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This study aimed 1) to investigate the influence of CYP2D6 variants on the

catalyzing of fluvoxamine, and 2) to study the interaction between fluvoxamine

and apatinib. An enzymatic reaction system was setup and the kinetic profile of

CYP2D6 in metabolizing fluvoxamine was determined. In vivo, drug-drug

interaction was investigated using Sprague–Dawley (SD) rats. Fluvoxamine

was given gavage with or without apatinib. Ultra-performance liquid

chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to

determine the concentrations of fluvoxamine and desmethyl-fluvoxamine.

The results demonstrated that the relative clearance rates of CYP2D6.A5V,

V104A, D337G, F164L, V342M, R440C and R497C increased significantly

compared with CYP2D6.1, ranging from 153.626% ± 6.718% to 394.310% ±

33.268%. The activities of other variants reduced to different extent, or even lost

function, but there was no statistical difference. The IC50 of apatinib against

fluvoxamine disposition was determined, which is 0.190 μM in RLM and

6.419 μM in HLM, respectively. In vivo, apatinib can enhance the plasma

exposure of fluvoxamine remarkably characterized by increased AUC, Tmax

and Cmax. Meanwhile, the produce of desmethyl fluvoxamine was dramatically

inhibited, both AUC and Cmax decreased significantly. Mechanistically, apatinib

inhibit the generation of fluvoxamine metabolite with a mixed manner both in

RLM andHLM. Furthermore, there were differences in the potency of apatinib in

suppressing fluvoxamine metabolism among CYP2D6.1, 2 and 10. In

conclusion, CYP2D6 gene polymorphisms and drug-drug interaction can

remarkably affect the plasma exposure of fluvoxamine. The present study

provides basis data for guiding individual application of fluvoxamine.
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Introduction

Fluvoxamine is commonly prescribed to treat depression

and anxiety disorders with mechanism of selective inhibit

serotonin reuptake (Yuan et al., 2020). Central nervous

system symptoms, rash, gastrointestinal symptoms, and

suicidal tendencies are common adverse reactions during

medicine of fluvoxamine (Lenze et al., 2020). Its clinical

efficacy is highly variable among individuals. Drug efficacy

stratification may be the result of individual differences in

blood concentrations which caused by genetic

polymorphisms of metabolic enzymes and drug interactions.

Cytochrome P450 family member 2D6 (CYP2D6) is a major

enzyme involved in catalyzing metabolism of fluvoxamine,

which produced desmethyl fluvoxamine (Hicks et al., 2015;

Zastrozhin et al., 2021). However, there are genetic

polymorphism of CYP2D6 resulting in large inter-individual

variability in enzyme activity, further leading to subtherapeutic

phenomena or severe adverse effects (Zastrozhin et al., 2021).

Moreover, interactions between fluvoxamine and other drugs

are frequently being reported. A study found one fatality in a

woman who was taking clotiapine, 7-aminoclonazepam,

propranolol, gabapentin and haloperidol alongside

fluvoxamine developing antipsychotic malignant syndrome

(Vignali et al., 2021). Interactions of fluvoxamine with

antiepileptic or antidepressant drugs have also been issued

(Mula and Trimble, 2003; Spina et al., 2016). Therefore,

defining the correlation between CYP2D6 genotype and

fluvoxamine metabolic phenotype, identifying drugs that

could potential interact with fluvoxamine are helpful for

personalized medicine.

Apatinib is a small molecule drug that targeting inhibition of

angiogenesis (Wang N. et al., 2020). It’s approved to be safe and

effective after failure of standard chemotherapy in advanced

gastric cancer (Geng et al., 2018). Interestingly, it is worth

noting that apatinib is a pan CYP inhibitor (Zhou et al.,

2014). Therefore, the research on the interaction between

apatinib and other CYP substrate drugs has gradually

attracted people’s attention. Statistics data display that cancer

patients usually complicated with various psychological

symptoms, especially depression and anxiety (Wang YH.

et al., 2020). This will diminish benefits of medicine and

affects the quality life of patients. Therefore, the combined

application of apatinib and fluvoxamine is a feasible clinical

treatment option. However, the interaction between them has

not been unveiled.

Herein, we evaluated the catalytic activity of

CYP2D6.1 and other 23 variants on the disposition of

fluvoxamine. In addition, we used microsomes and

Spragge-Dawley (SD) rats to clarify the interaction between

fluvoxamine and apatinib in vitro and in vivo. The results will

provide fundamental data to facilitate the precision medicine

application of fluvoxamine.

Materials and methods

Chemicals and reagents

Fluvoxamine maleate was bought from Shanghai Canspec

Scientific & Technology Co., Ltd. Desmethyl fluvoxamine was

obtained from TRC Ltd. (Toronto, Canada). Diazepam was

purchased from Shanghai Xudong Haipu Pharmaceutical Co.,

Ltd. and used as internal standard. Apatinib was obtained from

Beijing Sunflower Technology Development Co., Ltd. Sodium

carboxymethyl cellulose (CMC-Na), methanol, acetonitrile

(ACN) and formic acid were purchased from Merck

(Darmstadt, Germany). Microsomes were purchased from

Corning Life Sciences Co., Ltd. CYP2D6 and cytochrome

B5 were prepared as previously issued (Cai et al., 2016).

UPLC-MS/MS and condition

A newly developed and validated UPLC-MS/MS method was

used to detect fluvoxamine and desmethyl fluvoxamine. The

analytes were separated on a BEH C18 column (2.1 × 100 mm,

1.7 μm; Waters Corp., Millipore, Bedford, MA, United States),

which incubated at 40°C. The mobile phase was consisted of 0.1%

formic acid and ACN, and elution at 0.40 ml/min for 3.0 min

with a gradient condition. The program was set as 10%–90%

ACN (0–1.0 min), 90%–10% ACN (1.0–2.0 min), and 10% ACN

(2.1–3.0 min).

Determine enzymatic kinetic parameters
of recombinant human CYP2D6 using
fluvoxamine

Incubation systemwas dissolved in phosphate buffered saline

which contained 1 pmol CYP2D6.1 or variants, 50 μg/ml

cytochrome B5, 0.5–50 μM fluvoxamine. Before the reaction,

the mixture was pre-incubated at 37°C for 5 min.

Subsequently, add 1 mM nicotinamide adenine dinucleotide

phosphate oxidase to initiate the reaction. 20 min’ later, the

reaction was terminated. Add acetonitrile twice volume as

much as reaction system and 20 μl internal standard to the

mixture. After vortexing and centrifugation, the supernatant

was taken and subjected to UPLC-MS/MS.

Animal experiments

Animal ethics was reviewed and approved by Wenzhou

Medical University. Male rats weighed 180–220 g were

supplied by Vital River Laboratories (Beijing, China), and

adaptive feeding for a week. SD rats were divided into two

groups. Group A served as control, dosing of vehicle (0.5%
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CMC-Na). Group B was administrated 40 mg/kg apatinib.

30 min’ later, fluvoxamine (10 mg/kg) was given orally to the

rats. Then, the vein blood was collected at 0, 0.25, 0.5, 1, 2, 3, 4, 5,

6, 8, 10, 12, and 24 h after administration. The sample was

prepared and subjected to UPLC-MS/MS examination.

Microsomes incubation assay

The microsomes reaction system was set up as indicated in

above. In briefly, the reaction was carried out in PBS. The

buffer was consisted of 0.2 mg/ml RLM or HLM, 0.5–50 μM

fluvoxamine. NADPH was used to initiate the reaction. To

determine the half maximal inhibitory concentration (IC50),

the concentration of apatinib was set at 0.01, 0.1, 1, 10, 25, 50,

and 100 μM. To determine the mechanism underlied the

inhibition, the concentration of fluvoxamine was set

according to the Km value, while the concentration of

apatinib was set at 0, 0.25, 0.5, 1 μM according to the IC50

as well. After incubation, the samples were prepared and

determined by UPLC-MS/MS.

Statistical analysis

Lineweaver-Burk double reciprocal plot was performed on

GraphPad Prism 5.0 software. The kinetic parameters were

obtained using non-compartmental model fitting by Drug and

statistics (DAS) software 3.0. The corresponding drug-time

curves were drawn by Origin 8.0. All data are expressed as

Mean ± SD. Statistical analysis was performed by independent

samples t-test using GraphPad Prism 5.0 software.

p < 0.05 indicates a significant difference.

Results

Development of UPLC-MS/MS assay to
determine fluvoxamine and desmethyl
fluvoxamine

To detect the analytes, a UPLC-MS/MS method was

developed and validated. The linear range, precision, accuracy,

recovery, matrix effect and stability were evaluated. The detail

data was presented in the Supplementary Information. In briefly,

the monitoring transitions of diazepam, fluvoxamine and

desmethyl fluvoxamine were m/z 285→ 154, m/z 319.4→
71.2 and m/z 305.13→ 228.68, respectively. As Figure 1

showed, there was no obvious endogenous interference. The

retention time of diazepam, fluvoxamine and desmethyl

fluvoxamine were 1.45, 1.29 and 1.24 min, accordingly.

Kinetic characterization of recombinant
human CYP2D6 in catalyzing of
fluvoxamine

Michaelis curves and kinetic parameters of CYP2D6.1 and

other variants in metabolizing fluvoxamine were shown in

Figure 2 and Table 1, respectively. Based on maximum

reaction velocity (Vmax), they can be divided into four groups.

No significant differences were observed between CYP2D6.1 and

CYP2D.2, V104, 90, C161S, D337G, E215K, R497C. Among

them, CYP2D6.92 and 96 almost lost enzymatic function.

Moreover, the Vmax of CYP2D6.A5V, 89 and 95 increased

remarkably, ranging from 270.31% to 441.17%. In opposite,

the remaining variants decreased significantly, ranging from

9.93% to 39.25%. From the michaelis constant (Km), a lot of

FIGURE 1
Representative chromatograms of fluvoxamine, desmethyl fluvoxamine and IS. (A) a blank plasma sample. (B) A blank plasma sample spiked
with fluvoxamine, desmethyl Fluvoxamine and IS. (C) Rat’s plasma sample after dosing.
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them decreased obviously compared with CYP2D6.1, including

CYP2D6.10, 97, R88P, F164L, F219S, V327M, D336N, V342M,

R344Q, R440C, R497C. Besides, the other variants had no

significant difference. Finally, the intrinsic clearance (Clint)

and relative clearance were determined. In all, activities of

seven variants, involving CYP2D6.A5V, V104A, D337G,

FIGURE 2
Michaelis–Menten curves of CYP2D6 in disposition of fluvoxamine. The reaction was performed as indicated in the section of method, n = 3.
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TABLE 1 Kinetic parameters of fluvoxamine catalyzing in CYP2D6.

CYP Vmax (pmol/min/pmol) Km (pmol) CL (μL/min/pmol) %

2D6.1 1.098 ± 0.015 8.415 ± 0.797 0.131 ± 0.012 100.00 ± 9.27

2D6.2 0.652 ± 0.093 9.636 ± 4.023 0.073 ± 0.018 55.254 ± 13.364

2D6.10 0.233 ± 0.001* 1.751 ± 0.169* 0.134 ± 0.013 101.865 ± 9.613

2D6.A5V 4.844 ± 0.434* 9.438 ± 1.358 0.516 ± 0.034* 393.295 ± 25.911*

2D6.V104A 2.879 ± 0.237 12.523 ± 1.792 0.231 ± 0.015* 176.140 ± 11.160*

2D6.89 3.096 ± 0.223* 15.627 ± 1.793 0.199 ± 0.011 151.434 ± 8.154

2D6.90 3.627 ± 0.433 16.373 ± 5.954 0.236 ± 0.059 179.493 ± 45.215

2D6.C161S 0.816 ± 0.110 16.233 ± 2.404 0.050 ± 0.001 38.336 ± 0.864

2D6.92 N.D. N.D. N.D. N.D.

2D6.93 0.259 ± 0.002* 4.058 ± 0.369 0.064 ± 0.006 48.790 ± 4.378

2D6.D337G 2.142 ± 0.187 10.645 ± 1.196 0.202 ± 0.009* 153.626 ± 6.718*

2D6.R388H 2.968 ± 0.109* 18.053 ± 2.090 0.166 ± 0.015 126.083 ± 11.685

2D6.96 N.D. N.D. N.D. N.D.

2D6.97 0.431 ± 0.007* 3.483 ± 0.652* 0.127 ± 0.024 96.463 ± 18.420

2D6. R88P 0.234 ± 0.001* 1.791 ± 0.230* 0.132 ± 0.018 100.802 ± 13.791

2D6.F164L 0.147 ± 0.008* 0.514 ± 0.053* 0.287 ± 0.016* 218.589 ± 12.179*

2D6.E215K 1.723 ± 0.219 17.960 ± 3.975 0.098 ± 0.012 74.351 ± 9.147

2D6.F219S 0.349 ± 0.008* 3.749 ± 0.245* 0.093 ± 0.008 71.168 ± 5.992

2D6.V327M 0.199 ± 0.020* 0.981 ± 0.222* 0.207 ± 0.028 157.504 ± 21.434

2D6.D336N 0.202 ± 0.006* 1.532 ± 0.215* 0.134 ± 0.017 101.831 ± 12.972

2D6.V342M 0.109 ± 0.002* 0.212 ± 0.022* 0.518 ± 0.044* 394.310 ± 33.268*

2D6.R344Q 0.203 ± 0.002* 1.270 ± 0.194* 0.162 ± 0.024 123.621 ± 18.515

2D6.R440C 0.117 ± 0.001* 0.282 ± 0.013* 0.416 ± 0.018* 317.234 ± 14.091*

2D6.R497C 0.116 ± 0.0018 0.266 ± 0.014* 0.436 ± 0.021* 331.993 ± 15.802*

N = 3, variants vs. CYP2D6.1.

*p < 0.05.

FIGURE 3
Concentration-time curve of fluvoxamine and its metabolite. The rats were administrated with fluvoxamine via gavage. As follows, the tail vein
blood was collected, and was subjected to UPLC-MS/MS assay. (A) Desmethyl fluvoxamine, (B) Fluvoxamine. The curve was plotted using Prism 5,
n = 6.
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F164L, V342M, R440C, R497C, increased compared with

CYP2D6.1, ranging from 153.63% to 394.31%. The others’

The remaining variants showed no statistical difference in

intrinsic clearance. In addition, CYP2D6.92 and 96 had no

significant activity. The rest of the variants had different effect

of reduced metabolic activity.

Effects of apatinib on fluvoxamine
metabolism in rats

As Figure 3A showed, when co-administration of

fluvoxamine with apatinib, the production of desmethyl

fluvoxamine was inhibited dramatically. The peak of the

Y-axis of the time-concentration curve decreased, and the

curve shifted to the right with significantly enhanced in Tmax.

The AUC, t1/2, and Cmax reduced, but no significant difference

was found, Table 2. Accordingly, the concentration of

fluvoxamine increased remarkably after combination,

Figure 3B. The AUC(0-t), AUC(0-∞) and Cmax values of

fluvoxamine increased by 8.52-, 2.78-, 2.90-time, respectively.

In addition, Tmax is prolonged by 3.80 times, CLz/F is reduced by

about one time, and t1/2z is reduced by nearly one time, Table 3.

The effect of apatinib on fluvoxamine
metabolism in vitro

To study the mechanism underlied drug-drug interaction,

the enzymatic reaction was performed using RLM, HLM. As

shown in Figure 4, the Km of fluvoxamine metabolizing was

4.738 μM in RLM and 13.54 μM in HLM. To evaluate the

inhibitory potency, the IC50 was determined. Fluvoxamine was

dose-dependently inhibited by apatinib in RLM with IC50 of

0.19 μM, Figure 5A. In HLM, it’s 6.419 μM, Figure 5A.

Mechanistically, apatinib inhibited fluvoxamine metabolism

with a mixed manner in the RLM. The Ki is 0.05 μM,

Figure 5B. Meanwhile, it is the same in HLM with Ki of

2.23 μM, Figure 5C. To further investigate differences in

inhibitory activity among different CYP2D6 variants, IC50 was

TABLE 2 Pharmacokinetic parameters of desmethyl fluvoxamine.

Pharmacokinetic parameters Unit Group B Group A

AUC(0-t) µg/L*h 80.103 ± 18.294 113.125 ± 37.015

AUC(0-∞) µg/L*h 80.178 ± 18.307 113.246 ± 37.062

MRT (0-t) h 6.781 ± 1.005* 3.446 ± 0.578

MRT (0-∞) h 6.8 ± 1.01* 3.473 ± 0.578

t1/2z h 1.9 ± 0.224 2.525 ± 0.793

Tmax h 5.333 ± 2.251* 1.803 ± 0.492

CLz/F L/h/kg 131.088 ± 34.451 99.297 ± 41.451

Vz/F L/kg 356.789 ± 85.786 358.178 ± 217.799

Cmax µg/L 10.665 ± 3.71* 34.263 ± 19.449

AUC, area under curve; MRT, mean retention time; t1/2z, elimination half time; Tmax, peak time; Vz/F, apparent volume of distribution; CLz/F, blood clearance; Cmax, maximum blood

concentration. Group B vs. Group A.

*p < 0.05, n = 6.

TABLE 3 Pharmacokinetic parameters of fluvoxamine.

Pharmacokinetic parameters Unit Group B Group A

AUC(0-t) µg/L*h 1,723.097 ± 602.157* 180.900 ± 100.454

AUC(0-∞) µg/L*h 1,724.820 ± 600.410* 456.181 ± 163.803

MRT(0-t) h 5.191 ± 0.673 6.095 ± 2.380

MRT(0-∞) h 5.225 ± 0.659* 92.049 ± 44.632

t1/2 z h 1.637 ± 0.961* 2.145 ± 37.094

Tmax h 4.000 ± 1.549* 0.833 ± 0.258

CLz/F L/h/kg 6.396 ± 2.110* 24.166 ± 7.713

Vz/F L/kg 16.228 ± 13.475* 2,618.204 ± 879.13

Cmax µg/L 274.989 ± 100.275* 70.595 ± 62.901

Group B vs. Group A.

*p < 0.05, n = 6.
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determined using CYP2D6.1, CYP2D6.2 and CYP2D6.10. It’s

17.58, 14.46 and 3.673 μM accordingly, Figure 6A. The relative

metabolic rates of fluvoxamine were 44.32%, 54.03%, and

57.69%, respectively.

Discussion

CYP2D6 accounts for about 2% of total CYP abundance in

liver, and catalyzing metabolism of 20%–30% therapeutic drugs

(Zhou et al., 2016; Taylor et al., 2020). To date,

149 CYP2D6 alleles have been reported (LLerena et al., 2014).

However, the activities of a vast majority of variants are still

unclear. Therefore, elucidating the effect of mutation on enzyme

activity will help to understand the metabolic characteristics of

CYP2D6 substrate drugs. Moreover, it will provide the basic data

for precise medicine.

Fluvoxamine is almost completely absorbed through the

gastrointestinal tract, and is mainly metabolized into

desmethyl fluvoxamine in the liver through CYP2D6 and

CYP1A2 pathway (van Harten, 1995). Interestingly,

CYP2D6 is rarely being induced, but has abundance gene

polymorphism. Therefore, genetic polymorphisms of

CYP2D6 are likely to cause differences in plasma exposure

of fluvoxamine. This study demonstrated that CYP2D6.A5V,

V104A, D337G, F164L, V342M, R440C, R497C showed

higher catalytic activity compared with CYP2D6.1. The

patients carry these mutations would probably be sub-

therapied. In contrast, CYP2D6*92 and *96 almost lost

function in catalyzing fluvoxamine. CYP2D6*10 is

predominantly distributed in East-Asia (Lin et al., 2016). It

has been reported that its activity is significantly reduced. In

the present study, we found that the Vmax of

CYP2D6 decreased, the Km was also decreased accordingly.

Therefore, the relative clearance is nearly the equal to

CYP2D6.1. We think CYP2D6 has a certain selectivity for

substrate drugs (Ingelman-Sundberg, 2005). The structure of

the compound and the affinity of compound to the enzyme

determine the characteristics of reaction (Zhou et al., 2009).

However, these speculations require further study. Taken

together, our data suggest that CYP2D6 gene

polymorphisms indeed have varying degrees of impact on

fluvoxamine metabolism.

Due to the existence of various complications, cancer

patients usually take multiple drugs in combination, which

can easily lead to drug-drug interaction (Flepisi et al., 2014;

Moghaddas et al., 2021). Identifying potential drug

interactions will help guide rational drug use and improve

patients’ quality of life. Anxiety is a common complication in

cancer patients (Kapfhammer, 2015). Therefore, combining

apatinib with fluvoxamine is an effective dosing strategy.

Many studies had shown that apatinib interacts with

antipsychotics like buspirone and venlafaxine (Bao et al.,

2018; Zhang et al., 2020). In this study, the data

demonstrated that it can also inhibit the metabolizing of

fluvoxamine via suppression the activities of microsomes

system, especially CYP2D6. This inhibitory effect was

similar even with different CYP2D6 alleles. Although this

study preliminarily demonstrated differences in the rates of

mutants metabolizing fluvoxamine through in vitro

experiments, the affinity of the substrate to the enzyme was

not determined, as well as in vivo experiments. Therefore,

further data cannot be used to explain the in vivo situation,

which has certain limitations in guiding clinical drug

treatment. Since fluvoxamine and apatinib may be used

clinically in combination, in this study we combined in

vivo and in vitro experiments to demonstrate the

interaction between fluvoxamine and apatinib. At the same

time, the relevant experiments of HLM in vitro confirmed that

apatinib may have a certain inhibitory effect on fluvoxamine

in humans. In all, the present study provides basic data for the

clinical application of fluvoxamine, especially in cancer

FIGURE 4
Michaelis–Menten curves of fluvoxamine metabolism in
microsomes. (A) RLM. (B) HLM. n = 3.
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FIGURE 5
Apatinib inhibited the metabolism of fluvoxamine with a mixed mechanism both in RLM and HLM. (A) The effect of apatinib on inhibiting
fluvoxamine metabolism. (B,C) Lineweaver-Burk plot and the secondary plot for Ki in the inhibition of fluvoxamine catalyzing, n = 3.
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patients. This prescription needs to be vigilant and prevent the

occurrence of adverse reactions. Although prolonging lifespan

is the primary goal for cancer patients, maximizing the quality

of life is an urgent clinical problem, and this study provides

limited data support for this goal.
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