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Abstract In diagnostic testing, establishing an inde-

terminate class is an effective way to identify samples

that cannot be accurately classified. However, such ap-

proaches also make testing less efficient and must be

balanced against overall assay performance. We ad-

dress this problem by reformulating data classification

in terms of a constrained optimization problem that (i)

minimizes the probability of labeling samples as inde-

terminate while (ii) ensuring that the remaining ones

are classified with an average target accuracy X. We

show that the solution to this problem is expressed

in terms of a bathtub principle that holds out those

samples with the lowest local accuracy up to an X-

dependent threshold. To illustrate the usefulness of this

analysis, we apply it to a multiplex, saliva-based SARS-

CoV-2 antibody assay and demonstrate up to a 30 %

reduction in the number of indeterminate samples rel-

ative to more traditional approaches.

Keywords SARS-CoV-2, Classification, Antibody,

Inconclusive, Saliva, Bathtub Principle

1 Introduction

The SARS-CoV-2 pandemic has highlighted the im-

portance of antibody testing as a means to monitor

the spread of diseases such as COVID-19 (Lerner et al.

(2020), FDA (2020)). But the widespread deployment
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of new assays has also revealed fundamental problems

in the ability to analyze reliably the corresponding mea-

surements. Early on, this shortcoming was attributed

to low prevalence, which made it difficult to distinguish

true and false positives (Bond et al. (2020)). However, it

soon became clear that there were deeper issues related

to statistical interpretation of raw data, suggesting the

need to revisit the underlying theory of diagnostic clas-

sification (Bermingham et al. (2020), Patrone & Kears-

ley (2021), Böttcher et al. (2022)).

In this context, a fundamental problem arises when

many measurements fall near a cutoff used to distin-

guish positive and negative samples. The probability of

correctly classifying these borderline cases hovers near

50 %, so that even a small fraction thereof can signif-

icantly decrease overall accuracy. A common solution

is to define a third, indeterminate class for which one

cannot draw meaningful conclusions, although this is

not always chosen to be near a cutoff (Meyer et al.

(2020), Lee et al. (2021), Manthei et al. (2020), Theel

et al. (2020), Pisanic et al. (2020), Randad et al. (2021),

Heaney et al. (2021)). While this approach increases the

average accuracy for those samples that are classified, it

also decreases testing efficiency. Thus, there is a need to

develop strategies that balance the construction of in-

determinate classes against overall assay performance.

The present manuscript addresses this problem by

answering the question: what classification scheme (I)

minimizes the fraction of indeterminate samples while

(II) correctly identifying the remaining ones with a

minimum average accuracy X? When an indeterminate

class is not permitted,1 common practice categorizes a

1 Reference (Patrone & Kearsley (2021)) also defined a in-
determinate class arising from an uncertain prevalence. How-
ever, that task is distinct insofar as there is no constraint on
the classification accuracy of the remaining samples. More-
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2 Minimizing Indeterminate Classes

sample as positive or negative if its measurement value

r falls in a corresponding domain D?
P or D?

N ; see Fig.

1. Moreover, it was recently shown that these domains

can be optimized by solving an unconstrained optimiza-

tion problem that maximizes accuracy associated with

“binary” classification (Patrone & Kearsley (2021)). In

contrast, the present work views (I) and (II) as a con-

strained optimization problem, with the size of the in-

determinate class being the objective and the desired

accuracy recast as a constraint. We show that the so-

lution to this problem extends the binary classification

result by constructing the smallest indeterminate class

via a “bathtub principle” applied to D?
P and D?

N : one

removes from them the measurements with the lowest

probability of being correctly classified up to an X-

dependent threshold. As a practical matter, this “wa-

terline” bounding the indeterminate domain can be ef-

ficiently and accurately estimated via numerical tech-

niques such as bisection, making our result computa-

tionally tractable. We provide examples and numerical

validation using a saliva-based, multiplex SARS-CoV-

2 antibody test, as well as mathematical proofs of our

main results in the Appendix.

At the outset and in contrast with traditional meth-

ods, it is important to note that concepts such as speci-

ficity and sensitivity per se are not fundamental quan-

tities of interest in our analysis. As discussed in Sec.

6, they describe the accuracy of a fixed classification

scheme in two degenerate cases: 0 % and 100 % preva-

lence. As such, it is trivial (but useless) to optimize ei-

ther quantity by assigning all samples to a single class.

Rather, we demonstrate that it is more useful to define

accuracy as a prevalence-weighted, convex combination

of specificity and sensitivity, since this naturally inter-

polates between the aforementioned degenerate cases.

This choice also highlights an important (but often-

ignored) fact: optimal classification domains, sensitiv-

ity, and specificity all change with prevalence. Thus,

they are not static metrics of the assay performance

in a setting where a disease is actively spreading. For

more in-depth discussion, we refer the reader to Ref.

(Patrone & Kearsley (2021)), as well as Sec. 6 of the

present manuscript.

We also emphasize that the concept of classification

accuracy has both a local and global interpretation, and

the interplay between these interpretations is funda-

mental to our analysis.2 In particular, one can construct

over, the adaptive prevalence-estimation algorithm in that
work allows us to assume in this work that the prevalence is
known.
2 The testing community has largely restricted its attention

to global assay properties, since regulatory reporting focuses
on assay performance for large populations FDA (2020).

conditional probability density functions (PDFs) P (r)

and N(r) of a measurement outcome r – i.e. a local

property – for (known) positive and negative samples.

As shown in Ref. (Patrone & Kearsley (2021)), these

PDFs are necessary to maximize the global accuracy

X, since the equation

pP (r) = (1− p)N(r) (1)

defines the boundary between D?
P and D?

N when p is

the prevalence. In the present work, we recast this ob-

servation by showing that P (r) and N(r) also directly

define the local accuracy Z(r), and that its global coun-

terpart X is the average value of Z(r). We next ob-

serve that the boundary given by Eq. (1) is the set for

which Z = 50 %, its lowest possible value. The corre-

sponding points are the first to be held out, since they

contribute most to the average error.3 Moreover, one

sees that systematically removing the least accurate r

yields the fastest increase in the global accuracy for the

remaining points. The bathtub principle formalizes this

idea.

From a practical standpoint, the main inputs to our

analysis are training data associated with positive and

negative samples; thus our approach is compatible with

virtually any antibody assay. These data are used to

construct the conditional PDFs P (r) and N(r), so that

the classification and holdout problems are reduced to

mathematical modeling. This is also the key limitation

of our approach insofar as such models are necessar-

ily subjective. However, this problem is not unique to

our method. Where possible, we incorporate objective

information about the measurement process. See Sec.

4 and Ref. (Patrone & Kearsley (2021)) for a deeper

discussion of such issues and other limitations.

The remainder of this manuscript is organized as

follows. Section 2 reviews key notation and terminol-

ogy. Section 3 presents the general theory for defining

optimal indeterminate domains. Section 4 illustrates

this analysis in the context of a saliva-based, multiplex

SARS-CoV-2 saliva assay. Section 5 considers numeri-

cal validation of our analysis, and Section 6 concludes

with a discussion and comparison with past works. The

Appendix provides a proof of our main result and other

supporting information.

3 An interesting corollary of the proofs in Ref. (Patrone &
Kearsley (2021)) is that Z ≥ 50 % for optimally defined clas-
sification domains without indeterminates. Thus, we never
need consider relative errors less than 50 %. See also Sec. 3
and the Appendix.
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2 Notation and Terminology

Our analysis is grounded in measure theory and set

theory. We review relevant concepts here. Readers well-

versed in these topics may skip this section.

– By a set, we mean a collection of objects, e.g. mea-

surements or measurement values. By a domain, we

typically mean a set in some continuous measure-

ment space; see, e.g., Fig. 1.

– The symbol ∈ indicates set inclusion. That is, r ∈ A
means that r is in set A.

– The symbol ∅ denotes the empty set, which has no

elements.

– The operator ∪ denotes the union of two sets. That

is, C = A∪B is the set containing all elements that

appear in either A or B.

– The operator ∩ denotes the intersection of two sets.

That is, C = A∩B is the set of elements shared by

both A and B.

– The operator / denotes the set difference. We write

C = A/B to mean the set of all objects in A that

are not also in B. Note that in general, A/B 6=
B/A. Equivalently, A/B can be interpreted as the

“subtraction” or removal from A of the elements it

shares in common with B.

– The notation A = {r : ∗} defines the set A as the

collection of r satisfying condition ∗.

Unless otherwise specified, the “size” or measure of

a set refers to the probability of a sample falling within

that set, i.e. its probability mass. By the same token, we

generally avoid using size to describe the actual dimen-

sions (in measurement space) of a domain. Through-

out we also distinguish between training data and test

data. The former is used to construct probability mod-

els, whereas the latter is the object to which the result-

ing classification test is applied.

3 Minimum Probability Indeterminate Class

We begin with the mathematical setting underlying

classification. Consider an antibody measurement r,

which can be a vector associated with multiple distinct

antibody targets. We take the set of all admissible mea-

surements to be Ω. Our goal is to define three domains,

DP , DN , and Dh associated with positive, negative, and

indeterminate (or h for “hold-out”) samples. In partic-

ular, we say that a test sample r is positive if it falls

inside DP (i.e. r ∈ DP ), and likewise for the other do-

mains.

We require that these domains have several basic

properties to ensure that they define a valid classifica-

tion scheme. Recalling that P (r) and N(r) are condi-

tional probabilities associated with positive and nega-

tive samples, define the measures of a set S ⊂ Ω with

respect to P and N to be

µP (S) =

∫
S

drP (r) (2a)

µN (S) =

∫
S

drN(r). (2b)

That is, µP (S) is the probability of a positive sample

falling in S, etc. We then require that

µP (DP ∪DN ∪Dh) = µN (DP ∪DN ∪Dh) = 1 (3)

and

µP (S ∩ S′) = µN (S ∩ S′) = 0 (4)

when S 6= S′, for S, S′ chosen from DP , DN , or Dh.

Equation (3) states that the probability of any event

falling in the positive, negative, or indeterminate do-

mains is one; i.e. any sample can be classified. Equa-

tion (4) states that the probability of a sample falling

in more than one domain is zero, i.e. a sample has a

single classification.

Within this context, we define the total error rate

to be

E[DP ,DN ] =

∫
DP

dr(1− p)N(r) +

∫
DN

drpP (r) (5)

where p is the prevalence. [See Ref. (Patrone & Kearsley

(2021)) for an unbiased method to estimate p without

needing to classify.] The terms on the right-hand side

(RHS) are the rates of false positives and false nega-

tives. Importantly, indeterminates are not treated as

errors in Eq. (5), and E so defined is not the error rate

of the assay restricted to samples that fall only within

DP and DN . The latter is defined as

Er[DP ,DN ] =
1

pµP (D) + (1− p)µN (D)
E[DP ,DN ]

(6)

where D = DP ∪DN is the set of all samples not in the

indeterminate region. Note that Eq. (6) is a conditional

expectation; i.e. it is the average error conditioned on

the set of samples that can be classified.

In Ref. (Patrone & Kearsley (2021)) we showed that

when the set Z1/2 = {r : pP (r) = (1 − p)N(r)} has

measure zero and Dh is the empty set,4 Er is minimized

by the binary classification scheme

D?
P = {r : pP (r) > (1− p)N(r)} (7a)

D?
N = {r : (1− p)N(r) > pP (r)} (7b)

4 E and Er are equal when Dh is the empty set. Note also
that one can measure Z1/2 with respect to either P or N . This
is because the set Z1/2 by definition entails that pµP (Z1/2) =
(1− p)µN (Z1/2).
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for a prevalence p. While D?
P and D?

N are not the op-

timal sets for the problem at hand, they play a funda-

mental role in the analysis that follows.5 We also note

an important corollary that when the Z1/2 has non-zero

measure, Eqs. (7a) and (7b) are generalized to

D?
P = {r : pP (r) > (1− p)N(r)} ∪ Zp (8a)

D?
N = {r : (1− p)N(r) > pP (r)} ∪ Zn (8b)

where Zp and Zn are an arbitrary partition of Z1/2. The

physical interpretation of this generalization is that any

point having equal probability of being negative or pos-

itive can be assigned to either class without changing

the error. In practice, however, classification often re-

verts to Eqs. (7a) and (7b) as Z1/2 has zero measure

for many practical PDFs.

In the present work, we assume that there is a

desired average accuracy X and that L = 1 −
Er[D

?
P , D

?
N ] < X when all samples are classified. Our

goal is to define a minimum probability indetermi-

nate class D?
h and domains D?

P and D?
N for which

L[D?
P ,D

?
N ] = X; that is, we wish to hold out the fewest

samples so that those remaining are classified with the

desired accuracy. Mathematically, we seek to minimize

H[Dh] =

∫
Dh

drQ(r), (9)

where Q(r) = pP (r) + (1− p)N(r) is the probability of

a test sample taking a value r, subject to the constraint

that

p

∫
DP

drP (r) + (1− p)
∫
DN

drN(r) = X

∫
D

Q(r) (10)

for D = DP ∪DN .

To solve this problem, it is useful to introduce sev-

eral auxiliary concepts. In particular, define the local

accuracy of the unconstrained (i.e. no indeterminate),

binary classification to be

Z(r, DP , DN ) =

{
pP (r)/Q(r) r ∈ DP

(1− p)N(r)/Q(r) r ∈ DN

(11)

where DP and DN cover the whole set Ω up to sets of

measure zero; moreover, let Z?(r) = Z(r, D?
P , D

?
N ) be

the local accuracy of the optimal solution to the binary

problem. Then the solution to the constrained problem

given by Eqs. (9) and (10) is

D?
h = {r : Z?(r) < Z0(X)} ∪C(X) (12a)

D?
P = D?

P /D
?
h (12b)

D?
N = D?

N/D
?
h (12c)

5 We use non-caligraphic symbols to denote binary classifi-
cation sets, while we reserve caligraphic symbols for sets used
in the holdout problem.

where Z0(X) is the solution to the equation∫
Ω/{{r:Z?(r)<Z0}∪C}

dr [Z?(r)−X]Q(r) = 0, (13)

for any set C ⊂ {r : Z?(r) = Z0} satisfying Eq. (13).

Proof of this result, as well as the strict interpretation

of C requires significant analysis of Eq. (10) and is re-

served for the Appendix. Here we provide an intuitive

interpretation and describe a straightforward algorithm

for computing Eqs. (12a)–(12c).

Equation (12a) informs that the points to hold out

from classification are those with the lowest local ac-

curacy up to some threshold value Z0, which depends

on X. Equations (12b) and (12c) then amount to the

observations that the positive and negative domains

are the same as in the unconstrained binary problem,

except that we remove the corresponding points with

low enough local accuracy. Equation (13) requires that

the average local accuracy for the classification sets D?
P

and D?
N be X. By virtue of the fact that Dh = Ω/D,

this fixes the boundary of the indeterminate set. That

is, the upper bound Z0(X) on the indeterminate local

accuracy is the lower bound on the accuracy for sets

that can be classified. The C(X) is a bookkeeping ar-

tifact accounting for the situation in which the set of

points with local accuracy Z0(X) has non-zero proba-

bility mass. In this case, not all of these points need

to be held out if doing so would make L greater than

X. The choice of which points to make indeterminate

then becomes subjective as they all have the same local

accuracy. In practice (e.g. for smooth PDFs), C(X) is

a set of measure zero with respect to Q, so that we can

ignore it in Eq. (12a).

From Eqs. (12a)–(13) it is clear that determining

Z0(X) is the key step in defining the optimal clas-

sification domains. Fortunately, the interpretation af-

forded by Eq. (13) leads to a straightforward bisection

method. First note that 1/2 ≤ Z?(r) ≤ 1. Let ζ0 = 3/4

be an initial guess for the value of Z0(X), and let ζj
be the jth update computed iteratively as follows. For

each ζj compute DP (ζj), DN (ζj), as well as the left-

hand side (LHS) of Eq. (13), which we denote by Ij .

If Ij > 0, then set ζj+1 = ζj − 2−(j+3); if Ij < 0, set

ζj+1 = ζj + 2−(j+3). If |Ij | ≤ εX for some user-defined

tolerance εX , or if j reaches some maximum iteration

number M , stop the algorithm. In the former case, the

classified samples will have an average accuracy L in

the range X − εX ≤ L ≤ X + εX . In the latter case,

ζj − εZ ≤ Z0(X) = ζj + εZ , where εZ ≤ 2−M+3 is the

error in the estimate of Z0(X). For context, 20 itera-

tions of this algorithm yields errors εZ on the order of

1 in 107. In the second case, the existence of a non-

trivial set C(X) can be deduced from the observation
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Fig. 1 Training data associated with the Saliva assay de-
scribed in Refs. (Pisanic et al. (2020), Randad et al.
(2021)). Red x denote known positives (confirmed via poly-
merase chain-reaction measurements), and blue o denote pre-
pandemic samples, which are assumed to be negative for
SARS-CoV-2 antibodies. The bold, horizontal and vertical
black lines are cutoffs used to classify samples. Data falling
above the horizontal line (red shaded domain) are classified
positive; data in the lower right box (shaded blue) are neg-
ative, and data in the lower left box (shaded yellow) are in-
determinates. The SARS-CoV-2 IgG measurements (vertical
axis) are a sum of seven antibody levels measured by the
assay, whereas the total IgG measurement (horizontal axis)
is the total immunoglobulin-G (IgG) measurement as deter-
mined by an enzyme-linked immunosorbent assay (ELISA).

that Ij does not converge, but rather cycles between

two well-separated values, depending on whether ζ is

greater than or less than Z0(X). In this case, the set

C(X) can be defined arbitrarily but consistent with Eq.

(13) once Z0(X) is identified to sufficient accuracy.

4 Example Applied to a Salivary SARS-CoV-2

IgG Assay

To illustrate the analysis of Sec. 3, we consider a saliva-

based assay described in Refs. (Pisanic et al. (2020),

Randad et al. (2021)). We refer the reader to those

manuscripts for details of assay design, sample prepara-

tion, and measurement processes. For each sample, two

measurement values are output: a total immunoglobulin

G (IgG) enzyme linked immunosorbent assay (ELISA);

and a sum of seven SARS-CoV-2 IgG measurements as-

sociated with distinct antigen targets. As a preliminary

remark, we observe that the numerical range of the data

spans several decades of median fluorescence intensity

(MFI), which is difficult to model directly. We also note

that the measurements are bounded from below by zero

and have a finite upper bound. This motivates us to

transform each numerical value d via log2[d + 2] − 1,

which corresponds representing the data in terms of

bits. Empirically we also find that this transformation

Fig. 2 Probability density models associated with the train-
ing data. See main text for a description of the probability
density functions and the considerations behind their con-
struction. Top: Raw data and probability model for positive
training samples. Bottom: Negative training data and proba-
bility model.

better separates positive and negative populations. To-

tal IgG values are then rescaled to the domain [0, 1] by

dividing each measurement by the maximum. SARS-

CoV-2 measurements are similarly rescaled to the do-

main [0, 1], although we divide the log-transformed data

by 7, since there were no samples with saturated val-

ues. After transformation, each sample is represented

by a two-dimensional vector r = (x, y), where x is the

normalized total IgG value, and y is the normalized

SARS-CoV-2 counterpart.

The results of this transformation are shown in Fig.

1, along with classification domains currently used with

this assay.6 The goal of the analysis is to maintain ac-

6 All data correspond to samples for which more than 14
days have elapsed since symptoms onset. Also, the original
training total IgG data included samples that were diluted
to achieve measurement values above a saturation value. All
such data were rounded down to the undiluted upper thresh-
old to be consistent with the validation data. This amounts
to data censoring, for which we can still define the relevant
likelihood functions used in parameter estimation. See also
the Appendix.
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curacy while decreasing the number of indeterminate

samples by finding the domain Dh with the smallest

probability mass. We remind the reader that size does

not refer to the (generalized) volume in measurement

space. Rather it refers to the fraction of samples ex-

pected to fall within the domain, since this is what

controls the number of indeterminate samples. Thus, it

is possible that Dh can be quite large when expressed

in terms of antibody levels and yet contain very few

samples.

To motivate our probability models, we consider the

phenomena that could affect measurements. In particu-

lar, we anticipate that for positive samples, there should

be a degree of correlation between total IgG and SARS-

CoV-2 specific antibodies. However, at extreme total

IgG values, the SARS-CoV-2 levels may become inde-

pendent as (i) all measurements will revert to noise

when x → −∞ or (ii) SARS-CoV-2 antibody levels

will decouple from total antibody levels when the lat-

ter is excessively high, e.g. if an individual has been

exposed to a large number of different pathogens. We

also recognize that the ELISA instrument only reports

numerical values on the domain [xmin, xmax]. Thus, flu-

orescence levels above xmax are rounded down to the

upper bound, and levels below xmin are rounded up to

the lower bound. As shown in Fig. 1, this has the ef-

fect of accumulating data (and thus probability mass)

on the lines x = xmin and x = xmax. While details are

reserved for the Appendix, this observation leads us to

model positive and negative samples via a PDF of the

form

P (x, y) = P0(x, y) + Pl(y)δ(x) + Pr(y)δ(x− 1), (14)

where 0 ≤ x ≤ 1, 0 ≤ y < 1, δ(x) is the Dirac delta

function, and P0(x, y) is assumed to be bounded and

continuous on the whole domain. The functions Pl(y)

and Pr(y) characterize the probability of SARS-CoV-

2 antibody levels for measurement values saturated at

the left (l) and right (r) bounds. We emphasize that the

use of delta functions in Eq. (14) is formal and should

be treated with care. A more rigorous interpretation of

what is meant by Eq. (14) is discussed in the Appendix.

To model the function P0(x, y), we treat the total

IgG measurements as independent normal random vari-

ables with an unknown mean and variance. Within the

domain 0 < x < 1 (note the strict inequalities) and

0 ≤ y ≤ ∞, we assume that the SARS-CoV-2 mea-

surements are well described by a Gamma distribution

with a fixed (but unknown) scale factor and shape pa-

rameter with a sigmoidal dependence on x. This depen-

dence is motivated by the correlation described previ-

ously. Taken together, this yields the PDF

P0(x, y) =
e−(x−µ)

2/(2σ2)

√
2πσ

yk(x)−1
e−y/θ

Γ (k(x))θk(x)
(15a)

k(x) = α2
1[tanh(α2(x− α3)) + 1] + α2

4 (15b)

where µ, σ, θ, and the αj are to-be-determined. The

boundary functions are defined to be

Pl(y) =
yk(0)−1e−y/θ

Γ (k(0))θk(0)

∫ 0

−∞
dx
e−(x−µ)

2/(2σ2)

√
2πσ

(16)

Pr(y) =
yk(1)−1e−y/θ

Γ (k(1))θk(1)

∫ ∞
1

dx
e−(x−µ)

2/(2σ2)

√
2πσ

(17)

which describes the probability that a total IgG value

below (above) x = 0 (x = 1) will be mapped back to

the lower (upper) instrument bound. The free parame-

ters are determined via maximum likelihood estimation

using a censoring-based technique; see the Appendix.

As an approximation, we truncate the y-domain to be

0 ≤ y ≤ 1 and renormalize the resulting PDF on this

domain.

For the negative PDF N(x, y), we anticipate that

non-specific binding of the total IgG antibodies to the

SARS-CoV-2 antigens will lead to a degree of correla-

tion, albeit to a less extent than for positives. Thus,

we use the same form of P (x, y), but refit the param-

eters using the negative training data. Figure 2 shows

the outcome of this exercise for the two training sets.

Because Pl(y), Pr(y), and corresponding terms for
N(x, y) are continuous with respect to the Gamma por-

tion of P (x, y) and N(x, y), the former can be inferred

from the contour lines in the figure (up to a normaliza-

tion factor) and are thus not shown.

Figures 3 and 4 show Z?(r) and waterlines neces-

sary to achieve different average accuracies. The bath-

tub principle is shown in the latter; see also Ref. (Lieb

et al. (2001)) for related ideas. To ensure that L = X,

we only hold out samples up to the corresponding value

of Z0(X). Note that indeterminates are concentrated in

regions where there is significant overlap between pos-

itive and negative samples. Figure 5 shows the corre-

sponding classification domains computed according to

the bathtub principle for a target accuracy of 99.6 %;

see also Table 1. Relative to the original classification

domains, the analysis reduces the empirical rate of inde-

terminate samples by more than 11 % while increasing

both accuracy and sensitivity of the assay (with empir-

ical specificity remaining constant). See also Fig. 6 and

Sec. 6 for additional examples of holdout domains.
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Data & Method COVID Samples Pre-COVID Samples All Samples

Training Samples 147 283 430
Holdouts (Rectilinear) 32/147, 21.8 % 64/283, 22.6 % 96/430, 22.3 %
Holdouts (Optimal) 28/147, 19.1 % 56/283, 19.8 % 84/430, 19.5 %

Sensitivity Specificity Accuracy

Classification (Rectilinear)
111/115, 96.5 %
[92.0 %, 98.9 %]

219/219, 100 %
[98.6 %, 100 %]

330/334, 98.8 %
[97.2 %, 99.6 %]

Classification (Optimal)
115/119, 96.6 %
[92.3 %, 99.0 %]

227/227, 100 %
[98.7 %, 100 %]

342/346, 98.8 %
[97.3 %, 99.6 %]

Validation Samples 87 192 279
Holdouts (Rectilinear) 6/87, 6.9 % 66/192, 34.4 % 72/279, 25.8 %
Holdouts (Optimal) 5/87, 5.8 % 34/192, 17.7 % 39/279, 14.0 %

Sensitivity Specificity Accuracy

Classification (Rectilinear)
81/81, 100 %

[96.3 %, 100 %]
125/126, 99.2 %
[96.3 %, 100 %]

206/207, 99.5 %
[97.7 %, 100 %]

Classification (Optimal)
81/82, 98.8 %

[94.4 %, 100.0 %]
157/158, 99.4 %
[97.0 %, 100 %]

238/240, 99.2 %
[97.3 %, 99.9 %]

Table 1 Summary of fraction of holdouts, sensitivity, and specificity for the data in Figs. 5 and 6. The rectilinear classification
method is described in Fig. 1, while the optimal method is given by Eqs. (12a)–(13). For sensitivity, specificity, and accuracy
calculations, the numbers in brackets are empirical 95 % confidence intervals.

Fig. 3 Local accuracy Z?(r) of the assay according to the
probability models shown in Fig. 2. Note that Z?(r) ap-
proaches 100 % in regions where P (r) and N(r) do not over-
lap. Conversely, in regions where the PDFs overlap, it is
more challenging to correctly identify samples. Thus Z?(r)
decreases towards its minimal value of 1/2 in such regions.
Note that Z?(r) is never less than 1/2 (50/50 odds of correct
classification).

5 Numerical Validation

To validate that the sets D?
P , D?

N , and D?
h obtained in

Sec. 3 are optimal, we consider a numerical experiment

wherein we perturb H as a function of these domains.

For point r ∈ Dh and r′ ∈ D, we formally define a

“point-swap derivative” to be

δH[Dh]

δrδr′
=

Z(r)−X
Z(r′)−X

. (18)

In principle Z(r) can be an arbitrary definition of local

accuracy, although in practice we take Z(r) = Z?(r)

Fig. 4 Illustration of the bathtub principle used to compute
the minimal probability indeterminate domain. The contour
lines are different “waterlines” up to which we can hold out
samples. The label on each contour is the local accuracy of
the assay. In order to define the indeterminate region, we
use the target global accuracy X to define a maximum local

accuracy up to which we hold out samples. Increasing the
global accuracy of the restricted classification increases the
waterline, thereby holding out more samples.

in this section. The interpretation of Eq. (18) is as fol-

lows. In taking point r′ from D and adding it to Dh

and vice-versa for r, we must ensure that the constraint

Eq. (10) remains satisfied. The ratio Z(r)−X
Z(r′)−X provides

the “rate-of-exchange” of probability. For example, if

Z(r) − X < Z(r′) − X < 0, then adding r to D will

infinitesimally decrease the global accuracy, so that we

must hold out a larger yet still infinitesimal fraction of

Q in the vicinity of r′. It is clear that Eq. (18) goes

through a singularity when Z(r′) → X and becomes

negative for Z(r′) > X and Z(r) < X. The interpreta-
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Fig. 5 Positive (yellow-green), negative (dark blue), and in-
determinate (light-blue) classification domains defined for a
theoretical target accuracy of 99.6 % for the training data
in the previous figures. Symbols have the same meaning as
in previous figures. The empirical accuracy is 98.8 %, with
a specificity of 100 % and sensitivity of 96.7 %. The total
accuracy is the prevalence-weighted combination of these lat-
ter quantities. Note the prevalence is associated with the re-
stricted set of samples that are actually classified; see Sec.
6. Discrepancy between the theoretical and empirical accura-
cies is due to idealization of the modeling and stochasticity in
the data. For comparison, the horizontal and vertical black
lines are the same as in Fig. 1 and denote the correspond-
ing classification domains originally used for this assay. The
indeterminate region based on the bathtub principle reduces
the number of unclassified samples by more than 12 % rela-
tive to the original domains while maintaining specificity and
improving sensitivity for the training data. See also Table 1
and Sec. 6 for other examples of indeterminate domains.

Fig. 6 Positive (yellow-green), negative (dark blue), and in-
determinate (light-blue) classification domains for validation
data and defined for a theoretical target accuracy of 99.6 %.
The validation data was not used for training the probability
models. Symbols have the same meaning as in previous fig-
ures. The empirical accuracy is 99.2 %, with a specificity of
99.4 % and sensitivity of 98.8 %. The indeterminate region
based on the bathtub principle reduces the number of unclas-
sified samples by almost 40 %. See Sec. 6 for other examples
of indeterminate domains.

Fig. 7 The logarithm of the swap derivative given by Eq. (18)
computed for the optimal domains D?

P , D?
N , and D?

h. The 0-
level line is the boundary of the indeterminate region. Note
that the logarithm is everywhere positive. Thus, swapping
any infinitesimal regions between D?

h and D? will increase the
probability mass in the indeterminate, provided constraint
Eq. (10) is satisfied.

tion of this is straightforward: we should always reverse

any swap for which a point with local accuracy greater

than the average is put in the indeterminate class. Such

points are not considered in the analysis below. More

rigorous interpretations of Eq. (18) are considered in

the appendix, especially in the context of the singular

PDF given by Eq. (14).

The benefit of Eq. (18) is that it allows us to esti-

mate a “set-partial derivative” by computing the rela-

tive probability exchange for any point in the indeter-

minate domain. In particular, we compute

δH[Dh]

δr
= inf

r′

Z(r′)<X
r′∈D

[
Z(r)−X
Z(r′)−X

]
(19)

for the optimal domains D?
h and D?. Figure 7 shows

the logarithm of Eq. (19) for a mesh of points in the

indeterminate region, taking Z(r) = Z?(r). Note that

swapping any point in the indeterminate region with

one in the positive and negative classification domains

increases the size of the indeterminate, as expected.

To validate that swapping points between D?
P and

D?
N does not increase the accuracy of the assay or de-

crease the size of the indeterminate domain, we exam-

ine the quantity Z(r) directly. In particular, the Ap-

pendix shows that Z?(r) ≥ 1/2 for all r ∈ D? guaran-

tees that D?
P = D?

P /D
?
h and D?

N = D?
N/D

?
h are optimal

for the indeterminate region D?
h. Figure 3 demonstrates

that this inequality holds for the solution given by Eqs.

(12a)–(13). Thus, no rearrangement of points decreases

the size of the indeterminate domain.
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6 Discussion: Historical Context, Open

Direction, and Limitations

6.1 The Role of Prevalence

Examination of Eq. (10) reveals that the terms of the

LHS are proportional to prevalence-weighted estimates

of sensitivity and specificity. In particular, recognize

that

Se =

[∫
D

P (r) dr

]−1 ∫
DP

P (r) dr, (20a)

Sp =

[∫
D

N(r) dr

]−1 ∫
DN

N(r) dr (20b)

are the sensitivity and specificity restricted to the do-

main D. When there is no indeterminate domain, the

normalization factors
∫
D
P (r)dr =

∫
D
N(r)dr = 1, so

that Eqs. (20a) and (20b) revert to the standard def-

initions of these quantities. In this case, we see that

Eq. (10), which no longer acts as a constraint, amounts

to the statement that the prevalence-weighted sum of

sensitivity and specificity is equal to X; that is

pSe + (1− p)Sp = X. (21)

When we permit an indeterminate class, however,

the interpretation is not as straightforward. In partic-

ular, the presence of the term NQ =
∫
D
Q(r)dr on the

right-hand side (RHS) appears problematic, for note

that it implies

N−1Q

[
p

∫
DP

P (r)dr + (1− p)
∫
DN

N(r)dr

]
= X. (22)

The normalization factor NQ differs from its counter-

parts in Eqs. (20a) and (20b). Thus, it is not obvious

what our constraint enforces about the sensitivity and

specificity of the assay restricted to D.

The resolution to this conundrum is to recognize

that the prevalence of the population also changes when

we restrict classification to D. This is not to say that

the value of p itself (i.e. associated with the total pop-

ulation) changes, but rather that the relative fraction

of positives and negatives differs on D ⊂ Ω. This is not

unexpected, since the shape of the indeterminate region

is a function of the local accuracy Z, which depends on

the specifics of the probability models. Mathematically,

we understand these observations by rewriting Eq. (22)

in the form

pNP
NQ

∫
DP

P (r)

NP
dr +

(1− p)NN
NQ

∫
DN

N(r)

NN
= X (23)

where NP =
∫
D
P (r)dr and NN =

∫
D
N(r)dr are the re-

quired normalization constants. Equation (23) becomes

an analogue to Eq. (21) of the form

pNP
NQ

Se +
(1− p)NN

NQ
Sp = X (24)

where pD = pNP /NQ is the prevalence restricted to the

domain D. Note that pD has the properties necessary

to be a prevalence:

pNP
NQ

+
(1− p)NN

NQ
= 1 =⇒ 1− pD =

(1− p)NN
NQ

(25)

which is a consequence of the definition of NQ. Thus,

we see that the constraint corresponds to a domain-

restricted-prevalence weighted sum of sensitivity and

specificity.

From a theoretical standpoint, Eq. (25) is extremely

serendipitous. The constraint as defined by Eq. (10)

only refers to the prevalence of the full population. It is

not obvious that this equation will remain a prevalence-

weighted sum when holding out samples, especially as

the restricted-prevalence does not in general equal p.

Further implications of this observation are explored in

the next section.

However, an immediate practical consequence of Eq.

(25) is that the relative fraction of positives from an

assay using indeterminates is not a reliable estimator

of total prevalence. In order for the restricted prevalence

pD to equal p, one requires

NP − NQ = 0 =

∫
D

P (r)− pP (r)− (1− p)N(r)dr,

which implies

0 =

∫
D

P (r)−N(r) = NP − NN . (26)

That is, p = pD only occurs when the holdout domain

removes equal mass from the probability models, which

is extremely restrictive.

To overcome this problem, we recall that Ref. (Pa-

trone & Kearsley (2021)), demonstrated how an unbi-

ased estimate of the total prevalence can be constructed

without classifying samples using a simple counting ex-

ercise on subdomains of Ω. The validity of that method

is independent of the assay accuracy, so that it can be

used to estimate p in the present work. Indeed, such

techniques are necessary to construct the optimal clas-

sification domains, given the fundamental role of p in

their definitions. We refer the reader to Ref. (Patrone &

Kearsley (2021)) for a deeper discussion of such issues.
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6.2 Other Notions of Optimality

A common practice in the testing community is to pref-

erentially optimize an assay so that either the speci-

ficity or sensitivity reaches a desired target, but not ex-

plicitly a linear combination of the two. Equation (24)

and the bathtub principle suggest a route by which our

method can solve an analogue of this problem. How-

ever, a deeper investigation of sensitivity and specificity

is first necessary to motivate this generalization and

understand how such methods differ from Eqs. (12a)–

(13). [See also Ref. (Florkowski (2008)) for additional

notions of optimality, as well as Refs. (Algaissi et al.

(2020), Grzelak et al. (2020), Hachim et al. (2020)) for

other approaches to defining classification domains.]

Examination of the binary problem reveals that

when p = 1/2, the domains D?
P and D?

N equally weight

sensitivity and specificity; that is, errors in either are

treated as equally undesirable. It is straightforward to

show that increasing p will increase sensitivity at the

expensive of specificity, and vice versa. The interpreta-

tion of this observation is that as the number of posi-

tive samples increases, we should increase the size of the

positive classification domain so as to capture the their

increasing share of the population. It is therefore possi-

ble and even likely that when the prevalence approaches

0 or 100 %, either sensitivity or specificity may be un-

acceptably low, since the corresponding contribution to

the total accuracy becomes negligible.

A possible solution to this problem is to recast Eq.

(10) as an inequality constraint of the form

p

∫
DP

drP (r) + (1− p)
∫
DN

drN(r) ≥ X
∫
D

Q(r) (27)

together with the additional constraints

Se ≥ X+ (28)

Sp ≥ X−, (29)

where X+ and X− are user-defined lower bounds. While

an optimal solution to this problem is beyond the scope

of the current manuscript, the bathtub principle sug-

gests a construction akin to active-set methods (No-

cedal & Wright (2006)). First, solve the optimization

problem associated with Eqs. (9)–(10) and check the

resulting values of sensitivity and specificity. If these

quantities are deemed to small, remove samples up to

user-defined waterlines Zn ≥ Z0 and Zp ≥ Z0 (which

may be different), where Zn and Zp apply only to sam-

ples in the negative and positive classification domains.

Figure 8 shows an example of this approach applied to

the data in previous figures. We originally set X = 0.99

but required that the empirical specificity be 100 % for

the training set. To accomplish this, we set Zp = 0.972,

Fig. 8 Holdout domain computed with a target accuracy of
99 % and according to the constraints given by inequalities
(28) and (29). For the latter, we set X− indirectly by holding
out samples up to Zp = 0.972 in the positive classification do-
main. This yields an empirical specificity of the training data
was 100 % while keeping the empirical sensitivity above 94 %.
Note that the indeterminate domain (light-blue) is increased
only into the positive classification domain (yellow-green) in
attempting to satisfy inequality (29). The teal strip adjacent
to the light blue and yellow-green is the modified indeter-
minate domain. After increasing the empirical specificity to
100 %, the optimized domains holds out 15.1 % of samples,
as opposed to 22.3 % for the rectilinear method; see Table 1.

which augments the size of the indeterminate domain

(teal strip added to the light blue domain) without de-

creasing the number of true negatives.

6.3 Relationship between Prevalence, Sensitivity, and

Specificity

Equation (24) and the examples of Secs. (6.1) and (6.2)

beg the question: to what extent is prevalence-weighted

accuracy a preferred or natural framework for diagnos-

tic classification, as opposed to methods based on ex-

plicit reference to sensitivity and specificity? To unravel

this, consider that the latter two are purely theoretical

properties of a specific choice of classification domain

and are only loosely connected to the reality of testing.

This is evident from the definitions given by Eqs. (20a)

and (20b). The concept of prevalence, i.e. implying ex-

istence of a population, does not enter; rather all that is

needed is a choice of the classification domains. Thus,

an assay can have exceptional sensitivity and yet still

be wrong half the time if the prevalence is low. In a

related vein, it is clear that specificity and sensitivity

only characterize assay accuracy in the limits p → 0

and p→ 1, respectively.

Here we encourage a new perspective. As a baseline

strategy, the most important task is to correctly clas-

sify samples; at least this is of the utmost importance

to patients. Moreover, computing accurate prevalence
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estimates is critical for epidemiologists (although we

have shown previously that this problem is solved accu-

rately without recourse to classification). With this goal

in mind, the sensitivity and specificity are subservient

to accuracy via Eq. (10), and it is not unreasonable to

let them change with prevalence if doing so increases

overall testing accuracy. We highlight this because un-

der such a paradigm, Se and Sp lose their status as the

key performance metrics that define the “quality” of an

assay, and they cannot be viewed as static properties.

Such observations are not to say that Se and Sp are use-

less, however. Clearly there are times when it is more

important to correctly identify samples from one class,

and this motivates the generalization of Sec. 6.2.

But these observations clarify our perspective of

why the prevalence sets a natural scale for classifica-

tion. In particular, Eq. (10) has two equivalent interpre-

tations: (i) the accuracy of the assay must be X; and

(ii) the prevalence-weighted sensitivity and specificity

must be X. The equivalence of these interpretations

arises from the fact that notions of accuracy assume

the existence of a population to which the test is ap-

plied. Thus, Eq. (24) is perhaps unsurprising in light

of Eq. (10) because both are self-consistent statements

about the properties of a population.

The benefit of treating prevalence-weighting as a

natural framework for diagnostic classification is that

one can easily identify when subjective elements (i.e.

not intrinsic to the population) have been added to

the analysis. For example, the indeterminate domain

in Fig. 8 associated with the inequalities (27) – (29)

is not optimal insofar as there is a smaller counterpart

that yields the same average accuracy for the classified

data. However, it is clear by construction how we have

modified the latter, i.e. by adding a user-defined con-

straint on the specificity. Likewise, even Eq. (10) should

be viewed as a subjective modification of the uncon-

strained, prevalence-weighted classification problem.

Ultimately the choice of classification method is best

determined by assay developers, and there may be sit-

uations in which prevalence weighting is inappropri-

ate. Nonetheless, we feel that the analysis herein high-

lights the assumptions behind our work and attempts

to ground it in objective elements inherent to the pop-

ulation of interest.

6.4 Limitations and Open Directions

A fundamental limitation of our analysis is the assump-

tion that the probabilistic models describing positive

and negative samples can be used outside the scope

of training data. This problem is common to virtually

any classification scheme and is primarily an issue of

modeling. Such issues have been explored in a previous

manuscript, to which we refer the reader (Patrone &

Kearsley (2021)). We note here, however, that model-

form errors may introduce uncertainty on the order of

a few percent in the conditional probability densities.

Thus, it is likely that modeled estimates of accuracy will

be incorrect by a proportional amount. This is seen, for

example, in the holdout domain computed in Fig. 5.

However, Sec. 6.2 provides means of ensuring that the

indeterminate domains are recomputed to satisfy any

constraints on empirical estimates of accuracy. We also

note that approaches that do not explicitly account for

prevalence and/or conditional probabilities are likely

to have significantly more model-form errors than esti-

mates based on our approach.

Regarding the indeterminate analysis, Eqs. (12a)–

(13) and the generalization considered in Sec. 6.2 may

be a challenging optimization problem to solve, al-

though the solution could be extremely useful for sat-

isfying regulatory and/or public health requirements.

Moreover, formalizing the algorithm described in that

section and studying its properties relative to the opti-

mal solution may be useful.

A practical limitation of our analysis is the defini-

tion of assay performance, provided we allow for vari-

able, prevalence-dependent classification domains. Cur-

rent standards advocate using sensitivity and specificity

estimated for a single validation population having a

fixed prevalence. To realize the full potential of our

analysis, it is necessary to (i) estimate assay accuracy

and uncertainty therein, (ii) characterize the admissi-

ble classification domains, and (iii) compute sensitivi-

ties and specificities, all as a function of the variable

prevalence. While such issues have been partly consid-

ered in (Patrone & Kearsley (2021)), and deeper inves-

tigation of this uncertainty quantification is necessary

for widespread adoption of these techniques.
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A Proof of main result

Lemma 1: Assume that P (r) and N(r) are summable functions

on Ω and that the measure of any point r is zero with respect

to all distributions. Also assume that L[D?P , D
?
N ] < X and that

there exists a set of non-zero measure for which Z(r) > X. Then

the sets defined by Eqs. (12a)–(13) minimize Eq. (9) subject to

Eq. (10).

We first show that Eq. (13) defines Z0(X) and C(X). Let
1/2 ≤ ζ ≤ 1 and define

Dh(ζ) = {r : Z?(r) < ζ} (30a)

DP (ζ) = D?P /Dh(ζ) (30b)

DN (ζ) = D?N/Dh(ζ). (30c)

Equation (13) motivates the function

I(ζ) =

[∫
DP (ζ)∪DN (ζ)

drQ(r)

]−1 [∫
DP (ζ)∪DN (ζ)

dr [Z?(r)−X]Q(r)

]
, (31)

which is a monotone increasing function of ζ satisfying the
inequalities I(1/2) < 0 and I(ζ) > 0 for some ζ > 1/2. Thus,
there exists a unique value of Z0(X) for which one of two
situations holds: either (I) the function I(ζ) is continuous at
Z0(X) and I(Z0(X)) = 0, which directly implies Eq. (13);
or (II) I(ζ) suffers a discontinuity, so that I(Z0(X)) < 0 and
I(Z0(X) + ε) > 0 for any positive ε. The latter case occurs
when S = {r : Z?(r) = Z0(X)} has non-zero measure, and
we may set C to be any subset C ⊂ S provided Eq. (13)
is satisfied. The existence of such a C is guaranteed by the
linearity of integration, which implies that

Î(C) =

[∫
DP (Z0)∪DN (Z0)∪C

drQ(r)

]−1 [∫
DP (Z0)∪DN (Z0)∪C

dr [Z?(r)−X]Q(r)

]

is a continuous, monotone increasing function of the measure
of C ⊂ S that passes through zero. Any zero of Î(C) implies
Eq. (13) and defines an appropriate C.

The proof that Eqs. (12a)–(13) minimize Eq. (9) relies on
the observation that any Z?(r) < Z0(X) is farther from the
mean value X than any Z?(r) > Z0(X). Thus, it “costs addi-
tional probability” to swap points between the indeterminate
region and D? = D?

P ∪D
?
N while satisfying the constraint. To

see this mathematically, let D be any other union of positive

and negative classification domains satisfying Eq. (10). We
do not consider any domains D that consist only of choosing
a different subset C ⊂ S while maintaining Eq. (13). By Eq.
(10) one find∫
D/D?

drQ(r)[X − Z?(r)]−
∫
D?/D

drQ(r)[X − Z?(r)] = 0 (32)

We can further expand the second term as∫
D?/D

dr Q(r)[X − Z?(r)]

=

∫
Z+/D

drQ(r)[X − Z?(r)] +

∫
Z−/D

drQ(r)[X − Z?(r)] (33)

where Z+ = {r : Z?(r) > X} and Z− = {r : Z0(X) <
Z?(r) < X}. Clearly the first term on the RHS of Eq. (33)
is negative, whereas the second term is positive. Noting that
Z?(r ∈ D?) > Z?(r ∈ D?

h), one finds by inserting Eq. (33)
into Eq. (32) that the latter can be expressed in the form∫
D/D?
drQ(r)A(r) =

∫
Z+/D

drQ(r)B(r) +

∫
Z−/D

drQ(r)C(r) (34)

where A(r) > 0, B(r) < 0, and 0 < C(r) < A(r). This implies
that∫
D/D?
drQ(r) <

∫
D?/D

drQ(r) =⇒
∫
Dh/D

?
h

drQ(r) >

∫
D?
h
/Dh

drQ(r). (35)

Consider now the difference of objective functions

∆H = H[Dh]−H[D?
h] =

∫
Dh

drQ(r)−
∫
D?
h

drQ(r)

=

∫
Dh/D

?
h

drQ(r)−
∫
D?
h
/Dh

drQ(r). (36)

By inequality (35), we see that ∆H > 0. Moreover, note that
Z(r, DP , DN ) ≤ Z?(r) for any classification domains associ-
ated with the binary problem. Clearly any choice besides D?N
and D?P entails increasing the measure of Dh to ensure that
the constraint is satisfied. ut

B On PDFs with Dirac Masses

Figure 1 illustrates that biological phenomena may gener-
ate a signal so strong that the instrument saturates, i.e. it
reaches a limit xmax above which it cannot distinguish dif-
ferent measurement values. This saturation effectively rounds
the “true” measurement down to the xmax. The only conclu-
sion we can draw about a reported value xmax is that the
true value χ satisfies the inequality χ ≥ xmax. Similar there
exists a lower limit xmin up to which smaller measurements
values are rounded. The goal of this section is to incorporate
such information into probability modeling.

For concreteness, we restrict ourselves to the one dimen-
sional measurements x associated with the total IgG assay.
We assume that were the optical photodetector not restricted
to the range [xmin, xmax], the recorded measurement would
have been χ returned on the domain −∞ < χ < ∞. Because
the measurements have been transformed to a logarithmic co-
ordinate system, χ→ −∞ is meaningful. Without additional
information about probability of total IgG antibody levels, we
make a minimal assumption that χ is described by a Gaus-
sian distribution with an unknown mean µ and variance σ2.
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Thus, on the open domain (xmin, xmax), assume that x = χ,
so that the probability of measuring x is

P̂0(x) =
1

√
2πσ

e
− (x−µ)2

2σ2 , xmin < x < xmax. (37)

However, on the boundaries xmin and xmax, we only know
that the true values are below and above the respective
thresholds. Thus, the probabilities of measuring xmin and
xmax are given by

P̂l =

∫ xmin

−∞
P̂0(χ|µ, σ2) dχ (38)

P̂r =

∫ ∞
xmax

P̂0(χ|µ, σ2) dχ (39)

where P̂0(χ|µ, σ2) is the same as Eq. (37), but with x replaced
by χ. We may then write the full probability model for x as

P̂ (x) =
1

√
2πσ

e
− (x−µ)2

2σ2 I(x, xmin, xmax)

+ δ(x− xmin)P̂l + δ(x− xmax)P̂r. (40)

where I(x, a, b) is the indicator function that x is in the open
set (a, b).

Equation (40) motivates a generalization of the MLE. De-
fine the likelihood function

L(x) =


P̂0(x) xmin < x < xmax

P̂l x = xmin

P̂r x = xmax

. (41)

To determine the values of σ and µ, we maximize with respect
to these parameters the product of N likelihoods given by

Llike(x) =
N∏
j=1

L(xj), (42)

or alternatively, we minimize the negative log of Llike(x). To
construct the two-dimensional PDF associated with Eq. (14),
we assume the corresponding probability model for the SARS-
CoV-2 IgG measurements and use standard MLE to identify
the distribution parameters. The full PDF for training data
is then given by the product of the corresponding PDFs for
total IgG and SARS-CoV-2 measurements and has the form
given by Eq. (14).

Note that Eq. (14) does not require modification of the
proof in the previous section, since any point (x, y) is a set
of measure zero, provided that Pl(y) and Pr(y) (and their
negative counterparts) are bounded functions of y. However,
we do require care in defining the local accuracy and classifi-
cation domains D?N and D?P . Let

A+ = {r : pP0(r) > (1− p)N0(r), xmin < x < xmax} (43a)

B+ = {r : pPl(y) > (1− p)Nl(y), x = xmin} (43b)

C+ = {r : pPr(y) > (1− p)Nr(y), x = xmax} (43c)

from which we construct D?P = A+ ∪B+ ∪ C+ and the anal-
ogous definition for D?N . Note that any point for which the
prevalence-weighted probabilities of being negative and pos-
itive are identical can be assigned to either class. The corre-
sponding definition of Z?(r) is given by

Z?(r) =


max[pP0(r),(1−p)N0(r)]
pP0(r)+(1−p)N0(r)

xmin < x < xmax

max[pPl(y),(1−p)Nl(y)]
pPl(y)+(1−p)Nl(y)

x = xmin

max[pPr(y),(1−p)Nr(y)]
pPr(y)+(1−p)Nr(y)

x = xmax

(44)

where Nl(y) and Nr(y) are the analogous of Pl(y) and Pr(y)
for the negative PDF.

C On the Point-Swap Derivatives

To justify the use of Eq. (18), return to Eq. (10) and consider
a set D and its complement Dh. Consider balls B = B(r, ε)
and B′ = B(r′, ε′) having radii ε, ε′ and centered about r
and r′. Let these balls be entirely contained in Dh and D,
respectively. Momentarily assume that the PDFs do not con-
tain Dirac masses. Define D′h and D′ to be the sets where B

and B′ have been interchanged without violating Eq. (10).
Taking the difference of Eq. (10) defined relative to D and D′

yields∫
B

dr̂[Z(r̂)−X]Q(r̂)−
∫
B′

dr̂[Z(r̂)−X]Q(r̂) = 0. (45)

Assuming that Z(r̂) and Q(r̂) are sufficiently smooth, to lead-
ing order in ε, ε′ one finds

εd[Z(r)−X]Q(r) = (ε′)d[Z(r′)−X]Q(r′). (46)

where d is the dimensionality of r. Rearranging this last equa-
tion yields

(ε′)dQ(r′)

εdQ(r)
=

Z(r)−X
Z(r′)−X

. (47)

Note that εd and (ε′)d a proportional to the volumes of the
respective balls about the points r and r′, so that the quan-
tity (ε′)dQ(r′) is, for example, the infinitesimal probability
mass contained in the corresponding ball. Thus, the given by
Eq. (47) is the relative change probability mass exchanged
between D and Dh in swapping r and r′.

If we change the class of r (either from DP to DN or vice
versa), it may be necessary to hold out additional points r′,
or it may be possible to move points from the indeterminate
into the classification domain. In either case, letting B and
B′ have the same definitions as before and assuming Eq. (10)
holds, one finds∫
B

dr̂[2Z(r̂)− 1]Q(r̂)±
∫
B′

dr̂[Z(r̂)−X]Q(r̂) = 0, (48)

where B′ is the ball moved to (+) or from (−) the indeter-
minate domain, depending on the sign of the first term; note
that we also require Z < X inside B′. Again taking the limit
that the respective ε are small, one finds

εd[2Z(r)− 1]Q(r) = ±(ε′)d[X − Z(r′)]Q(r′) (49)

Dividing by ±[X − Z(r′)] yields the infinitesimal probability
mass moved to or from the indeterminate

(ε′)dQ(r′) = ±
εd[2Z(r)− 1]Q(r)

X − Z(r′)
. (50)

The LHS must be positive, and the denominator on the RHS
is positive. Thus, the + and − signs on the RHS occur when
Z(r) > 1/2 and Z(r) < 1/2, corresponding to the situations
in which probability moves to and from the indeterminate
region. Thus, in assessing when Dh grows, it is sufficient to
test the inequality Z(r) > 1/2.

The analysis of this section is easily generalized to the case
of Eq. (14) by noting that for points on the lines x = 0 and
x = 1, the balls of radius ε should be taken as intervals on the
line with length 2ε. This yields the appropriate generalization
of probability associated with those points.
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