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Abstract
Background: Investigators are actively testing interventions intended to increase lifespan and wish
to test whether the interventions increase maximum lifespan. Based on the fact that one cannot be
assured of observing population maximum lifespans in finite samples, in previous work, we
constructed and validated several tests of difference in the upper parts of lifespan distributions
between a treatment group and a control group by testing whether the probabilities that
observations are above some threshold defining 'old' or being in the tail of the survival distribution
are equal in the two groups. However, a limitation of these tests is that they do not consider how
much above the threshold any particular observation is.

Methods: In this article we propose new methods which improve upon our previous tests by
considering not only whether an observation is above some threshold, but also the magnitudes by
which observations exceed the threshold.

Results: Simulations show that the new methods control type I error rates quite well and that the
power of the new methods is usually higher than that of the tests we previously proposed. In
illustrative analyses of two real datasets involving rodents, when setting the threshold equal to 110
(100) weeks for the first (second) datasets, the new methods detected differences in 'maximum
lifespan' between groups at nominal alpha levels of 0.01 (0.05) for the first (second) datasets and
provided more significant results than competitor tests.

Conclusion: The new methods not only have good performance in controlling the type I error
rates but also improve the power compared with the tests we previously proposed.

Background
Investigators are actively testing interventions intended to
increase lifespan [1]. Caloric restriction (CR) is the inter-

vention most well established as able to increase lifespan
in experimental models [2], and investigators are now
seeking other interventions that may mimic the life-pro-
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longing effects of CR without requiring a reduction in
caloric intake [3]. It is frequently said that CR not only
increases average lifespan, but also 'maximum' lifespan
[4]. Many researchers in the field of aging therefore wish
to test whether other interventions increase maximum
lifespan.

Recognizing this and the fact that one cannot be assured
of observing population maximum lifespans in finite
samples, Wang et al. [5] constructed and validated several
tests (hereafter, the 'Wang-Allison tests') of differences in
the upper parts of lifespan distributions by building on
the work of Redden et al. [6] in the area of quantile regres-
sion. Wang et al. also showed that a commonly used test
for differences in maximum lifespan that involved com-
paring the means of the top p% (e.g., top 10%) of each of
two samples (e.g., a treatment and a control sample) was
not valid in that it had an excessive type-1 error rate. Nev-
ertheless, there is appeal to using the full continuity of
information in the upper tails of the sample distribution,
and colleagues have recently suggested to us that a limita-
tion of the Wang-Allison tests is that they only treat indi-
vidual lifespans as being above or below some threshold
defining 'old' or being in the tail of the survival distribu-
tion. That is, the Wang-Allison tests do not consider how
much above the threshold any particular observation is,
only whether the observation is above the threshold. We
acknowledge this limitation and in response, we herein
develop new tests that utilize the continuity of informa-
tion among observations that exceed the threshold of
interest, are more powerful than competing tests, includ-
ing the Wang-Allison tests, in most cases, and remain
valid under the null hypothesis of no effect on 'maximum'
lifespan.

Methods
Development of the tests
Consider an experiment with two groups, treatment and
control. The extension to more than two groups is straight-
forward (see discussion section). Let X be an indicator var-
iable taking the value 1 for observations in the treatment
group and 0 for observations in the control group. Let Y
denote survival time. Let τ denote some threshold chosen
by the investigator to denote an extreme portion of the
distribution. In survival studies, τ can be chosen in
advance to correspond to an age considered 'old' (e.g., 30
months in mice) or set to some high sample percentile
(e.g., the 90th). Critically important, τ must be set to the
same value for the two groups. That is, if τ is to be defined
by an upper sample quantile, it should be the upper sam-
ple quantile of both of the two groups combined, not of
each group separately.

Although not described in exactly these terms in the paper
by Wang et al. [5], the Wang-Allison tests essentially create

a new variable, W, where for the ith subject, Wi ≡ 0 if Yi ≤ τ,
and Wi ≡ 1 if Yi > τ, and subsequently tests whether W is
associated with X using an appropriate test statistic.

Thus, the Wang-Allison tests test the following null
hypothesis:

H0,A : P (Y > τ|X = 1) = P(Y > τ|X = 0).

A problem with the Wang-Allison tests is that, hypotheti-
cally, P (Y > τ|X = 1) may equal P (Y > τ|X = 0) and yet the
average magnitude by which lifespans exceed τ when X =
1 may be radically different than when X = 0. This is exem-
plified in the hypothetical frequency distributions
depicted in Figure 1. Note that these hypothetical distri-
butions are not intended to be realistic, but only to clarify
the point.

Let X1 and X0 denote the numbers of observations with Yi
> τ in the treatment group and control group, respectively.
The Wang-Allison tests use the test procedures for two
independent binomial proportions [7] and these proce-
dures require that X1 and X0 are independent. In the
Wang-Allison tests, if the threshold is set in advance
according to prior knowledge, X1 and X0 can satisfy the
requirement of independence. But if τ is set to be the 90-
th percentile, X1 and X0 may not be independent, this cre-
ates a theoretical problem. However, on an empirical
level, our simulations show that in the sample sizes we
considered, this is not an apparent problem because the
Wang-Allison tests have very high power and can control
type I error quit well in the simulation studies and are

The left graph is the density for control group (X = 0), 0.9*Weibull(5.73, 106.6)*I(X ≤ 130) + 0.1*Weibull(5.40, 100.06)*I(X > 130), and the right graph is the density for treatment group (X = 1), 0.9*Weibull(5.73, 106.6)*I(X ≤ 130) + 0.1*Weibull(5.45, 130.06)*I(X > 130), where P(Y > τ|X = 1) = P(Y > τ|X = 0) and yet the average magnitude by which lifespans exceed τ when X = 1 is different than when X = 0Figure 1
The left graph is the density for control group (X = 0), 
0.9*Weibull(5.73, 106.6)*I(X ≤ 130) + 0.1*Weibull(5.40, 
100.06)*I(X > 130), and the right graph is the density for 
treatment group (X = 1), 0.9*Weibull(5.73, 106.6)*I(X ≤ 
130) + 0.1*Weibull(5.45, 130.06)*I(X > 130), where P(Y > 
τ|X = 1) = P(Y > τ|X = 0) and yet the average magnitude by 
which lifespans exceed τ when X = 1 is different than when X 
= 0. τ is 90th percentile of the all observations in treatment 
and control groups.
Page 2 of 10
(page number not for citation purposes)



BMC Medical Research Methodology 2008, 8:49 http://www.biomedcentral.com/1471-2288/8/49
practical for the lifespan studies). When X1 and X0 are not
independent, simulation studies (including estimation of
power and type I error) are an effective way to evaluate the
methods (such as Wang-Allison tests) using the test proce-
dures for two independent binomial proportions.

An alternative to testing H0,A is to test the following con-
ceptually related but mathematically distinct null hypoth-
esis:

H0,B : μ (Y|Y > τ ∩ X = 1) = μ (Y|Y > τ ∩ X = 0),

where μ (•) denotes the population mean (or expecta-
tion) of (•). Though appealing, a problem with testing
H0,B is that when P (Y > τ|X = 1) >> P (Y > τ|X = 0) or P (Y
> τ|X = 1) <<P (Y > τ|X = 0), for any finite sample with
equal initial assignment to the two groups, E [n0] <<E [n1]
or E [n0] >> E [n1], where E [n0] denotes the expected
number of observations in the control group for which Y
> τ, and E [n1] denotes the expected number of observa-
tions in the treatment group for which Y > τ. This imbal-
ance between E [n0] and E [n1] will greatly reduce the
power to reject H0,B. In fact, in the extreme, when either P
(Y > τ|X = 1) or P (Y > τ|X = 0), there will be zero power
to reject H0,B (actually, it is appropriate to say that H0,B is
undefined in such cases). Such a situation is exemplified
in the hypothetical frequency distributions depicted in
Figure 2. Again, these hypothetical distributions are not
intended to be realistic, but only to clarify the point.

Thus, one can conceive situations in which the power to
reject H0,A will be zero and yet the upper tails of the distri-
bution are clearly different. Similarly, one can conceive

situations in which the power to reject H0,B will be zero
and yet again the upper tails of the distribution are clearly
different. Hence, we propose a single-step union-intersec-
tion test [8] of the following compound null hypothesis:

H0,C : [P(Y > τ|X = 1) = P(Y > τ|X = 0)] ∩ [μ(Y|Y > τ ∩ X = 
1) = μ (Y|Y > τ ∩ X = 0)].

We construct the test of H0,C with the following simple
procedure. Define a new variable Z such that Zi ≡ I(Yi >
τ)Yi, where I(•) denotes the indicator function taking on
values of one if (•) is true and zero otherwise. One can
then simply conduct an appropriate test (several candi-
dates will be considered below) of whether the popula-
tion mean of Z is significantly different between the
treatment and control groups. This approach (hereafter
new tests), has several desirable properties. First and fore-
most, when an appropriate test statistic is used, the
approach will be valid. That is, unlike the conditional t-
tests (CTTs) commonly used and shown to be invalid by
Wang et al. [5], when H0,C is true, it will only be rejected
100*α% of the time at the nominal α level even if f(Y|Y ≤
τ ∩ X = 1) ≠ f(Y|Y ≤ τ ∩ X = 0), where f(•) denotes the
probability density function of (•).

Note that expectation (or population mean) of Z, μ(Z) =
P(Y > τ) μ(Y | Y > τ). Therefore the new test for H0,C is
really testing whether

P(Y > τ | X = 1) μ (Y | Y > τ ∩ X = 1) = P(Y > τ | X = 0) μ 
(Y | Y > τ ∩ X = 0),

while the method for H0,B is testing whether μ (Y | Y > τ ∩
X = 1) = μ(Y | Y > τ ∩ X = 0) and the method for H0,A is
testing whether P(Y > τ | X = 1) = P(Y > τ | X = 0). The
mean difference of μ(Z) between two groups consists of
two components: the difference between probabilities P(Y
> τ | X = 1) and P(Y > τ | X = 0) and the difference between
expectations μ (Y | Y > τ ∩ X = 1) and μ (Y | Y > τ ∩ X =
0). The test for H0,A focuses on the first component and
the test for H0,A focuses on the second one, while the test
for H0,C is related to both components.

We also note that Dominici and Zeger [9] studied similar
mean difference components for two groups (cases and
controls) by estimating the mean difference Δ(v) for the
two groups conditional on a vector of covariates v for
zero-inflated data through smooth quantile ratio estima-
tion with regression,

Δ(v) = P(Y > 0 | X = 1, v) μ (Y | Y > 0, X = 1, v) - P(Y > 0| X 
= 0, v) μ (Y | Y > 0, X = 0, v),

where, Y is nonnegative random variable denoting the
health expenditures. While Dominici and Zeger [9] esti-

The left graph is the density for control group (X = 0), 0.9*Weibull(5.07, 93.52)*I(X ≤ 130) + 0.1*Weibull(5.40, 100.06)*I(X > 130), and the right graph for treatment group (X = 1), 0.6*Weibull(5.07, 93.52)*I(X ≤ 130) + 0.4*Weibull(5.40, 100.06)*I(X > 130), where P(Y > τ|X = 1) ≠ P(Y > τ|X = 0), μ (Y |Y > τ ∩ X = 1) = μ (Y |Y > τ ∩ X = 0), and μ (•) denotes the population mean of (•)Figure 2
The left graph is the density for control group (X = 0), 
0.9*Weibull(5.07, 93.52)*I(X ≤ 130) + 0.1*Weibull(5.40, 
100.06)*I(X > 130), and the right graph for treatment group 
(X = 1), 0.6*Weibull(5.07, 93.52)*I(X ≤ 130) + 
0.4*Weibull(5.40, 100.06)*I(X > 130), where P(Y > τ|X = 1) ≠ 
P(Y > τ|X = 0), μ (Y |Y > τ ∩ X = 1) = μ (Y |Y > τ ∩ X = 0), 
and μ (•) denotes the population mean of (•). τ is 90th percen-
tile of the all observations in treatment and control groups.
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mate the mean difference of nonnegative random varia-
bles (Y) for two groups, our methods test the mean
difference of random variables (Y) which are greater than
threshold τ.

Evaluation of the tests
We evaluate the tests via computer simulation. For each
scenario simulated, we evaluate the tests at the 2-tailed .05
α level and at the 2-tailed .01 α level using 5,000 simu-
lated datasets per scenario (except for permutation tests
where we use 1,000 datasets per scenario and 1,000 ran-
dom permutations by Monte Carlo sampling for each
dataset). In simulation 1, we first evaluate performance in
simulation under the null hypothesis H0,C (i.e., both H0,A
and H0,B are true) and yet f (Y|Y ≤ τ ∩ X = 1) is radically
different from f (Y|Y ≤ τ ∩ X = 0). After showing that the
tests remain valid even in these extreme circumstances, we
compare their power in several scenarios (simulations 2–
4) described below. For each scenario, we assumed that
there were two groups with an equal number of subjects
per group. We ran scenarios with 50, 80, or 100 subjects
in each of the two groups, realistic sample sizes for animal
model longevity research.

We simulated data using a concatenation of Weibull dis-
tributions to flexibly emulate the data observed in a real
study [10] of obese animals (control; X = 0) versus ani-
mals that were obese and then lost weight via CR (treat-
ment; X = 1). Specifically, For example, in simulations 1–
4, we simulated Y from the following distribution:

where j = 0 to 1, lifespan (Y) is measured in weeks, aj,L and
bi,L are the parameters of a Weibull distribution for the
lower 90% of the distribution, and aj,U and bi,U are the
parameters of a Weibull distribution for the upper 10% of
the distribution. rj is a proportion parameter, for example
rj = 0.9. The specific values of the parameters used are pro-
vided in Figure 3.

Delineation of tests to be evaluated
Each of the tests listed below was implemented in two
manners, first with τ set in advance to a fixed lifespan
value (130 weeks), and second with τ set at the sample
90th percentile of the two groups combined. In real-life sit-
uations, one usually does know the threshold of interest a
priori. We do recognize that we will not have such knowl-
edge in all cases. It is for this reason that when analyzing
the simulated data, we also consider a threshold of the
90th percentile of the data allowing for an ad hoc data-
based determination of a threshold.

Tests of H0,A (Wang-Allison tests)
For comparative purposes, the first category of tests we
evaluated were the tests denoted QT3 and QT4 in Wang et
al [5] which are, respectively, Boschloo's test and an exact
unconditional test based on the observed difference
divided by its estimated standard error under the null
hypothesis (score statistic) and are described in more
detail by Mehrotra et al. [7]. These were the two tests that
Wang et al. [5] had found performed best as tests of H0,A.

Tests of H0,B
In testing H0,B, subjects were only included in the analysis
when their lifespans exceeded τ. Distributions of survival
times (lifespans) are rarely Gaussian and, even if they
were nearly Gaussian after, for example, log transforma-
tion, the distribution of just the tail portion (i.e., f (Y|Y >
τ) would not be. Hence, in constructing tests we relied on
nonparametric statistical methods. Specifically, we used
the Wilcoxon-Mann-Whitney (exact) test [11,12] and a
permutation test (with t-statistic) as described by Good
[13] to test for differences in lifespan among those sub-
jects whose lifespans exceeded τ.

Tests of H0,C (new tests)
In testing H0,C, all subjects were analyzed, but the variable
analyzed was Z as defined above. Because the distribution
of Z cannot be normally distributed, we again used the
Wilcoxon-Mann-Whitney test and a permutation test to
test for differences in Z.

For a dataset with n1 (n2) subjects in treatment (control)
group, the permutation test can be performed in the fol-
lowing way: First put all the (n1 +n2) subjects together, and
then generate 1000 replicated datasets. For each replicated
dataset, we randomly sample n1 subjects from the (n1 +n2)
subjects and assign them to treatment group, and assign
the left n2 subjects to control group. We run T-test on the
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observed dataset and the 1000 replicated datasets. Let T0
be the T value for the observed dataset, then p-value for
the permutation test is calculated as the proportion of rep-
licated datasets with absolute T values greater than or
equal to the absolute valued of T0.

Results
Results are displayed in Tables 1 to 5. As can be seen, the
new methods for tests of H0,C controls type I error rates
quite well. The power of the new methods are always
higher than or very close to that of the methods for tests
of H0,A (Wang-Allison tests) and are higher than that of
the methods for tests of H0,B (Wilcoxon-Mann-Whitney

tests and permutation tests for observations above the
threshold τ) in some of the simulations.

Table 1 shows the type I error rate of the tests (in simula-
tion 1) when the null hypothesis H0,C is true (i.e., both
H0,A and H0,B are true) and yet f (Y|Y ≤ τ ∩ X = 1) is rad-
ically differentfrom f (Y|Y ≤ τ ∩ X = 0). The type I error
rates of the new methods are comparable to those of the
methods for tests of H0,A and those of the methods for
tests of H0,B . It is note worthy that there is a slight but
fairly consistent excess of type I errors when the sample
90th percentile is used rather than a fixed cutoff point.
This is because the sample 90th percentile is a random
variable and when it falls below its population level, the

Table 1: Performance (type 1 error rates) of the tests in simulation 1 under H0,C (i.e., both H0,A and H0,B are true) and yet f (Y|Y ≤ τ ∩ X 
= 1) is radically different from f (Y|Y ≤ τ ∩ X = 0) (see Figure 3 for details of simulation).

Test Sample Size (N) Per Group

50 80 100

α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

Tests of H 0,A (Wang-Allison tests)
QT3 with τ set to 
130.

0.032 (.027, .036)# 0.008 (.005, .011) 0.041 (.036, .046) 0.006 (.003, .009) 0.040 (.035, .045) 0.006 (.003, .009)

QT3 with τ set to 
sample 90th percentile

0.026 (.022, .030) 0.026* (.020, .032) 0.080 (.072, .088) 0.007 (.004, .010) 0.040 (.035, .045) 0.010 (.006, .014)

QT4 with τ set to 
130.

0.038 (.033, .043) 0.008 (.005, .011) 0.051 (.045, .057) 0.009 (.006, .012) 0.047 (.041, .053) 0.007 (.004, .010)

QT4 with τ set to 
sample 90th percentile.

0.026 (.022, .030) 0.026 (.020, .032) 0.083 (.075, .091) 0.026 (.020, .032) 0.040 (.035, .045) 0.010 (.006, .014)

Tests of H0,B
Wilcoxon-Mann-
Whitney** with τ set 
to 130.

0.041 (.036, .046) 0.017 (.012, .022) 0.044 (.038, .050) 0.008 (.005, .011) 0.046 (.040, .052) 0.008 (.005, .011)

Wilcoxon-Mann-
Whitney with τ set to 
sample 90th percentile.

0.049 (.043, .055) 0.014 (.010, .018) 0.065 (.058, .072) 0.015 (.011, .019) 0.080 (.072, .088) 0.018 (.013, .023)

Permutation test with 
τ set to 130.

0.050 (.036, .064) 0.009 (.001, .017) 0.050 (.036, .064) 0.011 (.002, .020) 0.064 (.049, .079) 0.015 (.005, .025)

Permutation test with 
τ set to sample 90th 

percentile.

0.077 (.060, .094) 0.016 (.006, .026) 0.078 (.061, .095) 0.022 (.010, .034) 0.083 (.066, .100) 0.019 (.008, .030)

Tests of H0,C (new tests)
Wilcoxon-Mann-
Whitney with τ set to 
130.

0.042 (.036, .048) 0.007 (.004, .010) 0.049 (.043, .055) 0.010 (.006, .014) 0.051 (.045, .057) 0.008 (.005, .011)

Wilcoxon-Mann-
Whitney with τ set to 
sample 90th percentile.

0.055 (.049, .061) 0.015 (.011, .019) 0.060 (.053, .067) 0.015 (.011, .019) 0.061 (.054, .068) 0.015 (.011, .019)

Permutation test with 
τ set to 130.

0.052 (.038, .066) 0.015 (.005, .025) 0.047 (.034, .060) 0.009 (.001, .017) 0.057 (.043, .071) 0.007 (.000, .014)

Permutation test with 
τ set to sample 90th 

percentile.

0.045 (.032, .058) 0.017 (.006, .028) 0.062 (.047, .077) 0.011 (.002, .020) 0.068 (.053, .084) 0.018 (.007, .029)

#2-tailed 95% confidence interval.
*The bolded values are those simulated type I error rates which are significantly higher than the nominal α at the 2-tailed 95% confidence level (i.e., 
the lower bound of the interval is higher than α). Note that for the permutation tests we used 1000 replicated datasets and for other tests we used 
5000 replicated datasets.
**In all the simulation studies (Tables 1-5), we used Wilcoxon-Mann-Whitney exact test.
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null hypothesis is no longer strictly true in our simula-
tions. That is, the tests remain valid tests of differences in
distributions above the actual value used but should not
be strictly interpreted as tests of differences in distribu-
tions above the 90th (or any other percentile). In practice,
this distinction is probably trivial.

In simulation 2 (see Table 2), where H0,A is true, H0,B is
false and f (Y|Y ≤ τ ∩ X = 1) is radically different from f

(Y|Y ≤ τ ∩ X = 0), the new methods for tests of H0,C and
the methods for tests of H0,A have lower power than that
of the corresponding methods for tests of H0,B, however,
the new methods for tests of H0,C can slightly improve the
power compared to the methods for tests of H0,A.

Table 3 shows the power of the tests in Simulation 3,
where H0,B is true, H0,A is false and f (Y|Y ≤ τ ∩ X = 1) is
radically different from f (Y|Y ≤ τ ∩ X = 0). The new meth-

Table 2: Performance of the tests in simulation 2, H0,A is true, H0,B is false and f (Y|Y ≤ τ ∩ X = 1) is radically different from f (Y|Y ≤ τ ∩ X 
= 0) (see Figure 3 for details of simulation).

Test Sample Size (N) Per Group

50 80 100

α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

Tests of H0,A (Wang-Allison tests)
QT3 with τ set to 130. 0.032 0.008 0.041 0.006 0.040 0.006
QT3 with τ set to sample 90th percentile. 0.034 0.034 0.104 0.009 0.062 0.018
QT4 with τ set to 130. 0.038 0.008 0.051 0.009 0.047 0.007
QT4 with τ set to sample 90th percentile. 0.034 0.034 0.104 0.033 0.062 0.018
Tests of H0,B
Wilcoxon-Mann-Whitney with τ set to 130. 0.264 0.090 0.504 0.261 0.631 0.368
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.16 0.051 0.314 0.143 0.406 0.220
Permutation test with τ set to 130 0.337 0.111 0.608 0.332 0.737 0.456
Permutation test with τ set to sample 90th percentile. 0.197 0.047 0.423 0.204 0.525 0.284
Tests of H0,C (new tests)
Wilcoxon-Mann-Whitney with τ set to 130. 0.051 0.008 0.062 0.012 0.056 0.010
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.107 0.029 0.090 0.028 0.124 0.035
Permutation test with τ set to 130. 0.061 0.013 0.055 0.012 0.065 0.014
Permutation test with τ set to sample 90th percentile. 0.109 0.032 0.097 0.03 0.129 0.046

Table 3: Performance of the tests in simulation 3, H0,B is true, H0,A is false and f (Y|Y ≤ τ ∩ X = 1) is radically different from f (Y|Y ≤ τ ∩ X 
= 0) (see Figure 3 for details of simulation).

Test Sample Size (N) Per Group

50 80 100

α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

Tests of H0,A (Wang-Allison tests)
QT3 with τ set to 130. 0.244 0.101 0.412 0.181 0.490 0.258
QT3 with τ set to sample 90th percentile. 0.102 0.102 0.332 0.051 0.297 0.143
QT4 with τ set to 130. 0.266 0.102 0.418 0.187 0.514 0.274
QT4 with τ set to sample 90th percentile. 0.102 0.102 0.332 0.151 0.297 0.143
Tests of H0,B
Wilcoxon-Mann-Whitney with τ set to 130. 0.046 0.013 0.049 0.011 0.045 0.008
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.048 0.019 0.044 0.01 0.041 0.009
Permutation test with τ set to 130. 0.042 0.007 0.046 0.012 0.064 0.013
Permutation test with τ set to sample 90th percentile. 0.046 0.009 0.046 0.012 0.044 0.01
Tests of H0,C (new tests)
Wilcoxon-Mann-Whitney with τ set to 130. 0.276 0.111 0.420 0.201 0.517 0.271
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.182 0.07 0.278 0.104 0.35 0.154
Permutation test with τ set to 130. 0.291 0.101 0.427 0.203 0.515 0.28
Permutation test with τ set to sample 90th percentile. 0.169 0.067 0.264 0.107 0.363 0.173
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ods for tests of H0,C and the methods for tests of H0,A have
very similar power which is much higher than that of the
corresponding methods for tests of H0,B.

From simulation 4 (see Table 4), where H0,B is false, H0,A
is false and f (Y|Y ≤ τ ∩ X = 1) and f (Y|Y ≤ τ ∩ X = 0) are
identical, we can find that the new methods for tests of
H0,C always have higher power than the corresponding
methods for tests of H0,A. When τ being set to the 90th

percentile of the sample, the new methods also have
higher power than the corresponding methods for tests of
H0,B.

Finally, we conducted a set of simulations under what we
perceived to be the most realistic situations. Here both
H0,A and H0,B are false, f (Y|Y ≤ τ ∩ X = 1) is quite different
from f (Y|Y ≤ τ ∩ X = 0), and the distributions have no dis-
continuities. In other words, there is just a simple reduc-

Table 4: Performance of the tests in simulation 4, H0,B is false, H0,A is false and f (Y|Y ≤ τ ∩ X = 1) and f (Y|Y ≤ τ ∩ X = 0) are identical (see 
Figure 3 for details of simulation).

Test Sample Size (N) Per Group

50 80 100

α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

Tests of H0,A (Wang-Allison tests)
QT3 with τ set to 130. 0.244 0.101 0.412 0.181 0.490 0.258
QT3 with τ set to sample 90th percentile. 0.363 0.363 0.735 0.337 0.753 0.600
QT4 with τ set to 130. 0.266 0.102 0.418 0.187 0.514 0.274
QT4 with τ set to sample 90th percentile. 0.363 0.363 0.735 0.555 0.753 0.600
Tests of H0,B
Wilcoxon-Mann-Whitney with τ set to 130. 0.409 0.172 0.684 0.411 0.804 0.56
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.245 0.142 0.33 0.144 0.434 0.176
Permutation test with τ set to 130. 0.517 0.244 0.81 0.568 0.913 0.728
Permutation test with τ set to sample 90th percentile. 0.169 0.039 0.428 0.190 0.569 0.249
Tests of H0,C (new tests)
Wilcoxon-Mann-Whitney with τ set to 130. 0.374 0.171 0.528 0.280 0.629 0.373
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.602 0.353 0.734 0.552 0.865 0.724
Permutation test with τ set to 130. 0.393 0.177 0.524 0.288 0.626 0.377
Permutation test with τ set to sample 90th percentile. 0.619 0.365 0.726 0.553 0.852 0.704

Table 5: Performance of the tests in simulation 5, H0,B is false, H0,A is false and f (Y|X = 1) = 1.2f (Y|X = 0) (see Figure 3 for details of 
simulation).

Test Sample Size (N) Per Group

50 80 100

α = .05 α = .01 α = .05 α = .01 α = .05 α = .01

Tests of H0,A (Wang-Allison tests)
QT3 with τ set to 130. 0.663 0.349 0.925 0.754 0.965 0.883
QT3 with τ set to sample 90th percentile. 0.815 0.815 0.996 0.885 0.997 0.986
QT4 with τ set to 130. 0.765 0.349 0.941 0.797 0.981 0.906
QT4 with τ set to sample 90th percentile. 0.815 0.815 0.996 0.969 0.997 0.986
Tests of H0,B
Wilcoxon-Mann-Whitney with τ set to 130. 0.001 0.000 0.006 0.000 0.010 0.000
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.016 0.000 0.035 0.002 0.058 0.009
Permutation test with τ set to 130 0.001 0.000 0.036 0.003 0.061 0.005
Permutation test with τ set to sample 90th percentile. 0.032 0.002 0.082 0.017 0.124 0.041
Tests of H0,C (new tests)
Wilcoxon-Mann-Whitney with τ set to 130. 0.556 0.239 0.920 0.742 0.979 0.897
Wilcoxon-Mann-Whitney with τ set to sample 90th percentile. 0.932 0.767 0.995 0.964 0.999 0.992
Permutation test with τ set to 130. 0.852 0.646 0.960 0.850 0.993 0.940
Permutation test with τ set to sample 90th percentile. 0.942 0.786 0.995 0.958 0.997 0.986
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tion in the hazard rate when X = 1. Table 5 presents the
power of the tests in Simulation 5, where f (Y|X = 1) = 1.2f
(Y|X = 0). In this simulation, the methods for tests of H0,B
almost have no power because the control group always
has no or few observations above the threshold τ . The
new methods for tests of H0,C, when using a permutation
test, have power higher than or equal to that of the meth-
ods for tests of H0,A.

Illustration with real data
To illustrate the methods, we applied them to two real
datasets. In both of these datasets, prior research had
shown differences in overall survival rate and we tested for
differences in 'maximum lifespan' herein. The first was a
subset of data reported by Vasselli et al [10]. The subset of
the data consists of two groups of Sprague-Dawley rats,
those kept on a high-fat diet ad libitum throughout life
and becoming obese (EO-HF) and those kept on a high-
fat diet ad libitum until early-middle adulthood, becom-
ing obese, and subsequently reduced to normal weight via
caloric restriction, but on the same high-fat diet (WL-HF).
Each group had 49 rats (see Figure 4 for the histograms for
the data). The second dataset was from a study comparing
the lifespan of Agouti-related protein-deficient (AgRP(-/-
)) mice to wildtype mice (+/+) as reported by Redmann &
Argyropoulos [14]. This dataset consists of 16 mice with
genotype '+/+' and 21 mice with genotype '-/-' (see Figure
5 for the histograms for this dataset). From Figure 4, we
can see the upper tails of the histograms of the two groups
are different. Similar results can be found in Figure 5.

Results (p values of tests) are shown in Table 6. As can be
seen, when setting τ equal to 110 (100) for the first (sec-
ond) datasets, both the methods for tests of H0,A and the
new methods for tests of H0,C can detect the differences in
'maximum lifespan' between groups at nominal alpha lev-
els of 0.01 (0.05) for the first (second) datasets. But the
methods for tests of H0,B cannot detect the difference for
all different values of τ . The following description may

provide some explanation to these results. For the first
dataset, when set τ = 110, the proportions of the observa-
tions greater than τ in the EO-HF group and WL-HF group
(i.e., estimations of P(Y > τ | X = 0) and P(Y > τ | X = 1))
are 0.061 and 0.306, respectively. These two proportions
are significantly different and not surprisingly, the meth-
ods for tests of H0,A can detect the difference in 'maximum
lifespan' between the two groups. Second, the sample
means of the observations greater than τ in the two groups
(i.e., estimations of μ (Y | Y > τ ∩ X = 1) and μ (Y | Y > τ
∩ X = 0)) are 117.8 and 122.9, respectively, and there is
no much difference between these sample means. How-
ever the sample means of the Z-values in the two group
(i.e., the estimations of P(Z | X = 0) and P(Z | X = 1)) are
7.210 and 37.633, respectively, and are greatly different,
where, Zi ≡ I(Yi > τ)Yi. These may explain that the methods
for tests of H0,B cannot reject the null but the new methods
for tests of H0,C can detect the difference in 'maximum
lifespan' between the two groups. Similarly, for the sec-
ond dataset, when set τ = 100, the proportions of the
observations greater than τ in the group with genotype '+/
+' and group with genotype '-/-' are 0.188 and 0.571,
respectively. The sample means of the observations
greater than τ in the two groups are 109.3 and 110.9,
respectively. The sample means of the Z-values in the two
groups are 20.5 and 63.4 respectively.

From Table 6 we can also see that in almost all situations
the p-values of the new methods for tests of H0,C are some-
what smaller than those of the methods for tests of H0,A.
This is consistent with the simulations showing greater
power of the new methods.

Discussion
Herein, we proposed new methods for testing the differ-
ence of 'maximum' lifespan between groups (e.g., treat-
ment and control). By defining a new variable Z such that
Zi ≡ I (Yi > τ)Yi for each observation and then applying
Wilcoxon-Mann-Whitney test or better still a permutation

The left (right) graph is the histogram of lifespan for WL-HF (EO-HF) group in the data from Vasselli et al. [10]Figure 4
The left (right) graph is the histogram of lifespan for WL-HF 
(EO-HF) group in the data from Vasselli et al. [10].

The left (right) graph is the histogram of lifespan for group with genotype '+/+' ('-/-') in the data from Redmann & Argy-ropoulos [14]Figure 5
The left (right) graph is the histogram of lifespan for group 
with genotype '+/+' ('-/-') in the data from Redmann & Argy-
ropoulos [14].
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test to Z, the new methods achieve far better performance
when considered across a broad range of circumstances in
terms of both Type-1 error rates and power. In the new
methods, we use the Wilcoxon-Mann-Whitney test or per-
mutation test. One could also choose to use a bootstrap
test in place of these two tests. However, additional simu-
lations would likely be warranted to evaluate its perform-
ance relative to the permutation test we have evaluated
herein.

It is straightforward to extend the new methods to more
than two groups. For example, one could use the Kruskal-
Wallis Test to replace the Wilcoxon-Mann-Whitney test, or
use permutation testing for multiple groups to replace
that for two groups.

We have shown that the new methods are effective by sim-
ulation studies when the sample size (N) of each group is
50, 100, or 200. We expect that these methods will be also
be relatively more powerful than existing competitors for
much larger sample sizes, such as N = 500 or even N =
5000. There are some mouse data sets (like those of the
National Institute of Aging's Intervention Testing Pro-
gram) where N > 500, and worm and fly data sets in which
N may sometimes even exceed 5000. We expect that the
new methods are equally applicable to the analysis of
such data.

Finally, we note that the tests proposed here are described
for the context of testing for differences in lifespan. How-
ever, there is nothing intrinsic to them that limits their use

to survival data. They could be applied to any situation in
which one wanted to test for group differences in the tails
of distributions.
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