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Purpose: Spinal cord injury (SCI) is a severely crippling injury. Scavenging

reactive oxygen species (ROS) and suppressing inflammation to ameliorate

secondary injury using biomaterials has turned into a promising strategy for SCI

recuperation. Herein, epigallocatechin-3-gallate selenium nanoparticles

(EGCG-Se NP) that scavenge ROS and attenuate inflammation were used for

neuroprotection in SCI.

Methods: EGCG-Se NP were arranged using a simple redox framework. The

size, morphology, and chemical structure of the EGCG-Se NP were

characterized. The protective effect of EGCG-Se NP for neuroprotection

was examined in cell culture and in an SCI rat model.

Results: EGCG-Se NP could promptly scavenge excess ROS and safeguard

PC12 cells against H2O2-induced oxidative harm in vitro. After intravenous

delivery in SCI rats, EGCG-Se NP significantly improved locomotor capacity and

diminished the injury region by safeguarding neurons and myelin sheaths.

Component studies showed that the main restorative impact of EGCG-Se

NP was due to their ROS-scavenging and anti-inflammatory properties.

Conclusion: This study showed the superior neuroprotective effect of EGCG-

Se NP through ROS sequestration and anti-inflammatory capabilities. EGCG-Se

NP could be a promising and effective treatment for SCI.
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Introduction

Spinal cord injury (SCI) can cause irreversible neurological deficits and can affect

the bladder, gut, and sexual capacity, bringing about a critical decrease to quality of

life, SCI is commonly induced by trauma or sudden external force, termed traumatic

SCI, and is typically occurring in car accidents, high falls, sports and other accidents
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(Ahuja et al., 2017b; Ropper and Ropper, 2017; Zrzavy et al.,

2021). SCI includes primary injury and downstream harmful

effects, referred to as “secondary injury,” which exasperates

the underlying effect and causes neighboring neuron death

(Andrabi et al., 2020). A significant feature of secondary injury

is that excess reactive oxygen species (ROS) are created in the

damaged spinal cord (Kim et al., 2017; Song et al., 2019). In

addition, overproduction of ROS can cause significant

oxidative harm to biomolecules, including lipids, proteins,

and DNA, which not only increases the infiltration of

macrophages and neutrophils into the area but also

activates microglia in the injured spinal cord (Ahuja et al.,

2017b). These immune cells release inflammatory cytokines,

like TNF-α and IL-6, in addition to ROS, thereby enhancing

cell invasion into the injured spinal cord and increasing

inflammation (Ahuja et al., 2017a; Desai et al., 2017; Kim

et al., 2017). ROS overproduction is considered a pivotal part

of the cascade of secondary injury in SCI (Kim et al., 2017; Li

et al., 2019; Zhang et al., 2021). Therefore, scavenging ROS

and suppressing inflammation to improve the

microenvironment after injury is vital for SCI treatment

(Xiao et al., 2020; Yang et al., 2020; Zhang et al., 2020;

Zrzavy et al., 2021).

To this end, different kinds of antioxidative materials had

been investigated for their neuroprotective properties in

preclinical SCI models (Li et al., 2019; Luo et al., 2020;

Zhang et al., 2021; Cui et al., 2022; Liu et al., 2022).

Zhang et al. showed that lipid-polymer nanoparticles (NP)

with high ROS-scavenging capacity alleviated long-haul

secondary injury in a clinically applicable rodent SCI

model (Zhang et al., 2021). Li et al. showed that

tetramethyl pyrazine-stacked NP had significant

antioxidant and anti-inflammatory properties which could

forestall secondary injury and improve locomotor abilities

(Li et al., 2021). In addition, release of antioxidant enzymes,

which are effective ROS foragers, to the site of injury could

alleviate SCI-induced oxidative pressure and tissue damage

(Nukolova et al., 2018; Andrabi et al., 2020). Researchers

have indicated that infusion of cerium oxide NP into the

injured spinal cord of rats could decrease ROS levels, lessen

irritation and apoptosis, and improve locomotor practical

recovery (Kim et al., 2017). The ROS-scavenging nitroxide

radical 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) has

been attached to the side chains of polymers to control

ROS levels. Zhang et al. integrated a hydrogel with

TEMPO and hyaluronic acid, which furthered

neuroprotection and recuperation for SCI (Zhang et al.,

2020).

Selenium (Se) is a minor but significant element in human

health (Rao et al., 2019). The main function of Se is through

glutathione peroxidase (GPX)-associated defense against

oxidative stress (Bai et al., 2017; Cong et al., 2019). Moreover,

studies have recognized that Se has neuroprotective impacts in

the central nervous system, with critical advantages against

neurodegenerative diseases (Zhai et al., 2017; Cong et al.,

2019; Rao et al., 2019). Previous investigations have also

demonstrated that Se could prevent secondary pathological

events in severe cases of SCI and reduce functional deficits via

its antioxidant properties (Li et al., 2011; Zhai et al., 2017; Heller

et al., 2019). Se NP has excellent antioxidant properties, low

toxicity, and exceptional biocompatibility and degradability (Li

et al., 2011; Zhai et al., 2017; Cong et al., 2019).

In the current study, Selenium is an essential component of

the antioxidant system in vivo. The selenium-doped carbon

quantum dots (Se-CQDs) constructed in our previous work

exhibited efficacy in protecting cells from lipid peroxidation

damage and inflammation regulation in an animal model of

SCI (Luo et al., 2020). In light of the above-mentioned work, the

present study encapsulated selenium nanoparticles by

epigallocatechin-3-gallate (EGCG), which not only endowed

the nanoparticles with excellent solubility and

biocompatibility, but also possessed more potent antioxidant

and anti-inflammatory properties, opening up a new avenue for

SCI therapy (Chen et al., 2021; Lee et al., 2021; Ma et al., 2021).

EGCG -Se NPs were prepared to ameliorate secondary injury by

scavenging ROS and suppressing inflammation in the injured

spinal cord (Figure 1). EGCG-Se NP were integrated through a

simple redox response using EGCG as a stabilizer and capping

agent as already reported (Zhang et al., 2010). EGCG-Se NP had

great biocompatibility and exceptional ROS-scavenging

properties. In vivo experiments, treatment with EGCG-Se NP

showed promising effects on neurological capacity in terms of

improvement of secondary injury, altogether presenting an

effective agent for the treatment of SCI and possibly other

ROS-related diseases.

Materials and methods

Materials

EGCG and selenious acid were obtained from Shanghai

Macklin Biochemical (Shanghai, China), 3-(4,5-dimethyl-

thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and

4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) were

obtained from Solarbio Science & Technology (Beijing,

China), sodium ascorbate was obtained from Aladdin Bio-

Chem Technology (Shanghai, China), and Dulbecco’s

modified Eagle’s medium (DMEM) and fetal bovine serum

were obtained from Thermo Fisher Scientific (Waltham, MA).

Anti-Iba-1, anti-caspase 3, anti-NeuN, anti-GFAP, and anti-GPX

1 antibody were bought from Sigma-Aldrich (St. Louis, MO).

Anti-CD68, anti-NF200, and anti-superoxide dismutase (SOD)

antibodies were bought from Abcam (Cambridge,

United Kingdom). Hydrogen peroxide (H2O2, 30 wt% in

water) was bought from Shanghai Macklin Biochemical.
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EGCG-Se NP preparation and
characterization

EGCG-Se NP were prepared as previously described (Zhang

et al., 2010). Briefly, 2.75 g of EGCG (6 mmol) and 0.129 g of

selenious acid (1 mmol) were added to 4 ml of 75% ethanol

aqueous solution and stirred to completely dissolve. Then, 10 ml

of sodium ascorbate solution (5 M) were dripped into the

mixture, and the reaction took place overnight in a nitrogen

atmosphere. After dialysis and lyophilization, EGCG-Se NP was

obtained.

The size distribution of EGCG-Se NP was assessed with a

ZEN3600 instrument (Malvern, Worcestershire,

United Kingdom). Transmission electron microscopy (TEM)

images were obtained with a JEM-1011 microscope (JEOL,

Tokyo, Japan) at an accelerating voltage of 100 kV. X-ray

photoelectron spectroscopy was performed with an X-ray

surface photoelectron spectrometer (Thermo ESCALAB 250,

United Kingdom). The Fourier transform infrared spectra

(FT-IR) and ultraviolet-visible absorption spectra were

acquired utilizing a Win-IR spectrometer (Bio-Rad, Hercules,

CA) and a UV-Lambda365 spectrophotometer (PerkinElmer,

Waltham, MA), respectively.

In Vitro antioxidant effects of EGCG-Se NP

The test configuration was listed below: control group: water

(2 ml), diphenylpicrylhydrazyl (DPPH) anhydrous ethanol

solution (0.4 mM, 2 ml); experimental group: EGCG-Se NP

(1.25–20 μg/ml, 2 ml), DPPH anhydrous ethanol solution

(0.4 mm, 2 ml); blank group: EGCG-Se NP (1.25–20 μg/ml,

2 ml), absolute ethanol (2 ml). The background was adjusted

with a combination of water (2 ml) and anhydrous ethanol

(2 ml). All groups were cultured in the dark for 30 min and

the absorbance at 517 nm was measured with a Bio-Rad

680 microplate reader. The free radical-scavenging rate (%)

was calculated by this equation: scavenging rate (%) = (1 −

(absorbance value of the experimental group − absorbance value

of the blank group)/absorbance value of the control) × 100.

Cytotoxicity and protection from H2O2-
Induced oxidative stress in vitro

PC12 cells were obtained from the Cell Bank of the Chinese

Academy of Sciences (Shanghai, China), and BV2 microglia were

purchased from BNCC (Beijing, China). The cytotoxicity of

FIGURE 1
Preparation of epigallocatechin-3-gallate selenium nanoparticles (EGCG-Se NP) for treatment of spinal cord injury by scavenging reactive
oxygen species (ROS) and suppressing inflammation.
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EGCG-Se NP in PC12 cells was assessed via an MTT test. Briefly,

PC12 cells were cultured in 96-well plates at 7,000 cells/well and

incubated overnight. Then, the medium was aspirated and

200 μL of new medium containing EGCG-Se NP with various

concentrations were added. After incubating for 24 or 48 h, the

MTT test was performed following the standard method. The

absorbance of all was measured at 490 nm.

To investigate the protective properties of EGCG-Se NP in

H2O2-induced oxidative stress, PC12 cells were cultured in 96-

well plates at 7,000 cells/well in 180 μL of DMEM and incubated

for 24 h. The media was pretreated with indicated concentrations

(0–100 μg/ml) of EGCG-Se NP or phosphate-buffered saline

(PBS) for 30 min. Then, the media was incubated with

500 μm H2O2 for 24 h. Cell viability was measured with the

MTT test using a Bio-Rad 680 microplate reader and live/dead

cell staining using a confocal laser scanning microscope

(LSM780; Carl Zeiss Meditec, Jena, Germany). The live cell

numbers were determined with ImageJ (National Institutes of

Health, Bethesda, MD). The levels of ROS in PC12 cells

incubated with EGCG-Se NP were quantified by estimating

the fluorescence intensity with 2′,7′-dichlorofluorescein
diacetate (DCFH-DA; Sigma-Aldrich) via confocal laser

scanning microscopy.

In Vitro anti-inflammatory effects of
EGCG-Se NP

The anti-inflammatory ability of EGCG-Se NP was assessed

by an enzyme-linked immunosorbent assay (ELISA). BV2 cells

were seeded in 6-well plates at a density of 1.5 × 105 cells per well

and cultured for 24 h. After that, lipopolysaccharide (LPS) was

added to stimulate cells for 30 min. Then, an equal volume of PBS

or EGCG-Se NP were added to the cell culture medium (final

concentration of NP, 10 μg/ml). After 24 h, the supernatant was

collected and pro-inflammatory cytokines were measured by

ELISA.

Rat model of SCI

Adult Sprague-Dawley rats (inbred strain, female, 200–250 g)

were bought from Liaoning Changsheng Biotechnology Co., Ltd.

Rats were housed with sufficient water and food in a 12-h/12-h

light-dark cycle environment and under controlled temperature

(23 ± 2°C). The Animal Ethics Committee of Jilin University

approved the animal protocols (No. SY202103013). We used the

weight-drop SCI model (Lin et al., 2022). In simple terms, rats

were deeply anaesthetized with pentobarbitone sodium, and

thoracic laminectomy was performed at the T10 level. The

rats received a moderate contusion injury (40 g weight, 50 mm

height) to expose the spinal cord at T10 using an impactor.

Following a medical procedure, the rats were returned to their

enclosures with plenty of water and food. Intraperitoneal

injections of sodium ampicillin (80 mg/kg) were performed

for 5 days (Zhang et al., 2021). The bladder was squeezed two

times per day until there was no more than 0.5 ml urine per day.

Locomotor function assessment

The rats were grouped as follows: a control group without

any surgery, and five groups treated with either saline,

methylprednisolone sodium succinate (MP), 9.5 mg/kg EGCG,

10 mg/kg EGCG-Se (EGCG-Se high-dose group, EGCG-Se H),

or 5 mg/kg EGCG-Se (EGCG-Se low-dose group, EGCG-Se L)

after surgery. The restoration of hind limb motor function was

assessed by the Basso, Beattie, and Bresnahan (BBB) motor rating

score. The scores were finalized when both independent

researchers who conducted the tests agreed. The recovery time

of postoperative urinary function was also recorded.

Histological analysis and
immunofluorescence

At a predetermined time, the rats were sacrificed by excessive

anesthesia and perfused with 0.9% saline followed by 4%

paraformaldehyde. Spinal cord tissue (2 cm fragments) and

other organs were collected, embedded in paraffin, and

sectioned coronally. Hematoxylin-eosin (H&E) and Luxol fast

blue (LFB, 0.1%) staining were performed, and then sections were

imaged under a Panoramic 1,000 optical microscope

(3DHISTECH, Budapest, Hungary). The spinal cord was then

dissected, cut into 1-mm3 sheets, post-immobilized overnight in

2.5% glutaraldehyde at 4°C, transferred to osmication (90 min)

and dehydration (140 min), and then uranyl acetate and lead

citrate TEM (HT7700, Hitachi) was used to evaluate the

restorative effect on demyelination. The number of myelin

sheaths was evaluated using ImageJ. Immunofluorescence

staining assays were also conducted as follows. The primary

antibodies (NeuN, 1:500; NF200, 1:200; GFAP, 1:1,000; Iba-1, 1:

200; CD68, 1:200; caspase 3, 1:1,000; GPX 1, 1:200; SOD, 1:200)

were blocked (3% bovine serum albumin) for 1 h and then

incubated overnight at 4°C. The sections were washed 3 times,

then incubated in the dark with the secondary antibody for 1 h at

room temperature before labeling the nucleus with DAPI.

Observation of immunofluorescence sections was conducted

by confocal laser scanning microscopy.

Statistical analysis

All numeric data were presented as mean ± standard

deviation. Repeated-measures one-way analysis of variance or

t-tests were used in GraphPad Prism (version 8.0.2; GraphPad
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Software, San Diego, CA). Significance was determined at

p < 0.05.

Results and discussion

Preparation and characterization of
EGCG-Se NP

The experimental design is described in Figure 1. First,

EGCG-Se NP were prepared as per previously described

(Zhang et al., 2010). The hydrodynamic particle size of the

EGCG-Se NP was 91.3 ± 35.7 nm. Morphological TEM

images of EGCG-Se NP show particles with a rounded shape,

confirming their successful synthesis (Figure 2A). Moreover, the

typical Se 3 d peak of Se (0) at 55 eV and the O1s peak of the

hydroxyl group of EGCG were detected at 532 eV, indicating the

successful combination of EGCG and Se (Figure 2B). According

to the results of ICP-MS, the selenium content in EGCG-Se NPs

is about 4.7%. FT-IR was used to further confirm this

combination of EGCG and Se; the stretching vibration peaks

of −OH, O=C−O, and C−O were displayed at 3,360, 1,620, and

1,150 cm−1, which further confirmed that EGCG was combined

with Se (Supplementary Figure S1) (Huang et al., 2019). In

addition, the characteristic peak of the −OH group in EGCG

alone at 3,360 cm−1 is higher relative to that of EGCG-Se NPs,

indicating that EGCG is conjugated to the Se surface through this

functional group. Together, these results indicate the successful

synthesis of EGCG-Se NP. Given the inconvenient impacts of

abundance ROS (Wiegman et al., 2015; Choi et al., 2019; Cong

et al., 2019; Ashrafizadeh et al., 2020; Rosenkrans et al., 2020), we

evaluated the ROS-scavenging capability of EGCG-Se NP via the

DPPH test. As shown in Figure 2C and Supplementary Figure S2,

EGCG-Se NP effectively removed ROS in a dose-dependent

manner, thus demonstrating their potential to scavenge ROS.

The effective scavenging ability of EGCG-Se NP is attributed to

the oxidation of phenolic hydroxyl groups in the NP induced by

ROS (Lee et al., 2021). This ROS scavenging ability enables

EGCG-Se NP to protect cells against oxidative damages,

which may inhibit the inflammatory response and mitigate

the secondary injury in spinal cord injury.

Biocompatibility and antioxidant effect of
EGCG-Se NP

To assess the biocompatibility of EGCG-Se NP, cytotoxicity

tests were performed. PC12 cell viability was assessed after

exposure to different concentrations of EGCG-Se NP, which

exhibited no observable cytotoxicity up to a concentration of

100 μg/ml (Supplementary Figure S3). To mimic oxidative

damage of cells induced by ROS, different concentrations of

H2O2 were added to the medium and the number of dead

PC12 cells were measured for each (Figure 3A). As shown in

Figure 3B, EGCG-Se NP prevented PC12 cell death in a dose-

dependent manner. The protective ability of EGCG-Se NP

against H2O2-induced cell death was further affirmed by live/

dead cell staining, whereby the number of viable cells

significantly increased upon treatment with EGCG-Se NP

(Figure 3C; Supplementary Figure S4), consistent with the

cytotoxicity tests. Next, intracellular ROS levels were estimated

in different treatments. As shown in Figure 3D; Supplementary

Figure S5, the fluorescence intensity of dichlorofluorescein

diacetate (DCF) significantly decreased with EGCG-Se NP

treatment. This indicated that the ROS levels were effectively

reduced by EGCG-Se NP, consistent with the results in Figures

2C, 3B. These results confirmed that EGCG-Se NP can protect

PC12 cells from H2O2-induced damage by effectively scavenging

FIGURE 2
Characterization of epigallocatechin-3-gallate selenium nanoparticles (EGCG-Se NP). (A) EGCG-Se NP size distribution was detected by
dynamic laser scattering and morphological image of an EGCG-Se NP was obtained via transmission electron microscopy. Scale bar = 100 nm. (B)
X-ray photoelectron spectroscopy spectrum of EGCG-Se NP. (C) Clearance of diphenyl picrylhydrazyl by EGCG-Se NP.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Wang et al. 10.3389/fbioe.2022.989602

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.989602


ROS. Furthermore, LPS-activated microglia were tested to

evaluate the anti-inflammatory ability of EGCG-Se NP. TNF-α
and IL-6 levels were downregulated after treatment with EGCG-

Se NP compared to the LPS-treated groups (Supplementary

Figure S6). The data indicated that EGCG-Se NP readily

reduced the inflammatory microglial response by scavenging

ROS (Kim et al., 2017).

Functional recovery of SCI rats following
treatment

Considering that EGCG-Se NP can scavenge ROS and

suppress inflammation in vitro, we examined the

neuroprotective effect of EGCG-Se NP after acute SCI in a

T10 contusion rat model. A locomotor function study was

conducted to determine whether EGCG-Se NP could improve

lower extremity motor function in injured animals. First, five or

10 mg/kg EGCG-Se NP, 0.9% saline, 9.5 mg/kg EGCG, or

30 mg/kg MP were given intravenously within 5 min after

injury. According to the previous study and the ICP-MS

results of EGCE-Se NP, we chose the concentration of EGCG-

Se NP and EGCG was 10 mg/kg, 9.5 mg/kg, respectively (Cheng

et al., 2021). The therapeutic concentration for MP is the

clinically recommended therapeutic concentration for spinal

cord injury (Ahuja et al., 2017b; Zhang et al., 2018). MP is

one of most frequently used drug for clinical treatment of SCI,

which has been routinely established as a control group in animal

studies (Huang et al., 2020; Lin et al., 2022). The BBB score of rats

treated with 10 mg/kg EGCG-Se NP (8.4 ± 0.5) was significantly

better than that of the saline group (3.2 ± 0.4) at 8 weeks after

surgery (Figure 4A). Moreover, the therapeutic effect of 10 mg/kg

EGCG-Se NP was better than that of 5 mg/kg. While rats treated

with saline had sweeping hind limbs without weight support, rats

treated with EGCG-Se NP could frequently support their weight

on their feet and occasionally showed hindlimb coordination

with forelimbs (Supplementary Figure S7). In addition, the area

of SCI in rats treated with EGCG-Se NP was smaller than that in

rats treated with saline (Figure 4B). To comprehensively provide

evidence of lower extremity motor function recovery, 3-T

magnetic resonance imaging (MRI) was conducted to evaluate

the spinal cord changes in each group. T2-weighted MRI

demonstrated high signal intensity at the site of injury,

presenting as a fluid-filled cyst. Compared with the saline-

treated group, rats treated with EGCG-Se NP had better

treatment effect, and a more intact spinal cord and smaller

cyst volume were observed in the EGCG-Se NP group

(Figure 3C). This is in accord with previous studies (Wang

et al., 2019a; Wang et al., 2019b).

To understand the anatomical changes involved in the lower

extremity motor function recovery, histomorphological changes

of the spinal cord were detected by H&E staining at 8 weeks after

FIGURE 3
Epigallocatechin-3-gallate selenium nanoparticles (EGCG-Se NP) can protect PC12 cells from H2O2-induced damage. (A) H2O2-induced
damage effect of PC12 cells. (B) EGCG-Se NP increased PC12 cell viability under 500 μm H2O2-induced oxidative damage in a dose-dependent
manner. (C) Live/dead staining of PC12 cells under different conditions. Scale bar = 20 μm. (D)Dichlorofluorescein (DCF) diacetate staining to detect
intracellular reactive oxygen species in PC12 cells. PBS, phosphate-buffered saline; PI, propidium iodide.
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injury. The integrality, as well as the consecutiveness of the spinal

cord structure presented the worst in rats treated with saline, and

glial proliferation was observed around the large cystic space

(Figure 4D). In contrast, the lesion area and lumen volume were

reduced in rats treated with 5 mg/kg EGCG-Se NP andMP, while

the reduction was more pronounced in the 10 mg/kg EGCG-Se

NP group (Figure 4D). Overall, EGCG and MP treatment

significantly improved spinal cord continuity and reduced

lesion voiding, with 10 mg/kg EGCG-Se NP having the most

significant protective effect. SCI often results in severe axonal

demyelination and myelin structure injury (Ramer et al., 2014;

Silva et al., 2014; Cunha et al., 2020; Floriddia et al., 2020). Next,

FIGURE 4
Assessment on the recovery of motor function after spinal cord injury (SCI). (A) Basso, Beattie, and Bresnahan (BBB) scores of SCI rats treated
with saline, methylprednisolone sodium succinate, 9.5 mg/kg epigallocatechin-3-gallate (EGCG), 5 mg/kg EGCG-Se nanoparticles (NP), or 10 mg/
kg EGCG-Se NP. **p < 0.01, *p < 0.05, in comparison with the saline group. (B) Images of the spinal cord in different treatment groups 8 weeks after
SCI. The lesion of spinal cord injury is indicated in the red dashed circle. (C) T2-weighted sagittal magnetic resonance images of the spinal cord
following different treatments, in which the red oval represents the injury site. (D) Representative hematoxylin-eosin staining images of spinal cord
tissue. The black rectangle on the left shows the small image on the right after zooming in. Scale bars are 500 μm (left) and 50 μm (right), respectively.
(E) Representative transmission electron microscopic images of myelin sheath ultrastructure. Scale bar = 5 μm.
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we used LFB staining and TEM to evaluate the changes of

demyelination and myelin sheath ultrastructure at the lesion

site (Supplementary Figure S8; Figure 4E). Compared with the

control group, the saline group showed obvious demyelination

with damage to the myelin sheath ultrastructure at 8 weeks after

injury. Rats treated with EGCG-Se NP had more myelin sheath

and more intact ultrastructure in a dose-dependent manner.

Compared with the control group, the amount of myelin

sheath in the saline group was significantly reduced, while it

was significantly increased in the EGCG-Se NP group (p < 0.001)

(Supplementary Figure S9). In general, the LFB staining and

TEM showed that EGCG-Se NP treatment had beneficial effects

on demyelination and preservation of nerve fibers in SCI models.

Neurogenic bladder is a complication of SCI the main

symptoms were incomplete bladder emptying, chronic urinary

retention, and increased bladder pressure lead to renal failure and

the bladder will show pathological changes of bladder wall

fibrosis and bladder endometriosis (Hamid et al., 2018; Li

et al., 2019; Luo et al., 2020). We hypothesized that EGCG-Se

NP therapy may benefit bladder tissue protection by reducing

secondary injury. As shown in Supplementary Figure S10, the

recovery rate of natural urination was faster in rats treated with

10 mg/kg EGCG-Se NP than in those treated with saline. Bladder

tissues were stained with H&E and Masson staining to further

assess bladder function recovery. In contrast to the saline group,

the EGCG-Se NP group revealed significantly limited

pathological damage to bladder tissue and reduced levels of

bladder wall fibrosis and bladder endometriosis (Figures

5A,B). This may be due to the promoting of neurological

recovery and early restoration of spontaneous urination by

EGCG-Se NP.SCI results in muscle atrophy of the lower limbs

due to a lack of neurotrophic factors (Sangari et al., 2019;

Kutschenko et al., 2022). To detect the amyotrophic effect of

EGCG-Se NP on SCI in rats, H&E staining, the muscle/weight

FIGURE 5
Hematoxylin-eosin (H and E) and Masson staining of bladders. (A) Representative bladders stained with H&E. Columns 1 and 2 are
magnifications of the areas marked by the blue squares in the left column. Pathological changes of the bladder are indicated using asterisks (muscle
layer) and arrows (intima). Scale bars are 500 and 50 μm, respectively. (B) Representative bladders stained with Masson stain. Columns 1 and 2 are
magnifications of the areas marked by the blue squares in the left column. Pathological changes of the bladder are indicated using asterisks
(muscle layer) and arrows (intima). Scale bars are 500 and 50 μm, respectively.
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ratio, and Masson staining of the gastrocnemius muscle were

evaluated. As shown in Supplementary Figures S11, S12, no

significant differences were observed across these groups. The

reason may be that the significant lower limb muscle atrophy

caused by spinal cord injury occurs 8 weeks after the injury, or

even longer. Therefore, the results of this experiment are negative

(Koh et al., 2017).

Immunofluorescent characterization of
SCI rats after EGCG-Se NP treatment

To detect the neuroprotective effect of EGCG-Se NP in SCI in

rats, anti-NF200 and anti-NeuN immunofluorescent staining

were performed. Compared with rats treated with 10 mg/kg

EGCG-Se NP, the expression levels of NF200 and NeuN were

significantly decreased in the saline group (Figure 6), NF200 is a

neurofilament protein that provides structural support for axons

and regulates axon diameter. NeuN is common in mature

neurons. Low levels of expression indicate poor spinal cord

recovery, suggesting that high concentrations of EGCG-Se NP

have a neuroprotective effect, thus promoting the recovery of

spinal cord function in treated animals. Previous studies have

reported that scavenging ROS can inhibit the inflammatory

response of SCI secondary injury (Ren et al., 2018; Zheng

et al., 2019; Bai et al., 2020; Xiao et al., 2020). Thus, we

investigated the inflammation suppression activity of EGCG-

Se NP on days 1 and 56 in vivo. Immunofluorescent staining

showed an increase in the number of CD68-positive cells at the

injury site in saline-treated rats compared with the control

group. By comparison, there were fewer CD68-positive cells in

the spinal cords of rats treated with EGCG-Se NP compared with

saline (Supplementary Figures S13, S15), suggesting that high

concentrations of EGCG-Se NP were effective in reducing

FIGURE 6
Anti-NF200 and anti-NeuN double-staining of different groups at 8 weeks post-injury. Scale bars are 400 μm in the first column and 25 μm in
the other columns. MP, methylprednisolone; EGCG, epigallocatechin-3-gallate; L, 5 mg/kg EGCG-Se nanoparticles; H, 10 mg/kg EGCG-Se
nanoparticles.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Wang et al. 10.3389/fbioe.2022.989602

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.989602


inflammation at the site of injury. Studies have shown that

eliminating ROS at the site of injury by antioxidant therapy is

an effective neuroprotective strategy after acute SCI (Tyler et al.,

2013; Wu et al., 2014; Krupa et al., 2019; Zhang et al., 2021).

Therefore, to further understand the potential mechanism of the

therapeutic effect of EGCG-Se NP, we measured the levels of

antioxidant enzymes in rats treated with EGCG-Se NP 1 day and

56 days post-injury. Compared with the saline group, the

expression levels of GPX one and SOD in rats treated with

10 mg/kg EGCG-Se NP were significantly increased (Figure 7),

indicating that high concentrations of EGCG-Se NP could

promote antioxidant enzymes and reduce ROS levels (Cong

et al., 2019). The long-term neurological deficits after SCI are

partly due to the extensive activation of neurons and

oligodendrocyte apoptosis at the injury site (Springer et al.,

1999; Ahuja et al., 2017b). To investigate the anti-apoptosis

ability of EGCG-Se NP after SCI, cleaved caspase-3 protein

expression was detected at the site injury 24 h after injury.

Compared to the saline group, the cleaved caspase-3 level in

the EGCG-Se NP group was significantly lower (Supplementary

Figure S15). These results suggest that EGCG-Se NP have a

significant anti-apoptotic effect after SCI, which may explain the

effect of EGCG-Se NP on the recovery of motor function in

injured rats.

To comprehensively understand the side effects of EGCG-Se

NP treatment, liver and kidney functions were analyzed at days

1 and 56 after injury. There were no significant differences in

alkaline phosphatase, alanine aminotransferase, blood urea

nitrogen, or serum creatinine levels among all groups,

suggesting that EGCG-Se NP treatment causes no side effects

to the kidney or liver (Supplementary Figure S16). In addition,

the biosafety of EGCG-Se NP was further evaluated by H&E

staining of the heart, liver, spleen, lung, and kidney, which

showed no significant changes in the EGCG-Se NP and

EGCG groups (Supplementary Figure S17).

Conclusion

In this study, effective neuroprotection after acute SCI was

achieved with EGCG-Se NP treatment through ROS scavenging.

In vitro studies showed that EGCG-Se NP could effectively

protect PC12 cells from oxidative stress damage as well as

achieve an effective anti-inflammatory effect. Intravenous

FIGURE 7
Representative immunohistochemical staining of antioxidant enzymes in the injured spinal cord. (A)GPX one staining at 8 weeks post-injury. (B)
SOD staining at 1-day post-injury. Scale bars 25 μm.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Wang et al. 10.3389/fbioe.2022.989602

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.989602


EGCG-Se NP exert a significant anti-inflammatory and

neuroprotective role and effectively promoted functional recovery

in a ratmodel of SCI. Furthermore, this study has demonstrated a safe

and prospective pathway to incorporate the merits of selenium and

EGCG, thus making it a promising therapeutic for the treatment of

SCI or other ROS-mediated conditions.
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