
REVIEW ARTICLE
published: 23 May 2013

doi: 10.3389/fgene.2013.00091

Role of extrachromosomal histone H2B on recognition of
DNA viruses and cell damage
Kouji Kobiyama1,2, Akira Kawashima3,4, Nao Jounai 1,2, FumihikoTakeshita1,2, Ken J. Ishii 1,2,Tetsuhide Ito5

and Koichi Suzuki 3*
1 Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
2 Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan
3 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
4 Division of Bioimaging Sciences, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
5 Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan

Edited by:
Silvia Carolina Galvan, Universidad
Nacional Autónoma de México,
Mexico

Reviewed by:
Yi Huang, University of Pittsburgh,
USA
Silvia Carolina Galvan, Universidad
Nacional Autónoma de México,
Mexico

*Correspondence:
Koichi Suzuki , Laboratory of
Molecular Diagnostics, Department
of Mycobacteriology, Leprosy
Research Center, National Institute of
Infectious Diseases, 4-2-1 Aoba-cho,
Higashimurayama-shi, Tokyo
189-0002, Japan.
e-mail: koichis@nih.go.jp

Histones are essential components of chromatin structure, and histone modification plays
an important role in various cellular functions including transcription, gene silencing, and
immunity. Histones also play distinct roles in extrachromosomal settings. Extrachromo-
somal histone H2B acts as a cytosolic sensor to detect double-stranded DNA (dsDNA)
fragments derived from infectious agents or damaged cells to activate innate and acquired
immune responses in various cell types. It also physically interacts with interferon (IFN)-β
promoter stimulator 1 (IPS-1), an essential adaptor molecule that activates innate immu-
nity, through COOH-terminal importin 9-related adaptor organizing histone H2B and IPS-1
(CIAO), resulting in a distinct signaling complex that induces dsDNA-induced type I IFN
production. Such a molecular platform acts as a cellular sensor to recognize aberrant
dsDNA in cases of viral infection and cell damage. This mechanism may also play roles
in autoimmunity, transplantation rejection, gene-mediated vaccines, and other therapeutic
applications.
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INTRODUCTION
Epigenetic modifications of histones, the primary protein com-
ponent of chromatin, contribute to diverse homeostatic cellular
activities such as transcriptional regulation, chromosome con-
densation (mitosis), apoptosis, and DNA repair (Bradbury, 1992;
Koshland and Strunnikov, 1996; Rogakou et al., 2000; Fernandez-
Capetillo et al., 2004). Histones are divided into two groups based
on their principal functions. Histones H2A, H2B, H3, and H4 are
known as the core histones. Two of each core histone form the
histone octamer, which genomic DNA wraps around to form a
nucleosome (Luger et al., 1997). Histone H1, the linker histone,
binds and rearranges the DNA between nucleosome units (linker
DNA) to assist chromatin compaction. Interestingly, histones are
present in cytosol (Kobiyama et al., 2010) as well as in the nucleus,
mitochondria (Konishi et al., 2003), and cell surface (Radic et al.,
2004), particularly during viral infections, apoptosis, and cell dam-
age. Histone H2B transits in and out of the nucleosome more
rapidly than other core histones, such as H3 and H4. Thus, about
3% of total H2B is exchanged within 6 min (t 1/2), ∼40% within
130 min, and∼50% by 8.5 h (Kimura, 2005). Histones have micro-
bicidal activity in neutrophil extracellular traps (NETs), which are
composed of DNA, elastase, and histones. Treatment of NETs with
histone neutralizing antibodies resulted in reduced bactericidal
activity against species such as Shigella flexneri and Staphylococus
aureus (Brinkmann et al., 2004). Thus, these “extrachromoso-
mal” histones play important roles in physiological conditions,

including innate and adaptive immune responses. We recently
reported that extrachromosomal histone H2B is involved in the
recognition of cytosolic double-stranded DNA (dsDNA) gener-
ated by DNA viruses (non-self) and genomic DNA from damaged
cells (self) (Kobiyama et al., 2010; Kawashima et al., 2011a).

DNA-MEDIATED IMMUNE RESPONSE
In 1963, Alick Isaacs found that nucleic acids, both DNA and RNA,
strongly induce innate immune responses, such as type I interferon
(IFN) production (Isaacs et al., 1963; Rotem et al., 1963). Although
this finding generated a great deal of excitement in the field of
immunology at that time, it was forgotten or largely ignored until it
was shown that unmethylated CpG DNA stimulates immune cells
to produce cytokines (Tokunaga et al., 1984; Krieg et al., 1995). As
a result, most immunologists presumed that unmethylated CpG
DNA was the essential element within self and non-self DNA that
activated innate immunity. Toll-like receptor 9 (TLR9) was sub-
sequently identified as a cellular receptor for unmethylated CpG
DNA in the activation of innate immune responses in immune
cells, such as dendritic cells (DCs), B cells, and macrophages
(Hemmi et al., 2000, 2003). In the meantime, dsDNA indepen-
dent of unmethylated CpG motifs or any other specific sequence
was shown to up-regulate the expression of genes related to the
immune response (Suzuki et al., 1999). In particular, genomic
dsDNA released by injured cells induces maturation of antigen
presenting cells and adaptive immune responses (Ishii et al., 2001).
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Furthermore, TLR9-dependent and -independent IFN-α produc-
tion is induced in response to herpes simplex virus-1 (HSV-1)
infection (Hochrein et al., 2004). It was later confirmed that the
right-handed helical structure (B-form) of DNA is the component
responsible for induction of robust type I IFNs in both immune
and non-immune cells through TLR9-independent recognition
and signaling cascades (Ishii et al., 2006; Stetson and Medzhitov,
2006).

The harmful effects of aberrant DNA have been shown in
relation to the function of enzymes that digest DNA (DNases).
Thus, hepatic macrophages in DNase II-deficient mice failed to
digest DNA from engulfed nuclei of erythroblasts and exhibited
robust production of type I IFN, which resulted in severe ane-
mia and development of rheumatoid arthritis (RA)-like symptoms
in a TLR9-independent manner (Yoshida et al., 2005; Kawane
et al., 2006). DNase I and DNase III knockout mice showed
systemic lupus erythematosus (SLE)-like symptoms and inflam-
matory myocarditis, respectively (Napirei et al., 2000; Yasutomo
et al., 2001; Morita et al., 2004). The functional mutations
of DNase I and DNase III in humans have also been associ-
ated with several autoimmune disorders, such as SLE (Yasutomo
et al., 2001; Lee-Kirsch et al., 2007b), Aicardi–Goutieres syndrome
(Crow et al., 2006), familial chilblain lupus (Lee-Kirsch et al.,
2007a), and retinal vasculopathy with cerebral leukodystrophy
(Richards et al., 2007). Thus, DNA-induced immune responses are
involved in the prevention of both microbial infection and autoim-
mune responses. These findings also suggest that normal cells are
equipped with innate machinery that senses and removes aber-
rant genomic DNA fragments before they produce pathological
effects.

CYTOSOLIC SENSORS FOR DNA FRAGMENTS AND THEIR
METABOLITES
Several proteins have been identified as DNA sensors that rec-
ognize aberrant cytosolic DNA fragments and their metabolites.
These sensors are involved in the elimination of invasive pathogens
and the induction of inflammation. In most cases, recognition
of cytosolic DNA by these sensors results in induction of innate
immune responses through several key proteins such as stimulator
of interferon genes (STING) and TANK-binding kinase 1 (TBK1)
(Ishii et al., 2006; Ishikawa and Barber, 2008). STING and TBK1
are also essential factors in the immunogenicity of plasmid DNA
vaccines (Ishii et al., 2008; Ishikawa et al., 2009). The underlying
mechanisms for the immunological advantages of DNA vaccines
have not been fully elucidated. However, it has been suggested that
the detection of the double-stranded structure of plasmid DNA
by cytosolic DNA sensors contributes to an enhanced adaptive
immune response to the vaccine antigen.

Z-DNA binding protein 1/DNA-dependent activator of IFN-
regulatory factors (ZBP-1/DAI) was the first reported cytosolic
DNA sensor (Takaoka et al., 2007). ZBP-1/DAI contains two Z-
DNA binding domains and a D3 domain, all of which are essential
for its activation. Overexpression of ZBP-1/DAI enhanced dsDNA-
mediated gene expression and knockdown of ZBP-1/DAI impaired
IFN-β production by HSV-1 infection, but not Newcastle disease
virus (NDV) infection, in a mouse fibroblast cell line (Takaoka
et al., 2007). However, fibroblasts from ZBP-1/DAI deficient mice

normally responded to dsDNA, and the mice also showed normal
immunogenicity to plasmid DNA vaccinations (Ishii et al., 2008).

In 1993, it was reported that electroporated DNA induces
cell death in murine macrophages (Stacey et al., 1993). Recently,
absence in melanoma 2 (AIM2) was identified as a cytosolic DNA
sensor for activation of the inflammasome, a large multimolec-
ular complex that regulates activation of the enzyme caspase-1,
to induce IL-1β production and DNA-induced cell death. AIM2
is a member of the hematopoietic IFN-inducible nuclear protein
with a 200-amino-acid repeat (HIN-200) family, which contains
a pyrin domain and a DNA-binding HIN-200 domain. AIM2 rec-
ognizes cytosolic DNA and interacts with inflammasome-related
molecules to induce pyroptosis, a type of programed cell death
characterized by activation of caspase-1 and IL-1β production
upon inflammatory antimicrobial responses. Deficiency of AIM2
results in an enhancement of susceptibility to bacteria and DNA
viruses (Burckstummer et al., 2009; Fernandes-Alnemri et al.,
2009; Hornung et al., 2009; Roberts et al., 2009).

Interferon gamma inducible protein 16 (IFI16) is a member of
the pyrin and HIN domain-containing (PYHIN) protein family
that contains a pyrin domain and two DNA-binding HIN domains.
IFI16 directly binds viral DNA in the cytosol and induces IFN-
β production through STING (Unterholzner et al., 2010). Small
interfering RNA (siRNA) for IFI16 inhibited DNA-induced but not
RNA-induced IFN-β production. Knockdown of p204, a mouse
ortholog of IFI16, impaired activation of transcription factors and
gene inductions upon DNA virus infection.

Although retinoic acid-inducible gene I (RIG-I) was initially
identified as a cytosolic RNA receptor, it is also involved in
the recognition of cytosolic dsDNA. Thus, knockdown of RIG-
I in human hepatocellular carcinoma cell line, HuH-7, atten-
uated dsDNA-induced type I IFN production. Subsequently, it
was shown that poly(dA·dT)·poly(dT·dA) and DNA virus-derived
DNAs were converted into 5′-triphosphate RNA by RNA poly-
merase III to induce RIG-I-mediated type I IFN production. This
IFN production induced by intracellular bacteria was abolished by
a specific inhibitor of RNA polymerase III, which in turn resulted
in a promotion of bacterial growth (Chiu et al., 2009).

High mobility group box protein 1 (HMGB1), initially iden-
tified as a non-histone DNA-binding and chromatin-associated
protein, is involved in DNA organization and transcriptional reg-
ulation (Goodwin et al., 1973; Bustin, 1999). Although most of
HMGB1 is localized to the nucleus, HMGB1 acts as an “alarmin”
to promote inflammation upon its release from the nucleus during
necrosis (Scaffidi et al., 2002). In addition, extracellular HMGB1
is involved in the pathogenesis of autoimmune diseases, as evi-
denced by the presence of anti-HMGB1 autoantibodies in sera
from RA and drug-induced SLE patients (Wittemann et al., 1990;
Ayer et al., 1994). The HMGBs (HMGB1, HMGB2, and HMGB3)
also bind immunogenic nucleic acids, e.g., virus-derived RNAs and
genomic DNAs, and activate innate immune signaling through
receptor for advanced glycation and end products (RAGE). In
fact, knockdown of HMGBs resulted in a reduction of innate
immune responses against immunogenic nucleic acids (Yanai et al.,
2009).

In human cells, various types of DNA reportedly induce
type III IFNs, especially IFN-λ1 (or interleukin29; IL29). Ku70,
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whose original functions were reported as DNA repair, V(D)J
recombination and telomerase maintenance, was identified as a
cytosolic DNA sensor that is responsible for the induction of IFN-
λ1 (Zhang et al., 2011a). Knockdown of Ku70 suppressed IFN-λ1
activation in human cells. Whereas other known DNA sensors
are involved in type I IFN production, Ku70 is unique in the
production of type III IFN upon dsDNA stimulation.

Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1)
was initially identified as an RNA-binding protein, but it was even-
tually recognized as a receptor for both exogenous DNA and RNA
(Yang et al., 2010). LRRFIP contains a DNA-binding domain, and
is responsible for the production of IFN-β through interaction
with β-catenin and recruitment of acetyltransferase p300 in cases
of vesicular stomatitis virus (VSV) and Listeria monocytogenes
infection.

RNA and DNA helicases are members of the DEADbox fam-
ily, the name of which was derived from one of the conserved
amino-acid sequences in the proteins. Members of the DExD/H-
box (where x can be any amino acid) helicase superfamily, such
as DHX9 and DHX36, were identified as cytosolic CpG DNA
sensors for the induction of type I IFN production in plas-
macytoid DCs (Kim et al., 2010). Another helicase, DDX41, a
member of the DEXDc family, was identified as an intracellu-
lar dsDNA sensor that is responsible for type I IFN production
in myeloid DCs (Zhang et al., 2011b). After stimulation with
dsDNA, DDX41 interacts with STING in the microsome, mito-
chondria, and mitochondria-associated endoplasmic reticulum
membrane fractions. DDX41 also recognizes bacterial second mes-
senger cyclic di-GMP and cyclic di-AMP, and activates type I IFN
production by interacting with STING, leading to TBK1-IRF3
activation (Parvatiyar et al., 2012).

DNA transfection or DNA virus infection leads to a production
of cyclic GMP-AMP (cGAMP) via the function of cGAMP syn-
thase, cGAS, which belongs to the nucleotidyltransferase family,
and an endogenous second messenger to induce innate immune
responses. cGAS binds to DNA in the cytoplasm and catalyzes
cGAMP synthesis to function as a cytosolic dsDNA sensor that
induces type I IFNs (Sun et al., 2013). It was also shown that
cGAMP directly interacts with STING to activate IRF3, and knock-
down of cGAS results in the suppression of IFN-β production
induced by dsDNA transfection or DNA virus infection (Sun et al.,
2013).

These studies were performed using different types of cells,
synthetic DNAs, bacteria, and viruses as shown in Table 1. There-
fore, it should be noted that multiple recognition machineries for
sensing cytosolic DNA and DNA metabolites might differ among
species and/or cell types.

EXTRACHROMOSOMAL HISTONE H2B IS INVOLVED IN DNA
SENSING
To identify molecules responsible for cytosolic dsDNA-mediated
type I IFN production, we screened a cDNA expression library
using HEK293T cells stably transfected with a luciferase gene cas-
sette under an IFN-β promoter. Among >960,000 independent
clones examined, a single clone encompassing the histone H2B
ORF exhibited a striking enhancement of dsDNA-induced IFN-
β promoter activation (Kobiyama et al., 2010). In a separate set

of experiments, cellular proteins that bind dsDNA were puri-
fied from rat thyroid cell line FRTL-5, cells previously proven
to respond well to dsDNA (Suzuki et al., 1999). Protein extracts
were passed through ssDNA sepharose and absorbed onto dsDNA
sepharose columns before electrospray ionization (ESI)-MS/MS
mass spectrometry analysis. Among the molecules identified, his-
tone H2B showed a significantly high MASCOT (probability) score
(Kawashima et al., 2011a). Thus, two independent approaches
implied that extrachromosomal H2B functionally mediates IFN-
β promoter activation in human kidney cells following dsDNA
stimulation and physically associates with dsDNA in rat thyroid
cells.

Type I IFN production induced by dsDNA was significantly
suppressed in HEK293 cells treated with H2B siRNA, but not by
those treated with siRNAs for other core histones. Although most
histone H2B localizes in the nucleus, it appears to sense DNA
in the cytoplasm by interacting with IFN-β promoter stimulator
1 (IPS-1) (Kobiyama et al., 2010), an essential adaptor molecule
for signal activation triggered by cytoplasmic dsRNA and single
stranded 5′-triphosphate RNA (Kawai et al., 2005; Meylan et al.,
2005; Seth et al., 2005; Xu et al., 2005). Human, but not mouse,
IPS-1 was involved in the dsDNA-mediated signal transduction
(Kumar et al., 2006; Ishii et al., 2008). Therefore, histone H2B inter-
acts with IPS-1 in the cytoplasm following dsDNA stimulation
only in human cells.

Yeast two-hybrid screening identified KIAA1192 as a mol-
ecule that interacts directly with histone H2B; therefore, it
was renamed CIAO (C-terminal importin 9-related adaptor
organizing histone H2B and IPS-1) based on its novel role.
While high similarities of amino acid sequences were detected
between human and mouse H2B (>70.1%) and between human
and mouse CIAO (99.2%), the amino acid sequence of IPS-1
was largely different between human and mouse (30.3%). The
observed interaction of CIAO and IPS-1 only in human mole-
cules is a possible reflection of this difference in IPS-1 sequence
(Kobiyama et al., 2010). These results strongly suggest that
there is species-specific involvement of IPS-1 in dsDNA-mediated
signaling.

We further examined the role of histone H2B on cell-
autonomous antiviral responses. Knockdown of histone H2B sup-
pressed IFN-β production and STAT1 phosphorylation when DNA
viruses, in this case modified vaccinia virus Ankara (MVA), were
infected (Kobiyama et al., 2010). Multiplication of adenovirus
type 5 was significantly enhanced in the H2B knockdown cells,
while multiplication of RNA viruses, such as encephalomyocardi-
tis virus (EMCV), was not affected by the presence or absence of
histone H2B (Figure 1A). Multiplication of other DNA viruses,
such as human papilloma viruses (HPV11 and HPV16) and ade-
novirus serotype 5, was significantly enhanced in cells to which
histone H2B siRNA was transfected. These results suggested that
extrachromosomal histone H2B is involved in the sensing of
DNA viruses and mediates cell-autonomous antiviral immune
responses in human cells. The human immunodeficiency virus
(HIV) is a lentivirus, a class of retrovirus, which has two copies
of positive single stranded RNA that codes viral genes. Upon
infection in target cells, the viral RNA genome is reverse tran-
scribed into dsDNA in the peri-integration complex (PIC). When
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Table 1 | Cytosolic DNA sensors.

DNA sensor Localization Pathogens Nucleic acid ligand Reference

ZBP-1/DAI Cytoplasm HSV Poly(dA:dT), ISD Takaoka et al. (2007)

AIM2 Cytoplasm VV, MCMV,

L. monocytogenes,

F. tularensis

Calf thymus DNA, poly(dA:dT) Burckstummer et al. (2009),

Fernandes-Alnemri et al. (2009), Hornung

et al. (2009), Roberts et al. (2009)

IFI16 Cytoplasm VV, HSV-1 Poly(dA:dT) Unterholzner et al. (2010)

RNA pol III/RIG-I Cytoplasm L. pneumophila, AdV, HSV-1,

EBV

Poly(dA:dT) Chiu et al. (2009)

HMGB1 Nucleus, extracellular VSV, HSV-1 dsDNA, dsRNA, ssDNA, ssRNA Yanai et al. (2009)

Ku70 Cytoplasm HIV? Plasmid DNA Zhang et al. (2011a)

LRRFIP1 Cytoplasm L. monocytogenes, VSV Poly(dA:dT) Yang et al. (2010)

DDX41 Cytoplasm L. monocytogenes, AdV,

HSV-1, VV

Poly(dA:dT), c-d-GMP, c-d-AMP Zhang et al. (2011b), Parvatiyar et al. (2012)

cGAS Cytoplasm HSV-1 cGAMP Sun et al. (2013)

Histone H2B Nucleus, cytoplasm HPV, AdV, HIV Poly(dA:dT), genomic DNA Kobiyama et al. (2010), Kawashima et al.

(2011a)

HSV, herpes simplex virus; VV, vaccinia virus; MCMV, mouse cytomegalovirus; AdV, adenovirus; EBV, Epstein–Barr virus; VSV, vesicular stomatitis virus; HIV, human

immunodeficiency virus; HPV, human papilloma virus; dA:dT, poly(dA-dT)·poly(dT-dA); ISD, immunostimulatory DNA.

FIGURE 1 | Histone H2B is a key factor for the suppression of viral
replication. (A) HEK293 and HeLa cells were pretreated with control siRNA
(Cont siRNA) or histone H2B siRNA (H2B siRNA). The cells were infected with
AdV type 5 or EMCV. Twenty-four hours after infection, viral multiplication was

determined by a plaque assay. (B) Magic 5 cells were pretreated with Cont
siRNA or H2B siRNA. The cells were infected with HIV-1 IIIB for 3 h.
Seventy-four hours after infection, viral multiplication was determined by
HIV-1 p24 ELISA using culture supernatant.

histone H2B was knocked-down in CCR5-expressing HeLa/CD4+

cell clone 1–10 (Magic 5) cells, HIV-1 replication was significantly
enhanced (Figure 1B). These data clearly indicate that histone
H2B discriminates between foreign DNA and RNA upon viral
infection to evoke IPS-1-mediated signaling through association
with a novel adaptor protein, CIAO. It has also been suggested
that human IPS-1 has evolutionarily gained the potential to trans-
mit dsDNA-initiated, histone H2B-mediated signaling to combat
human viruses that produce DNA intermediates within the cell.
Whether histone H2B has a role in infection in mice, proba-
bly by interacting with molecules other than IPS-1, is currently
unknown.

We next examined the involvement of genomic DNA-mediated
immune responses in light of a possible role in the triggering of
autoimmune disorders. When FRTL-5 thyroid cells were exposed
to progressively higher levels of electric pulsing, in the absence of
pathogens or immune cells, genomic DNA was released to the cyto-
plasm, which was associated with activation of the expression of
certain genes, such as those encoding type I IFN and chemokines.

More importantly, the expression of major histocompatibility
complex (MHC) class II molecules and co-stimulatory molecules
was also induced in thyroid cells (Suzuki et al., 1999; Kawashima
et al., 2011a), suggesting that the autoimmune target cell itself
might present autoantigens upon cell damage (Kawashima et al.,
2011b). It has been assumed that autoimmune thyroid diseases,
such as Graves’s disease and Hashimoto’s thyroiditis, develop by a
combination of genetic susceptibility and environmental factors.
The data suggested that thyroid cell injury results in the release of
genomic DNA fragments into the cytosol, which are recognized
by extrachromosomal histone H2B to activate genes involved in
both innate and acquired immune responses. Such responses may
relate to the development of thyroiditis that in turn may increase
the chance to present self-antigens to immune cells and initiate
autoimmune reactions. Thus, our findings suggest that extrachro-
mosomal histone H2B acts as a cytosolic DNA sensor for both
self and non-self DNA, and that this recognition mechanism may
be involved in preventing microbial infections and triggering of
autoimmune disorders.
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FIGURE 2 | Mode of extrachromosomal histone H2B-mediated innate
immune responses. Under normal conditions, histone H2B primarily
localizes to the nucleus. In cases of cell damage or viral infection, histone

H2B recognizes aberrant self- or non-self-derived dsDNA and forms an
H2B-CIAO-IPS-1 interaction complex in the cytoplasm, which in turn activates
TBK1 and induces IRF3 phosphorylation to produce type I IFN.

EPIGENETIC MODIFICATION AND VIRUS INFECTION
Epigenetic modifications, including histone modifications and
chromatin remodeling, regulate cellular processes that require
access to genomic DNA. DNA viruses utilize the chromatin-
mediated regulation of gene transcription and DNA replication
of the host cell (Liang et al., 2009). In the case of herpes viruses,
chromatin modulation is a regulatory factor of viral latency and
reactivation cycles. Infection of cells with herpes virus results in
the deposition of nucleosomes bearing repressive K9 methyla-
tion of histone H3 (H3-K9) on the viral genome. Inhibition of
lysine-specific demethylase (LSD1) results in an accumulation
of repressive chromatin and blockage of viral gene expression
(Liang et al., 2009). In the case of HIV-1, histone H3-K9 methyl-
transferase G9a is responsible for chromatin-mediated HIV-1
transcriptional latency through methylation of H3 (Imai et al.,
2010). In addition, K9 methylation of histone H3 is involved
in repression of the human cytomegalovirus gene (Ioudinkova
et al., 2006). Thus, since viruses utilize the host gene regulation
system for their replication, its modification blocks initial gene
expression of a DNA virus, including adenovirus (Liang et al.,
2013).

Histone H2B can also be modified by acetylation (Schiltz
et al., 1999), GlcNAcylation (Fujiki et al., 2011), phosphoryla-
tion (Fernandez-Capetillo et al., 2004), sumoylation (Nathan et al.,
2006), and ubiquitination (Zhu et al., 2005), but not by citrulli-
nation and methylation. Thus, histone H2B acetylation (K12 and
K15) is involved in transcriptional activation (Schiltz et al., 1999;
Kawasaki et al., 2000), and phosphorylation of histone H2B (S14)
is an epigenetic marker of apoptotic cells (Cheung et al., 2003).

Deacetylation of K15 is essential for H2B S14 phosphorylation,
and inhibition of deacetylation suppresses internucleosomal DNA
degradation (Ajiro et al., 2010). Histone H2B is phosphorylated
by irradiation, which accumulates in irradiation-induced foci
(Fernandez-Capetillo et al., 2004). Ubiquitination of histone H2B
is involved in DNA breaks (Wu et al., 2009). Since our findings
suggest that histone H2B was involved in the recognition of both
virus- and host-derived DNA, modification of histone H2B may
also affect immune responses.

CONCLUDING REMARKS
It was long believed that the sole function of histones is to wrap
genomic DNA for nucleosome assemblage. However, recent stud-
ies suggest a potential role for histones in other physiological
functions in extrachromosomal settings. Histone H2A.X is phos-
phorylated in response to dsDNA breaks and recruited to the site
of the break (Redon et al., 2002). Histone H3.3 accumulates in
condensed chromatin where gene transcription is activated (Jan-
icki et al., 2004). Also, histone H1.2 is a cytochrome c-releasing
factor that appears in the cytoplasm after exposure to X-ray-
irradiation (Konishi et al., 2003). More striking evidence is that
extracellular histones have a cytotoxic ability and act as major
mediators of death in cases of sepsis (Xu et al., 2009). In addition,
human histone H2A and H2B have microbicidal activity, and are
involved in killing promastigotes of Leishmania amazonensis (L.
amazonensis), L. major, L. braziliensis, and L. mexicana. Exposure
to histones markedly decreased the infectivity of promastigotes
in murine macrophages in vitro (Wang et al., 2011). These data
strongly suggest that extrachromosomal and extracellular histones
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work as an alarmin to maintain cellular homeostasis by changing
their modifications and subcellular localizations. Thus, extrachro-
mosomal histone H2B acts as a sensor for dsDNA aberrantly
present within the cell, alerting cells to dangerous situations, such

as infection, apoptosis, DNA breaks, and cell injury (Figure 2).
This mechanism may also play an important role in autoimmu-
nity, transplantation rejection, gene-mediated vaccines, and other
therapeutic applications.
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