in [15,16]. In this model, graphene’s
density of state (DOS) is given as ρG(ω) = c|ω|/t2 for |ω| ≤ t, c/|ω| for t < |ω| ≤ 3t
and 0 for |ω| > t, where ω is the energy variable, t is the nearest-neighbor hopping
energy, c = 2/(1 + 2 ln 3) is the normalized factor, and the zero energy corresponds to the
Dirac point. It was proposed that the adsorbed atom or molecule can be considered as
one-electron (one-hole) adparticle, characterized by single orbital εa, whose coupling to
substrate is Va. This model gives adparticle’s DOS as the Lotentz-type function of the form

ρa(ω) =
1
π

Γa(ω)

(ω− εa −Λa(ω))2 + Γ2
a(ω)

(1)

where quasilevel’s width and shift functions are Γa(ω) = πV2
aρG(ω) and

Λa(ω) = π−1P
∫ ∞
−∞ Γa(ω′)(ω−ω′)−1dω′, where P means principal integral value (the

exact expression for Λa(ω) is given in [15,16]).
At zero temperature the occupation number na of adparticle’s quasilevel is given

by the sum of the band contribution nb =
∫ EF
−3t ρa(ω)dω and local state contribution

nl = |1− ∂Λ(ω)/∂ω|−1
ωl

, where EF is the Fermi level and the energy of local stateωl is the
root of the equation ω− εa −Λ(ω) = 0 for ω < −3t [15]. If initially (before adsorption)
level εa was occupied, then the adparticle charge is Za = 1− na; if initially this level was
empty, then Za = −na. In the first case, an electron hops from adparticle onto graphene
(donor), and in the second case, a hole hops from adparticle onto graphene (acceptor).
Value of charge transfer is equal to |Za|.

Now turn to the epitaxial graphene (epigraphene) model description. The simplest
approach is described in [17]. The first step here is the low-energy approximation for
the free-standing graphene electron dispersion: ε(q) = ±(3at/2)|q|, where a = 1.42 Å is
the nearest-neighbor distance, q is the wave-vector separation from the Dirac point vector
K =

(
2π/3

√
3a
)(

1,
√

3
)

[18]. Such a dispersion gives the density of states ρ′G(ω) = 2|ω|/ξ2
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for |ω| ≤ ξ and 0 for |ω| > ξ, where cut-off energy ξ =
√

2π
√

3t. It is easy to see that ρ′G(ω)
is the simplified version of the ρG(ω) from [15,16].

General expression for the epigraphene DOS is given by

ρ̃G(ω) =
ΓG(ω)

πξ2

[
ln

(Ω∓ ξ)2 + Γ2
G(ω)

Ω2 + Γ2
G(ω)

+
2Ω

ΓG(ω)

(
arctan

Ω
ΓG(ω)

− arctan
Ω∓ ξ
ΓG(ω)

)]
(2)

Here Ω = ω − E0 − ΛG(ω), ΛG(ω) = π−1P
∫ ∞
−∞ ΓG(ω

′)(ω−ω′)−1dω′,
ΓG(ω) = πV2

Gρsub(ω), where VG is the energy of the graphene-substrate interaction and
ρsub(ω) is the substrate DOS. In what follows, we will consider SiC as a substrate and use
the Haldane–Anderson model ρsub(ω) = ρ for |ω− E0| ≥ Eg/2 and 0 for |ω− E0| < Eg/2,
where E0 is the center of energy gap Eg position relative to the Dirac point. This DOS
corresponds to the shift function ΛG(ω) =

(
ΓG/π

)
ln
∣∣(ω− E0 − Eg/2

)
/
(
ω− E0 + Eg/2

)∣∣,
where ΓG = πV2

Gρ. Estimations of E0 values for the different SiC polytypes are given in [19].
There are two limiting regimes for the graphene–substrate interaction: Strong coupling,

when t/ΓG << 1, and weak coupling, when t/ΓG >> 1. In the first case, ρ̃G(ω) tends
to the DOS of adsorbed single carbon adatom, while in the second case ρ̃G(ω)→ ρG(ω)
(quasi-free-standing graphene). More rigorous expressions for ρ̃G(ω) in both regimes are
given in [17]. It is clear that only the second case is of practical interest. Thus, below we
will consider only weak coupling regime.

It is easy to understand now that for the DOS of particle adsorbed on epigraphene,
formula (1) has to be rewritten in the form

ρ̃a(ω) =
1
π

Γ̃a(ω)(
ω− εa − Λ̃a(ω)

)2
+ Γ̃

2
a(ω)

(3)

where Γ̃a(ω) = πṼ
2
aρ̃G(ω), Λ̃a(ω) = π−1P

∫ ∞
−∞ Γ̃a(ω′)(ω−ω′)−1dω′, and Ṽa is the

adparticle–epigraphene interaction. Then the occupation number of adparticle’s quasilevel
is ña =

∫ EF
−∞ ρ̃a(ω)dω. It was shown in [20] that the electronic state of the adparticle and

charge transfer are affected by both the graphene and substrate. The prevailing effect
should be determined for each particular adsorption system.

Up to now, we considered adsorption of a single particle at zero temperature. For
finite coverages Θ = Na/NML, where Na is the surface concentration of adparticles and
NML is their concentration in monolayer, one has to include adparticles interactions in
overlayer. The most important is the dipole–dipole repulsion, which can be taken into
account by the replacement of εa to εa(Θ) = εa− ζΘ3/2Za(Θ), where the dipole-interaction
constant ζ = 2e2l2N3/2

MLA, e is the elementary charge, l is the adparticle bond length, and
A ∼ 10 [21]. It is worthy to note that all the interactions of adsorbed particles lead to the
decrease of |Za(Θ)|. The role of the finite temperature effect on Za is discussed in [22].

The effect of adsorption on the substrate appears in mainly two effects. One is the
change ∆ϕ in the work function due to the charge transfer between an adparticle and
the substrate. As a result of this transfer, the adparticle acquires charge Za, which may
favor (Za > 0) or prevent (Za < 0) the escape of an electron from the substrate, thus,
lowering (∆ϕ < 0) or raising (∆ϕ > 0) the work function. In the former case, the
electron passes from donor adparticle to the substrate; in the latter, it leaves the substrate
for acceptor adparticle. The second effect due to adsorption is the change in the surface
conductivity of the substrate ∆G. The reason for this effect is twofold. First, the surface
carriers’ concentration ns changes as follows: The donor (acceptor) adparticles increase
(decrease) the conductivity of the n-type substrate or, conversely, decrease (increase) the
conductivity of a p-type substrate. Second, the adsorbed particles (adparticles) serve as
additional scattering centers, which generally must influence the surface mobility µs of the
carriers. The systematic studies of the simultaneous changes in the surface conductivity
and work function began with experimental works on gas molecules adsorption on metal
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oxides [23,24]. A theory that relates quantities ∆G and ∆ϕwas developed in [25,26], where
the following equation was obtained:∣∣∣∣∆G(Θ)

∆ϕ(Θ)

∣∣∣∣ = µs
4πel

≡ η (4)

Analysis [25,26] of experimental data [23,24] have shown that ratio η does not ex-
plicitly depend on the coverage Θ. Thus, we have arrived at the equation ∆G = eµs∆ns
+ ens∆µs ≈ eµs∆ns. We suppose that this equation is of great importance for the resistive-
type gas sensors. It is important to underline that the quantities ∆G and ∆ϕ have to be
measured simultaneously.

In [27], we have applied Equation (3) to the analysis of experimental data on gas
molecules adsorption on carbon nanostructures (see corresponding references in [14]). This
analysis demonstrates a number of inconsistences of published experimental results with
Equation (3). Some additional theoretical estimates are given in Appendix A.

3. Graphene Film Production Technology

Interest in graphene flared up after the publication of K.S. Novoselova, A.K. Geim
et al., In which they demonstrated the possibility of obtaining graphene sheets using
micromechanical cleavage of bulk crystalline graphite [28]. This was primarily due to the
unique physical and mechanical properties of graphene, such as high thermal and electrical
conductivity, high mobility of charge carriers, high Young’s modulus, combination of
optical transparency with good electrical conductivity, etc. The listed properties are very
attractive from the point of view of possible applications of the material as a basis for
nanoelectronics devices [29,30].

Until now, graphene samples obtained by this technology have the best structural
perfection. It was on these samples that the most important results were obtained, which
confirmed the two-dimensional nature of this material. However, their small size, irregular,
and unpredictable geometrical shape in advance do not allow their use in industry. Graphene
films obtained by thermal destruction of the surface of silicon carbide are the second in
terms of structural perfection. Thus, it is possible to obtain structures up to industrially
important dimensions; in this case, the dimensions are limited only by the initial SiC
substrate, i.e., up to 6 inches (150 mm). The orientation of the obtained graphene films is
specified by a SiC substrate, which makes it possible to obtain graphene films with a large
area with a preferential azimuthal orientation of domains. This method is based on the
dissociative evaporation (sublimation) of SiC components from the surface of a single crystal
and the formation of a graphene film from residual carbon atoms [31] The phenomenon
of the formation of a carbon film on the SiC surface has been theoretically analyzed for a
long time in [32]. The main advantages of the method for growing graphene on SiC can
be attributed to the absence of the need for subsequent transfer of the grown film to an
insulating substrate, since growth can be performed on high-resistance SiC substrates with a
resistivity of >108 Ω cm. Schottky diodes based on the graphene/SiC structure, obtained by
thermal destruction of SiC substrates, are characterized by high uniformity of characteristics.

Graphene films grown by CVD on a metal foil are in third place in terms of their
structural perfection [33]. This method makes it possible to obtain graphene of large
dimensions, with a quality slightly lower than that obtained by thermal destruction. The
disadvantage of the CVD method is the need for subsequent transfer of the material to
a dielectric substrate. This procedure increases the chain of technological operations for
creating the final device and can also negatively affect the structural perfection of the
transferred graphene.

The main disadvantage of the method of thermal destruction of the SiC surface is the
high cost of SiC substrates. However, the high structural perfection of graphene obtained
by the thermal destruction method, as well as the possibility of growing graphene on
high-resistance substrates, neutralize this disadvantage.
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Dissociative evaporation or sublimation of SiC is one of the most important processes
that determine the growth of crystals and epitaxial films of this material from its own vapors.
The work of S.K. Lilov [34] presents a detailed thermodynamic analysis of equilibrium
processes in the gas phase during sublimation of SiC in the temperature range of 1500–3150 K.
This leads to the fact that the dissociative evaporation of SiC is accompanied by the formation
of free carbon in the condensed phase. This carbon accumulates on the surface of the
sublimating crystal (substrate or batch grain), covering it with a continuous layer [33]. The
process of graphitization of the SiC surface is a fairly common phenomenon that often
manifests itself in the growth of bulk SiC crystals by the PVT method. Therefore, to develop
the design of a technological unit for the production of graphene on a SiC surface by the
sublimation method, the general concept of an equipment designed for the growth of SiC
crystals by this method was used. For the specific task of growing carbon films with a
thickness of up to 1 nm, the design of the technological unit was developed, which allows
precise control of the main technological parameters. The setup diagram is shown in Figure 1.
Figure 2 shows a photograph of the setup for the growth of graphene on the SiC surface.
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An important step in obtaining a graphene film is the selection of a SiC substrate that
will be used for the thermal destruction process.

The first criterion for choosing substrates is their crystal perfection. To obtain homoge-
neous graphene, substrates with a homogeneous crystal structure are required; therefore,
it is preferable to use single-crystal SiC substrates. Various structural defects, such as
dislocations, micropores, stacking faults, polytypic inclusions, low-angle boundaries, etc.,
can also negatively affect the uniformity of graphene growth on the substrate surface;
therefore, it is necessary to choose substrates with a minimum density of structural defects.

The second criterion for choosing substrates is the surface roughness on which
graphene growth is planned. Today there are several stages of surface treatment of SiC
wafers: Grinding, mechanical polishing, and chemical-mechanical polishing.

The third criterion for choosing substrates is the crystallographic orientation of the
substrate surface, as well as the angle of deflection of the substrate surface from the basal
plane (the so-called misorientation angle α). In our experiments, we used 6H and 4H-SiC
substrates with a minimum misorientation angle (α ~ 0), the growth was carried out on the
(0001) face (Si face). We used semi-insulating (high-resistivity substrates), since they did
not require the transfer of a graphene film onto a non-conducting substrate in the further
manufacture of sensors.

Modern commercial SiC wafers are in standard sizes of 2, 3, 4, or 6 inches. The use
of such large samples for laboratory research is not profitable, because, firstly, the cost
of the material is quite high, and secondly, the characterization of large samples takes a
lot of time. Therefore, in order to carry out experiments on developing the technology of
graphene growth, the wafers were cut using special equipment for cutting semiconductor
substrates into typical specimens 5 × 5 mm2 and 11 × 11 mm2 in size.

The growth of graphene on the SiC surface is accompanied by the sublimation of the
SixCy components from the substrate surface. Various surface contaminants or surface
irregularities of the substrate can contribute to the sublimation process, leading to nonuni-
form sublimation of molecules from the substrate surface. For the successful development
of graphene growth technology, a necessary condition is a high-quality preparation of the
SiC surface, which reduces the effect of contamination and surface inhomogeneities on the
sublimation process.

Pre-growth etching in a hydrogen atmosphere was used for preliminary cleaning of
the SiC substrate surface. The method has been known for a long time [8,9] and is used in
various technological and epitaxial processes associated with silicon carbide. The essence
of the technology lies in high-temperature heating of the SiC substrate in a hydrogen
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atmosphere. At high temperatures, free carbon formed on the SiC surface binds with
hydrogen to form volatile chemical compounds.

To enable the etching of SiC substrates “in situ” before graphene growth, this technol-
ogy was adapted to a technological unit for the growth of graphene on SiC. The adaptation
consisted in changing the composition of the gas mixture in which the etching is performed,
as well as in the selection of a certain technological mode of etching.

Typically, for etching, the chamber is purged with either pure hydrogen [35] or with
a mixture of hydrogen with other gases, for example, C3H8 [36]. In our case, we used a
gas mixture containing argon (volume fraction 95%) and hydrogen (volume fraction 5%).
As known, argon is an inert gas, so it does not take part in chemical processes that occur
on the surface of the substrate when it is heated. The choice of a gas mixture with a low
percentage of hydrogen content is primarily due to safety considerations when conducting
experiments using flammable and explosive gases.

4. Study of the Parameters of the Obtained Epitaxial Films

The grown graphene samples were characterized by using a combination of three
methods: Raman spectroscopy, atomic-force microscopy (AFM), and Kelvin-probe force
microscopy (KPFM).

Raman spectroscopy is widely used as a graphene characterization tool. Analysis of
the data obtained by these methods allows one to determine such properties of graphene
as number of layers, degree of defectiveness, strain and doping levels, and many more.
Figure 3 shows an array of Raman spectra obtained by mapping of a sample area of
12 × 12 µm2 with spatial resolution of 1 µm. The measurements were carried out at
room temperature using a T64000 Raman spectrometer (Horiba Jobin-Yvon, Lille, France)
equipped with a confocal microscope. The spectra were excited using the 532 nm Nd:YAG
laser. (Laser Quantum, Stockport, UK). To avoid heating and damage to the sample, the
laser power was limited to 4 mW. Two main features in the presented spectra, namely the
sharp and intense G and 2D lines, are originating from the graphene film [37], while the
complex background with several maxima in the 1300–1600 cm−1 range corresponds to the
buffer layer, which is an interface carbon layer located between the graphene film and the
4H-SiC substrate [38].

Figure 3. (a) Array of Raman spectra obtained from an area of 12 × 12 µm2. The spectra are presented after subtraction of
the 4H-SiC substrate contribution. N denotes the serial number of the spectrum measured during the mapping process.
(b) Raman map of 2D line full width at half maximum (FWHM) distribution.
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The D line, the appearance of which is indicative of presence of structural defects [39],
in our case is indistinguishable from the background originating from the buffer layer. This
fact indicates the high quality of the graphene film under study.

Double-resonance nature of the 2D line allows one to easily distinguish monolayer
graphene from bi- and multilayer by analyzing the shape of this line. Figure 3b shows
the map of the 2D line FWHM distribution. In the regions with FWHM (2D) between 35
and 40 cm−1, this line had a symmetric Lorentzian form, which pointed to the monolayer
nature of graphene in corresponding areas [37]. In the remaining 10% of the map, where the
2D line FWHM was increased, the line had an asymmetric shape similar to that reported
for bilayer graphene [10] and could be fitted with four Lorentzians.

An AFM topography map of the 12× 12 µm2 area of the sample is shown on Figure 4a.
The surface topography and the surface potential distribution were examined with an
NtegraAURA (NT-MDT, Moscow, Russia) scanning probe microscope under atmospheric
conditions, with NSG11 (NT-MDT, Moscow, Russia) semi-contact probes having a conduct-
ing Pt coating. The measurements were performed using a standard two-pass technique
in which the surface topography was recorded in the first pass. In the second pass, the
surface potential was recorded with amplitude modulation and a probe-surface distance
maintained at 20 nm. The surface of the sample is composed of elongated steps with height
varying from 1 to 2 nm. The root-mean square (RMS) parameter, which characterizes the
surface roughness, is 0.41 nm.
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Distribution of surface potential is also capable of providing information on graphene
thickness. It is known that the surface potential of bilayer graphene is ~100 mV higher than
that of monolayer [40]. The KPFM map demonstrating the surface potential distribution
in a 12 × 12 µm2 area of the studied sample is shown in Figure 4b. According to the
difference of the surface potential values between dark and bright areas, the dark areas
should be attributed to monolayer graphene, and the bright areas, to the bilayer one.
Bilayer graphene, as follows from the KPFM data, covers approximately 10% of the sample,
which is in agreement with the results derived from Raman spectroscopy data.

5. Development and Testing of a Graphene-Based Gas Sensor

It was shown in [1] that graphene is capable of sensing the adsorption of even one
molecule. As you know, the resistance of a conductor is determined by both the concentra-
tion of charge carriers and their mobility. The adsorbed gas molecules, depending on their



Materials 2021, 14, 590 9 of 23

charge, behave like donors or acceptors. Those change the concentration of mobile charge
carriers. In addition, adsorbates create additional scattering centers and change the carrier
mobility. As a result, depending on the type of adsorbed molecule, a decrease or increase
in the resistance of the film is observed.

To clean the graphene detector, a current of about 10 mA is passed through it this is
enough to heat the structure so that the gas particles are desorbed. This cleaning mechanism
does not affect the degree of efficiency of gas detection: The process of sorption-desorption
of gases is completely reversible, that is, it is a reusable detector. It should be noted that,
in [1], for the manufacture of the sensor, graphene obtained by the exfoliated method was
used. The graphene films obtained by this technology have the best structural perfection,
however they have small sizes and irregular shapes, which makes this technology un-
promising for industrial production. The sensor structure was formed on a graphene film
using laser photolithography [41,42] (Figure 5). Excess graphene was removed from the
substrate surface by etching in an oxygen-argon plasma. Ohmic contacts Ti/Au (5/50) nm
were prepared by explosive photolithography after deposition of metals on the photoresist
surface by electron beam evaporation. The sensor chip was fixed to the holder together
with two resistors. One of the resistors was used to measure the temperature, and the other
was used as a heater.
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Figure 5. Gas sensor chip. The light area is graphene, the dark area is the ohmic metal contacts with
attached wires.

Purified air was used as a carrier gas. Sensor sensitivity (r) was expressed as a
percentage, %, and is defined as the relative change in the sample resistance in the presence
of a recorded gas in the gas mixture:

г= (R − Ro)/Ro (5)

where R is the sensor resistance when gas is supplied; Ro is the initial resistance in the
absence of a detectable gas in the incoming air flow.

Figure 6 shows the relative changes in the resistance of a graphene-based sensor in the
presence of NO2 in the gas mixture (periods of gas supply are indicated as light gray stripes)
at 20 ◦C. Since the NO2 desorption rate at room temperature is very low, annealing at
110 ◦C was used to return the sensor to its original state after each exposure period [43,44].

For NO2 concentration of 10 ppb, the amplitude of the sensor response was about 3%
when exposed to the gas mixture for 1 h Such sensitivity of the sensors is quite sufficient
for environmental monitoring.

It should be noted that one of the serious disadvantages of the graphene gas sensor
is the lack of selectivity. Indeed, it is impossible to tell from the change in conductivity
which molecule was adsorbed on the graphene surface. Moreover, some molecules give
contributions of the opposite sign, so the total change in resistance can be close to zero.
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6. Graphene-Based Biosensor: Detection of Influenza Viruses
6.1. Concept of Graphene/SiC Biosensors

A distinctive feature of the graphene film is that the molecules or a group of atoms
adsorbed on its surface act as a donor or an acceptor, leading to a change in its electronic
state (resistance), which can be detected [45]. This specificity of the graphene film, in
principle, can be used to create biosensors for the registration (diagnosis) of extremely low
concentrations of biomolecules associated with various socially significant diseases at an
early stage (hepatitis, oncology, HIV or hemolysis, viral diseases (influenza, coronavirus)).

However, the graphene film itself is not a selectively sensitive sensor and can attach
various substances and biomolecules to its surface. To use graphene as a biosensor, a special
treatment is used, which increases the selectivity of chemical reactions on the graphene
surface and creates additional covalent bonds for chemical reactions with other molecules
that need to be detected.

The antibody–antigen (Ab-Ag) interaction is fundamental to the functioning of the
human immune system [46]. Reactions Ab-Ag is the reaction of specific binding of the
antigen with its corresponding antibodies, leading to the formation of an immune complex.
The interaction of Ab-Ag is carried out according to the principle (key-lock) of the three-
dimensional spatial complementarity of the outer electron clouds of the antibody and the
antigen molecules. In vitro, these reactions are the basis of many immunological methods
and are widely used in laboratory practice.

The concept of the graphene/SiC biosensor developed in his work is based on the
creation of conditions for a controlled Ab-Ag interaction on the graphene surface in
graphene/SiC chips. It is this interaction that leads to a change in the electronic state
of graphene (its resistance), which can be registered. The developed concept of a biosensor
is universal for the detection of protein compounds and viruses Only complementary
(related) antibodies and antigens take part in the interaction reaction, which achieves
the selectivity of the biosensor. To provide biosensing ability, graphene/SiC films are
undergoing multistep processing and treatments.

6.2. Graphene/SiC Sensor Preparation

Graphene films were grown by thermal decomposition of semi-insulating substrates
(0001) ± 0.25◦ 4H-SiC a size of 11 × 11 mm2. The growth process was carried out in
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a graphite crucible with induction heating in an argon atmosphere (720–750 Torr) at a
temperature of 1700–1800 ◦C [47]. The method allows one to obtain high-quality graphene
films on a high-resistance substrate of arbitrarily large areas, which is important to process
graphene chips (dies) for sensing applications.

The presence of the graphene monolayer on the SiC substrate was confirmed by
Raman spectra. A specific feature of the morphology of SiC surface after graphene growth
is the presence of terraces on the surface, the width and height of which depends on the
conditions of graphene growth. As example, Figure 7 shows three-dimensonal (3D) (AFM)
images of graphene/SiC samples. A set of elongated terraces having different width are
clearly seen in the morphology image of the surface. These steps can facilitate attachment
to graphene of large (several nanometers) antibodies of viruses.
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After the graphene film growth and characterization, graphene/SiC chips (dies) were
processed for manufacturing biosensors. The processing includes standard photolithog-
raphy using dry etching, metallization, cutting the substrate into individual chips, and
mounting them on a holder. A rectangular chip topology was formed on the surface of a
graphene/SiC sample by laser photolithography in combination with ion-reactive etching
in argon and etching in oxygen plasma. Ti/Au contacts (5 nm/50 nm) were created by
vacuum deposition and explosive photolithography. Then, the graphene/SiC sample was
cut into individual 1.5 × 2 mm2 chips, which after that were mounted on a holder and
welded with gold wires. After that, all current-carrying parts of the holder and contact pads
of the chip were covered by a protective varnish. The protective varnish is a compound
based on thermo reactive resins with various fillers and additives (VT-25-200). Sensing
area of the chip was 1 × 1 mm2 or so.

The current-voltage (I-V) characteristics of the manufactured chips were linear, which
indicated ohmic contacts and the absence of potential barriers on the contacts that could
affect the measurement results.

For biosensor applications, additional processing or functionalization of the graphene
surface in the chip takes place to make it susceptible to interaction with biological molecules.
There are several approaches to the modification of chemical reactions on the surface
of graphene, one of them is associated with the formation of a covalent bond between
graphene and aromatic hydrocarbon groups [48]. This approach, which is called the cova-
lent functionalization of graphene (covalent method), we used in this work. It is chemically
reliable and provides ample opportunities for influencing the electronic properties of
a graphene film.

In this project, the process of functionalization of the graphene surface in the chip will
be carried out in two stages by creating covalent bonds during the deposition of nitrophenyl
groups (nitrobenzene, C6H4NO2) and their subsequent reduction to phenylamine groups
(aminobenzene C6H4NH2) using a two-steps cyclic voltammetry (CV) process [48].
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Figure 8 shows the cyclic voltammograms of the functionalization process. To deposit
nitrobenzene at the first step of CV process, a graphene chip mounted on a holder was
placed in an anhydrous electrolyte based on a mixture of 4-nitrophenyldiazonium tetraflu-
oroborate (4NDT) in acetonitrile (C2H3N) (0.025 mg in 50 mL of acetonitrile) and tetraflu-
oroborate (tetrabutylammonium) tetrafluoroborate (TBA 1.65 g in 50 mL of acetonitrile).
The electrochemical reaction between the graphene surface in the chip and the anhydrous
electrolyte was carried out in a cell, of which the design allows purging the electrolyte and
the space above it with a clean and dry inert gas (argon) to remove traces of moisture from
the ambient air. The process was carried out according to a three-electrode scheme. The
graphene surface in the chip was a working electrode, a platinum plate served as a counter
electrode, and a silver wire (Ag/Ag+) served as a reference electrode.
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Figure 8. Cyclic voltammograms of the functionalization of the graphene surface in a chip. (a) The process of attaching
of nitrophenyl groups (a silver wire was the reference electrode), (b) the process of reduction of nitrophenyl groups to
phenylamine groups (the reference electrode was a standard silver chloride Ag/AgCl electrode, Esr-10101). Three scan
cycles were used.

The reaction of attaching of nitrobenzene occurred during cycling of the potential at the
working electrode (the graphene surface) in the range from 0 mV to −600 mV and vice versa.
In this case, the process current was recorded. Figure 8a shows typical cyclic voltammograms
of the addition (binding) process of the nitrophenyl groups. A decrease in the current with
each subsequent cycle indicated the completion of the reaction on the surface of the working
electrode. Usually, three cycles were used, until the current was reduced by several times.
Then the samples were rinsed in acetonitrile and dried with pure argon.

At the second step of CV process, the reduction of nitrobenzene attached to graphene
to aminobenzene was carried out already in an aqueous solution of 0.1 M KCl and ethyl
alcohol (9:1) in an open flask also according to a three-electrode scheme. The electrodes
were: A standard silver chloride reference electrode (Ag/AgCl) Esr-10101 (“Measuring
equipment”, Moscow, Russia), the graphene surface in the chip was a working electrode
(anode), and a platinum plate counter electrode. The reduction reaction was also carried
out in the mode of cycling the potential on the working electrode from 0mV to −1000 mV
and vice versa. After the process, the samples were washed in deionized water and dried
in argon. Typical CVs of reduction processes are shown in Figure 7b. A decrease in the
current with each subsequent cycle indicated the completion of the reaction on the surface
of the working electrode. After functionalization of graphene, the chips were stored in a
desiccator in an argon atmosphere.

After functionalization, the deposition (or immobilization) of antibody molecules took
place on the created covalent bonds. Then, the graphene surface was passivated (blocked)
in a solution of 0.1% BSA in PBS (bovine serum albumin solution in phosphate-buffered
saline) for 1 hour, followed by washing in pure PBS for 5 minutes. After that, the graphene
chip is ready to apply as a biosensor.
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Figure 9 shows an image of the prepared biosensor and the principle of its operation.
The detection principle is to create conditions for the antibody-antigen (AB-AG) reaction on
the prepared graphene surface. The AB-AG reaction changes the electronic state of graphene
(changes the value of the current flow in the graphene channel between two contacts), which
can be recorded by electronic devices. In this work, we used the antigen–antibody interaction
on a functionalized graphene surface in graphene/SiC chips to investigate their sensitivity
for early diagnosis of socially significant diseases like influenza viruses.Materials 2021, 14, x FOR PEER REVIEW 13 of 23 
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6.3. Influenza Viruses Sensing Experiments

First, the response of the chip (current through the chip) was investigated during the
reaction of complementary antibodies and antigens of the influenza A virus (antibody
A-antigen A) on the prepared graphene surface. We used strains of influenza viruses
obtained from the Smorodintsev Research Institute of Influenza, St. Petersburg, Russia:
influenza virus A/California/07/09 (H1N1pdm09) and influenza virus B/Brisbane/46/15.

At the beginning, antibodies to influenza A or B virus were immobilized on chips with
functionalized graphene surface for 3 h at 37 ◦C. The monoclonal antibodies to influenza A or
B viruses used in the experiment are directed to nucleoprotein (NP), a highly conserved major
protein of the influenza virus associated with RNA (ribonucleic acid). Then, the graphene
surface was passivated (blocked) in a solution of 0.1% BSA in PBS (bovine serum albumin
solution in phosphate-buffered saline) for 1 h, followed by washing in pure PBS for 5 min
The graphene chips (sensors) prepared in this way were used in the detection experiments.

Before the sensing experiments, two groups of dilutions were prepared in PBS for
influenza A virus and influenza B virus at different concentrations from 1 × 10−15 g/mL to
1 × 10−10 g/mL (1 fg/mL, 10 fg/mL, 100 fg/mL, 1 pg/mL, 10 pg/mL, and 100 pg/mL for
total protein), 6 dilutions and 12 tubes in total. Since it was initially assumed that chips based
on graphene monolayers could be very sensitive sensors, the range of selected concentrations
of antigens to be detected was chosen below the detection limit of the PCR (polymerase chain
reaction) test widely used in enzyme-linked immunosorbent assay for detecting viruses.
This should confirm the advantage of graphene sensors in terms of sensing ability. The
experiments described below showed that this choice of the ultra-low concentration range
of antigens was justified, and the chips showed their sensitivity down to a concentration
of 1 × 10−15 g/mL (1 fg/mL). Note that the work did not set the task of determining the
sensitivity limit of the chips being developed for the detection of influenza viruses.
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First, the direct reaction of the complementary antibody and antigen on the surface of
graphene in the chip was investigated. The prepared graphene sensor was first incubated
with pure PBS (washing solution, blank), then its response (current passing through the
chip) was recorded at DC conditions when, depending on the sensor resistance, a sequence
of DC voltage of 20 mV, 40 mV, 60 mV, and 80 mV, was applied between chip contact pads
for 20–30 s. Then, a graphene sensor was incubated into a tube with the PBS solution
of an antigen A (or B) virus for 20–30 s and its response was recorded. The chip was
sequentially incubated in the different antigen virus solutions one by one from low to high
concentration of the antigen virus. First, the direct reaction of complementary antibodies
and antigen on the surface of graphene in a chip was investigated. An example of the
timing diagrams of the chip response during its sequential incubation in PBS solutions
of influenza A virus (AV) antigens is given in Figure 4. EG313-4(A)-AV means a chip
(EG313-4) with an antibody of the influenza A virus (A) that was incubated during the
experiment in solutions of the antigen of the influenza A virus (AV) and its response was
recorded at various DC voltages on the chip. After the antibody A virus immobilization,
no special treatment of the graphene surface was occurred.

Figure 10 shows the chip response (current through the chip) from solutions with
antigens A virus of different concentrations. The responses are parallel and near stable
during measurements at DC voltage of 40 mV supplied to the chip. The responses from
antigen solutions in PBS are higher than responses from pure PBS solution. This means that
(1) the reaction of antigen attachment to the graphene surface leads to an increase in the
conductivity of the graphene channel between the contacts in the chip and (2) the chip has a
potential to detect lower that 1 fg/mL concentration of the influenza A virus in PBS solution.
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The data in Figure 10a allow plotting the dependence of the chip response on the
antigen concentration in the buffer solutions, which are shown in Figure 10b. There is
a general tendency to an increase in the chip response (current through the chip) with
an increase in the concentration of influenza virus A antigen over the entire range of
investigated concentrations.

The data in Figure 10b are well approximated by a logarithmic function with parameter
R2 = 0.96. The dependency in Figure 10b was plotted on a semi-logarithmic scale, so the
data fit looks like a straight dashed line. Parameter R2 becomes smaller for a DC voltage
of 80 mV due to the scatter of the data. We think this scatter reflects the specificity of
reactions on graphene surfaces with terraces, which, according to AFM scanning, have the
width of up to 1100 nm for chips of this series (EG313). The logarithmic dependence was
observed earlier for graphene-based biosensor when studying its response on egg albumin
solutions in PBS [49]. Note, it was assumed that an excess amount of unsaturated bonds
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(immobilized antibody A virus) remained on the graphene surface of for the attachment
of antigen A virus for every incubation of the chip in antigen A virus solutions up to the
highest used concentrations. Results in Figure 10 have similar trends at all voltages applied
to the chip (see Figures A1 and A2 in Appendix B). Discussion of the results of subsequent
experiments will be carried out for data obtained at a voltage of 60 mV on the chip.

In continuation of these studies, additional passivation of graphene in an albumin
solution (0.1% BSA in PBS) was performed after immobilization of the antibody during
the preparation of the chips for the next experiments. In addition, the chips had different
widths of terraces on the graphene surface. The timing diagrams of the chip’s response
(current through the chip) were similar to those shown in Figure 10, so they are not shown
in the separate figure. However, these diagrams were used to plot the dependence of
the chip response depending on the antigen concentration in PBS solutions shown in
Figure 6. The concentration dependences of the chip response (current through the chip)
were plotted for two chips with different widths of terraces on the graphene surface.

The designations of the chips in this work at different stages of experiments are
presented in the Table A1 in Appendix B. The designation of the EG313-41(A)Al-AV chip
in Figure 11 means that it is a chip (EG313-41) with an antibody of the influenza A virus
(A) and passivated in albumin solution (Al) that was incubated during the experiment
in solutions of the antigen of the influenza A virus (AV) in PBS. The same designation
is used for chip EG331-61(A)Al-AV. The chips in these experiments had different widths
(and heights) of terraces on the graphene surface, which, as it turned out, influenced the
responses of the chips.
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EG313-41 chip, which has a terrace on the surface of graphene about 1 µm wide, shows
the dependence of the increased response of the chip (current through the chip) with the
concentration of antigen A in the solution that is well approximated by logarithmic function
with the parameter R2-0.94. In contrast, the chip with wider terraces (up to 4 microns)
showed a decrease in chip response with an increase in the concentration of virus A virus
antigen with a clear saturation of the response at concentrations of 1 × 10−12 g/mL and
above. In contrast, EG331-61 chip with wider terraces (up to 4 microns) showed a decrease
in chip response with an increase in the concentration of virus A virus antigen with a clear
saturation of the response at concentration of 1 × 10−12 g/mL (1 pg/mL) and above.

During the functionalization of graphene, unsaturated covalent bonds are created on
its surface that promote to the attachment (immobilization) of the necessary antibodies. At
the detection process, only complementary (related) antigens can react with immobilized
antibodies noticeably changing the electronic state of graphene. This is the main principle
of operation the sensors that are being developed. The interaction of the remaining non-
complementary molecules with the graphene surface does not have the character of a
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chemical reaction, but rather occurs due to weak van der Waals forces, possibly due to
defects and imperfections of the graphene/SiC substrate composition. This interaction can
be further screened to reduce its effect on the electronic properties of graphene by passivating
the graphene surface with neutral molecules like albumin. However, the attachment of
molecules to the graphene surface that are non-complementary to the immobilized antibody
can have a significant effect on the resulting chip response (current through the chip).

We believe that a decrease and saturation of the chip response (current through the chip)
in Figure 11b indicates an insufficient number of covalent bonds with immobilized antibodies
on the graphene surface in the EG331-61 chip with very wide terraces (up to 4 µm).

Too small of a number of sites with an immobilized virus A antibody creates conditions
when the virus A antigens, the concentration of which is higher than the A virus antigens,
are forced to directly attach to the graphene surface due to van der Waals forces, thus
significantly affecting the nature of the change in the chip response. Apparently, the
graphene surface treatment and graphene functionalization conditions should take into
account the specifics of graphene morphology, in particular, the width and height of terraces
on its surface.

Special experiments were performed to demonstrate specificity of the antibody–antigen
interaction on the graphene surface. The experiments were carried out in two stages.

The procedure for the first stage of the experiment was the same as described above
with one exception. The only difference was that the prepared chip with the immobilized
antibody was immersed (incubated) in solutions of non-complementary antigens of viruses.
In other words, the chip with the immobilized antibodies of the virus A was immersed in
solutions with the antigens of the virus B and its response (current through the chip) was
recorded. Similarly, the chip with the immobilized antibodies of virus B was incubated in
solutions with the antigen of the virus A.

At the second stage of the experiment, the same chip was immersed for 20 s in other
solutions but with virus B antigens (second incubation) that were complementary (related)
to the antibody virus B immobilized on the chip. The chip response (current through
the chip) was also recorded. After the experiments, the responses of graphene chip (current
through the chip) were compared and studied.

As before, the timing diagrams of the chip response (current through the chip) obtained at
both stages of the experiment were similar to those shown in Figure 10, which made it possible
to plot the dependence of the chip response on the antigen concentration in PBS solutions.

Figure 12 shows the concentration dependences obtained for three chips at the first
and second stage of experiments. The chips differed in the width of the terraces on the
graphene surface. Similar to already noted earlier, the designation of the EG260-9(B)Al-AV
means that it is a chip (EG260-9) with an antibody of the influenza B virus (B) and pas-
sivated in albumin solution (Al) that was incubated in solutions of the antigen of the
influenza B virus (BV) in PBS during the first stage of the experiment. The designation of
the EG260-9(B)Al-AV-BV means that it is a chip (EG260-9) after the first stage of the experi-
ment (EG260-9(B)Al-AV) that was incubated in solutions of the antigen of the influenza
B virus (BV) in PBS during the second stage of the experiment.

Figure 12a–c shows the data for the first stage of the experiment, when the antibody
immobilized on the graphene surface in the chip was non-complementary to the antigen in
the PBS solution. Since the reaction of non-complementary antibodies and antigen should
not occur due to the fundamental principles of these reactions [50,51], then, as expected,
there is no obvious relationship in these figures, but there is a scatter of the response values
over the entire range of the studied antigen concentrations. In this case, the spread between
the maximum and minimum response values for the EG260-9 chip with narrow terraces
(400–600 nm) reaches less than 200 nA, and reaches 530–550 nm for other chips with a large
terrace width.
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In this case, the spread between the maximum and minimum response values for
the EG260-9 chip with narrow terraces (400–600 nm) reaches less than 200 nA, and up to
530–550 nm for other chips with large terraces width.

The results of the second stage of the experiments are shown in Figure 12d–f. In
this experiment, the interaction of complementary antibodies on the graphene surface
and antigen in PBS solutions took place. For all chips, the magnitude of the response
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increased with the concentration of antigens and showed a clear dependence, which was
well approximated by the logarithmic function with the parameter R2 0.9–0.97.

For the EG260-9 chip results in Figure 12d, a saturation of the response was observed
at the highest studied antigen concentration of 1 × 10−10 g/mL (100 pg/mL), which is
possibly due to the saturation of antibodies on the graphene surface by the reaction with
antigens in a PBS solution. When approximating the experimental results, this point was
not taken into account.

For the EG313-15 chip with moderately wide steps on the surface (1 µm), a similar
logarithmic dependence was observed in Figure 12f over the entire range of investigated
concentrations of virus B antigen in PBS solutions from 1 fg/mL to 100 pg/mL.

The scatter of the data reduced the parameter R2 to 0.9 when approximating the
experimental results. It should be noted that in this study the EG313 series chips most
often showed the dependence of the response on the concentration of antibodies A or B in
the form of a logarithmic function (parameter R2 more than 0.9) over the entire range of
investigated concentrations.

The EG332-13 chip in Figure 12f with the widest terraces on the graphene surface (2 µm)
in this experiment showed a markedly increased response (current through the chip) measured
at the lowest antigen concentration of 1 × 10−15 g/mL (1 fg/mL) in PBS solution. A similar
maximum response value was observed for the EG331-61 chip in Figure 11b with terraces up
to 4 µm wide when incubated in an antigen solution with the lowest concentration.

We attribute this feature to the fact that in highly dilute solutions the antigen interacts
not only with immobilized complementary antibody molecules on the surface, but also
directly deposited on the graphene surface if the sites with antibodies are located at a great
distance from each other or there are simply few of them. The presented results for chips
with wide steps in Figures 11b and 12b prove this assumption.

Note also that the passivation of the graphene surface in chips with albumin is neces-
sary rather to saturate the covalent bonds that have not attached the antigen than to passi-
vate the graphene surface [52]. Real passivation is required with neutral protein molecules
to reduce the influence of foreign molecules on the chip response and to maximize the
sensor response.

In conclusion, a series of experiments on the detection of virus antigens A and B with
chips (sensors) based on graphene monolayer films on SiC was carried out. The sensitivity
of the chips for the detection of diluted solutions of virus antigens in PBS solutions in the
concentration range from 1 × 10−15 g/mL to 1 × 10−10 g/mL is shown.

The specificity of the reaсtion antibody A—antigen B and antibody B—antigen A on
the graphene surface was demonstrated. The results confirm the principle of operation of
the sensor based on the reaction of interaction of a complementary antibody and an antigen
on the graphene surface. The surface morphology of a graphene monolayer, in particular
the width of characteristic terraces, affects the response of the chip (current through the
chip) when detecting influenza viruses.

7. Conclusions

The advent of graphene opened a new page in solid state physics—the production and
study of two-dimensional materials. The development of research rather quickly raised the
question of the possibility of practical application of these materials. It was obvious that
the method of mechanical exfoliation, which produced the first samples of graphene, was
not suitable for industrial production.

In this work, we considered the most promising technology for producing graphene
films, namely, thermal destruction of the silicon carbide surface. This technology makes it
possible to obtain films with a sufficiently high structural perfection, and when using semi-
insulating SiC, there is no need to transfer the grown graphene to a dielectric substrate. To
create devices, one can use post-growth technologies common for semiconductor production.

The presence of electrophysical parameters of graphene such as the maximum ratio of
area to volume, a low concentration of carriers in combination with their high mobility, and
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a low noise intensity makes it possible to obtain supersensitive resistive sensors on its basis.
The practical application of graphene gas sensors is hindered by the lack of selectivity in
the registration of various gases. The use of an antigen—antibody pair allows one to solve
the problem of biosensor selectivity and opens up very wide possibilities for the use of
graphene-based sensors in medicine and biology. This approach may lead to the creation
of portable biosensors capable of detecting diagnostically significant markers of diseases in
biological fluids in the express analysis mode.
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Appendix A. Some Theoretical Estimates

It is shown in [53] that the graphene’s Dirac point εD practically coincides with the
center of 4H-SiC energy gap E0(Eg = 3.23 eV), i.e., εD = E0 = 0. For the adsorption of
the NO2 molecule on 4H-SiC we have A− EC= 0.75 eV, EV − I = −3.88 eV, where EC(V) is
the bottom (top) conduction (valance) band, A = 9.78 eV and A = 2.42 eV are ionization
energy and electron affinity [54]. Since level I lies rather deeply and overlap with the
epigraphene valence band it is the affinity level that takes part in charge transfer. Thus,
we take εa = −A + E0 = 2.365 eV. It is clear that the NO2 molecule adsorbed on 4H-SiC
manifests itself as the acceptor.

For the rough estimations of the order of charge transfer we put ρ̃G(ω) ≈ 2|Ω|/ξ2 for
|Ω| ≤ ξand 0 for |Ω|> ξ, where Ω =ω−ΛG(ω), ΛG(ω) =

(
ΓG/π

)
ln
∣∣(ω−Eg/2

)
/
(
ω+Eg/2

)∣∣.
Then we find the rootω∗ of the equationω− εa− Λ̃a(ω) = 0 (see (3)), where, in accordance

with the ρ̃G(ω) approximation, we put Λ̃a(ω) ≈ 2
(

Ṽa/ξ
)2
ω ln

[
ω2/

∣∣∣ξ2−ω2
∣∣∣]. This gives

ω∗ ≈ εa + 2
(

Ṽa/ξ
)2
εa ln

[
ε2

a/
(
ξ2 − ε2

a

)]
∼ εa, ρ̃a(ω) ≈ π−1ΓG/

[
(ω−ω∗)2 + Γ2

G

]
and

na ≈ ΓG/π(ω∗ − EF) << 1, where inequalitiesω∗ − EF >> ΓG andω∗+ ξ >> ΓG have
been taken into account. Thus, we obtain Za ≈ −ΓG/π(ω∗ − EF). The same estimates are
valid for the C6H5NO2 and C6H5NH2 molecules, which characterized by A≈ 1 eV [55]
and εa ≈ 3.785 eV. It is worthy to note that charge transfer for the bilayer epigraphene is
greater than for the monolayer graphene [56].
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Appendix B. Graphene-Based Biosensor Supplementary Data

Figure A1. The response of the EG313-4(A)-AV chip (current through the chip) depending on the concentration of the virus
A antigen in the PBS solution at different DC voltage on the chip: (a) 20 mV, (b) 40 mV, (c) 60 mV, (d) 80 mV from 10 mV to
60 mV. The data are taken from the timing charts in Figure 2. The dashed line shows the approximation of the data by a
logarithmic dependence. The applied potential to the chip, the approximation equation, and the R2 parameter are shown on
each graph. The approximation parameter R2 increases from 0.84 to 0.97 with increasing potential at the chip.
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Figure A2. Timing diagrams of the current through the EG313-4 chip when it is dipped (incubated) in PBS solutions with
the virus A (AV) antigen of various concentrations from 1 fg/mL to 10 100 pg/mL and when DC potential of 40 mV is
applied to the chip. (a–d) diagrams of the current through the chip at different potentials on the chip on an enlarged scale.
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Table A1. Designation of chips in experiments for the detection of influenza A and B viruses.

No Chip Designation Graphene Surface Treatment in the Chip

1 EG260-9, EG313-4, EG313-15, EG313-41, EG331-61,
EG332-13 Chip with functionalized graphene surface

2
EG313-4(A), EG313-41(A), EG331-61(A), EG332-13(A) Chip from #1 with incubated influenza A virus antibody on the

surface of functionalized graphene

EG260-9(B), EG313-15 (B) Chip from #1 with incubated influenza B virus antibody on the
surface of functionalized graphene

3 EG260-9(B)Al, EG313-15 (B)Al, EG313-41(A)Al,
EG331-61(A)Al, EG332-13(A)Al Chip from #2 passivated with bovine albumin (0.1% BCA in PBS)

4a

EG260-9(B)Al-AV,
EG313-15 (B)Al-AV,
EG313-41(A)Al-AV,
EG331-61(A)Al-AV

Chip from #3, which was sequentially dipped into solutions of the
influenza A virus in PBS at the first stage of the experiment

4b EG332-13(A)Al-BV Chip from #3, which was sequentially dipped into solutions of the
influenza B virus in PBS at the first stage of the experiment

5a

EG260-9(B)Al-AV-BV
EG313-15 (B)Al-AV-BV,
EG313-41(A)Al-AV-BV,
EG331-61(A)Al-AV-BV

Chip from #4a, which was sequentially dipped into solutions of
the influenza B virus in PBS at the second stage of the experiment.

5b EG332-13(A)Al-BV-AV Chip from #4a, which was sequentially dipped into solutions of
the influenza B virus in PBS at the second stage of the experiment.
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