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Simple Summary: In the present paper, we identified miR-23a-3p, a hypoxia regulated-microRNA
(miRNA), as a potential biomarker of chemoresistance and poor outcome in two independent cohorts
of high-grade serous ovarian carcinoma (HGSOC) patients. Then, we predicted the involvement of
miR-23a-3p in the platinum resistance pathway, together with its target APAF-1 gene, and validated
their anticorrelation and association with platinum response in HGSOC patients and cell lines. We
propose that the evaluation of miR-23a-3p expression may provide important clinical indications
on patients not responding to platinum treatment and that the miR23a-3p/APAF1 axis could be
considered a possible target for personalized medicine in HGSOC patients.

Abstract: The onset of chemo-resistant recurrence represents the principal cause of high-grade
serous ovarian carcinoma (HGSOC) death. HGSOC masses are characterized by a hypoxic mi-
croenvironment, which contributes to the development of this chemo-resistant phenotype. Hypoxia
regulated-miRNAs (HRMs) represent a molecular response of cancer cells to hypoxia and are in-
volved in tumor progression. We investigated the expression of HRMs using miRNA expression data
from a total of 273 advanced-stage HGSOC samples. The miRNAs associated with chemoresistance
and survival were validated by RT-qPCR and target prediction, and comparative pathway analysis
was conducted for target gene identification. Analysis of miRNA expression profiles indicated
miR-23a-3p and miR-181c-5p over-expression as associated with chemoresistance and poor PFS.
RT-qPCR data confirmed upregulation of miR-23a-3p in tumors from chemoresistant HGSOC pa-
tients and its significant association with shorter PFS. In silico miR-23a-3p target prediction and
comparative pathway analysis identified platinum drug resistance as the pathway with the highest
number of miR-23a-3p target genes. Among them, APAF-1 emerged as the most promising, being

Cancers 2021, 13, 3358. https://doi.org/10.3390/cancers13133358 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3246-7820
https://orcid.org/0000-0001-7916-2704
https://orcid.org/0000-0003-2807-5461
https://orcid.org/0000-0002-7237-6942
https://orcid.org/0000-0001-8784-1360
https://orcid.org/0000-0003-4661-9979
https://orcid.org/0000-0002-3451-5622
https://orcid.org/0000-0002-0705-340X
https://orcid.org/0000-0003-4792-9047
https://doi.org/10.3390/cancers13133358
https://doi.org/10.3390/cancers13133358
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13133358
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13133358?type=check_update&version=1


Cancers 2021, 13, 3358 2 of 16

downregulated in platinum-resistant patients and in HGSOC chemo-resistant cells. These results
highlight miR-23a-3p as a potential biomarker for HGSOC platinum response and prognosis and the
miR23a-3p/APAF1 axis as a possible target to overcome platinum-resistance.

Keywords: miRNA; hypoxia; ovarian cancer; platinum response; prognostic marker; miR-23a-3p;
APAF1

1. Introduction

Ovarian carcinoma (OC) represents the fifth leading cause of cancer death among
women worldwide [1], with high-grade serous ovarian carcinoma (HGSOC) the most
common and aggressive histological type. HGSOC develops rapidly and is frequently
diagnosed at an advanced stage when multiple synchronous tumor lesions are localized to
the ovary, as well as in other anatomical sites within the peritoneal cavity [2]. Resistance
to chemotherapy is one of the major challenges in HGSOC clinical management since,
after a positive initial response to primary treatment, most patients develop platinum-
resistant recurrence, a lethal disease for which effective therapies do not exist [2]. The
rapid expansion of HGSOC tumor masses requires the presence of a vascular network
supplying oxygen and nutrients essential for their growth. However, when tumor cell
proliferation exceeds angiogenesis, the highly abnormal microvasculature fails to cover the
oxygen requirement, and tumor cells are exposed to an O2-deficient environment [3]. This
persistent hypoxic condition induces changes in HGSOC gene expression that promote
cancer progression, invasion as well as resistance to chemotherapy and the “angiogenic
switch”, through transcriptional activation of the pro-angiogenic vascular endothelial
growth factor (VEGF) gene [4,5]. Consequently, angiogenesis is considered an attractive
target for ovarian cancer therapy with the anti-VEGF antibody Bevacizumab approved
in the first-line setting, in addition to platinum and taxane combination, for patients with
advanced-stage OC [6,7], as well as second-line treatment in combination with platinum
and gemcitabine [8]. However, no molecular biomarkers predictive of response to Beva-
cizumab currently exist, and patients are still selected for the drug only on the basis of their
clinical characteristics (including stage, debulking status and presence of ascites). Over
the past few years, protein-coding hypoxia-regulated genes have been joined by specific
miRNAs, thus adding a new paradigm of gene expression regulation to an already complex
process and providing an additional link between tumor-specific stress conditions and gene
expression control. The first evidence for a hypoxic cancer-related miRNA signature was
described by Kulshreshtha et al., who reported a group of “hypoxia-regulated miRNAs”
(HRMs), dysregulated in response to low oxygen tension in breast and colon cancer cell
lines and involved in cancer cell survival in a stressful microenvironment [9]. In the present
study (Figure 1), we investigated the role of HRMs in platinum response and prognosis
in HGSOC patients by analyzing the expression of a panel of selected HRMs in a large
collection of TCGA samples [10] and in samples from patients treated at ASST Spedali
Civili di Brescia (Brescia, Italy). We identified and validated miR-23a-3p over-expression
as associated with platinum resistance and worse prognosis. Pathway analyses, comple-
mented by computationally predicted miRNA-gene interactions, identified a set of target
genes involved in chemotherapy response and in particular APAF-1 gene, whose functional
interactions with miR-23a-3p are likely to have an important role in HGSOC cell survival.
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2. Materials and Methods
2.1. Selection of Candidate Hypoxia-Related miRNAs

Ovarian cancer-specific miRNAs related to hypoxia were selected from the literature
following a Medline search using the MeSH terms ‘ovarian cancer’/‘ovarian carcinoma’
and ‘microRNA’/‘miRNA’ and ‘hypoxia’ [11–18] and from the study of Kulshreshtha
et al. [9].

2.2. Patient Sample Cohorts

A total of 323 HGSOC tumor samples were gathered from two independent tumor
tissue collections: 145 from the Brescia cohort and 178 catalogued in TCGA (Table 1 and
Supplementary Methods, Section S1). Based on the time interval between the end of
first-line chemotherapy and relapse (platinum-free interval, PFI), patients from the two
cohorts were classified into three groups: (i) platinum-sensitive (Pt-s, PFI > 12 months),
(ii) platinum-partially sensitive (Pt-ps, PFI within 6–12 months from the last round of
chemotherapy), and (iii) platinum-resistant (Pt-r, PFI< 6 months) [19]. TCGA patients for
whom PFI information was not available (due to incomplete or missing annotations) were
excluded from the analysis. The study on the Brescia cohort was performed following the
Declaration of Helsinki set of principles and approved by the Research Review Board—the
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Ethics Committee—of the ASST-Spedali Civili, Brescia, Italy (study reference number:
NP1676). Written informed consent was obtained from all patients enrolled.

Table 1. Clinicopathological characteristics of HGSOC patients in the Brescia and TCGA cohorts.

Clinical Annotations
Brescia Cohort TCGA Cohort

No. of Patients

Total No. of patients 145 178
Age

Median (range) years 62 (36–85) 60 (35–88)
Histotype

Serous 145 (100%) 178 (100%)
FIGO Classification

III 112 (77%) 159 (89%)
IV 33 (23%) 19 (11%)

Residual Tumor (RT)
RT = 0 41 (28%) 44 (25%)
RT > 0 104 (72%) 134 (75%)

Treatment
Carboplatin + Paclitaxel 123 (85%) 169 (95%)

Carboplatin + Paclitaxel + Bevacizumab 22 (15%) 9 (5%)
Platinum Status

Carboplatin + Paclitaxel
Sensitive 48 (33%) 60 (34%)

Partially Sensitive 23 (16%) 41 (23%)
Resistant 48 (33%) 68 (38%)

NA 4 (3%) -
Carboplatin + Paclitaxel + Bevacizumab

Sensitive 7 (5%) 1 (0.5%)
Partially Sensitive 6 (4%) 1 (0.5%)

Resistant 9 (6%) 7 (4%)
Median follow-up, years (range) 3.6 (0–15) 2.62 (0–12.7)

Median PFS, months (range) 23.7 (1.7–172.6) 15.3 (0.8–111.7)
Median OS, months (range) 43.7 (1.2–177.3) 33.3 (0.8–152.9)

2.3. Tissue Sample Collection and RNA Extraction

Tissue sample collection and RNA extraction were performed as previously de-
scribed [20] and detailed in Supplementary Methods, Section S2.

2.4. miRNA and Gene Expression Profiles

Gene and miRNA microarray experiments were carried out on 95 HGSOC tissue sam-
ples from the Brescia cohort, as previously described [20,21] and detailed in Supplementary
Methods, Section S3.

2.5. Validation by RT-qPCR

The miRNA validation using RT-qPCR was performed on 145 HGSOC tissue samples
from the Brescia cohort, as previously described [22] and detailed in Supplementary
Methods, Section S4.

2.6. miRNA Normalization Strategy

To accurately quantify miRNA levels, a reliable normalization relative to an endoge-
nous miRNA is mandatory [23]. To identify stable miRNAs acting as normalizers for
RT-qPCR expression data, we combined data from the literature with those resulting as
invariant in our cohort of HGSOC microarray data, as detailed in Supplementary Methods,
Section S5.
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2.7. Cell Line Transfection and Apoptotic Cell Death Detection

All the materials and methods regarding silencing and overexpressing miR-23a-3p in
HGSOC cell line models are reported in Supplementary Methods, Section S8–S13.

2.8. Statistical Analysis

All statistical analyses were performed using the R software (R Foundation for Statis-
tical Computing, Vienna, Austria; version 3.4.0).

2.8.1. Pre-Processing and Differential Expression Analysis

The miRNA counts (TCGA, see Supplementary Methods, Section S1) were used to
test for differential expression in RNA-seq experiments by use of the negative binomial
distribution (DEseq2 package, version 1.18.1) [24]. Quantile normalization (limma pack-
age, version 3.34.9) [25], after log-transformation (base 2) of pseudo-counts, was used for
survival analysis. Log-transformed (base 2) microarray data (Brescia cohort, see Supple-
mentary Methods, Section S1)—for both miRNA and mRNA expression profiles—were
normalized using the loess method, and the empirical Bayes test (limma package, ver-
sion 3.34.9) [25] was performed for the differential expression analysis.

The miRNA expression profiles of cells with stemlike characteristics (OVA-BS4 spheroids),
derived from a primary human HGSOC cell line as previously described [26] and detailed
in Supplementary Methods Sections S6 and S7, were normalized with quantile normaliza-
tion, after log-transformation of probes intensities. Normalized matched mRNA profiles
were downloaded from ArrayExpress (E-MTAB-4799) [26].

2.8.2. RT-qPCR Data and Equivalence Analysis

RT-qPCR data from different groups were compared using a t-test for raw Cq and delta-
normalized values (two- and one-tail, respectively). Equivalence of reference candidates
between Pt-s and Pt-r patients was assessed using the two one-sided test (TOST) approach
(equivalence package, version 0.7.2) [27], with the adoption of the default confidence level
(alpha = 0.05). To ensure adequate power of the test, the equivalence range (±ε) was chosen
depending on data variability following Wellek criteria [28].

2.8.3. Survival Analysis

The associations between miRNA profiles and survival outcomes were assessed with
the Cox proportional hazard (CoxPH) model (survival R package, version 2.43–3), both in
univariate and multivariate analysis. Patients were stratified into groups based on quartiles
of the normalized (−∆Cq) expression level distribution. Overall Survival (OS) was defined
as the time from the date of diagnosis to the day of death or last follow-up. Progression
Free Survival (PFS) was defined as the time from the date of diagnosis to the date of the
first recurrence/progression or last follow-up.

2.8.4. Over-Representation Analysis

The microT-CDS (version 5.0) [29] and TargetScan (release 7.2) [30] web servers were
used to identify predicted interactions between miRNA-23a-3p and target genes. Only
miRNA-mRNA interactions with miTG scores greater than 0.7 and context++ scores less
than 0 (default parameters) were selected (1506 and 1342, respectively). In order to assess
whether a certain biological pathway was significantly enriched for a certain miRNA, we
performed an over-representation analysis (ORA) based on the hypergeometric test, as
proposed by Backes et al. [31]. KEGG pathway annotations were retrieved using graphite
R package (version 1.28.2) [32]. The p-values were computed using as background the
number of validated targets (225) over the total number of annotated genes (5620) for the
entire collection of considered pathways (303). Bonferroni corrections were applied to
account for multiple testing. Information on experimentally supported miRNA targets was
retrieved from DIANA-TarBase v8 [33].
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3. Results
3.1. Patient Cohort Description

The clinicopathologic characteristics of 145 HGSOC patients belonging to the Brescia
cohort and 178 patients from TCGA cohort are summarized in Table 1. All of the patients
in the Brescia cohort were diagnosed with high-grade serous histological type and staged
according to FIGO guidelines as stage III (77%) or IV (23%). Patients were followed from the
date of surgery until death or the latest record retrieved, August 2018 (median follow-up,
3.6 years; range, 0–15 years). The median age at diagnosis was 62, and the median overall
survival (OS) time was 43.7 months (range 1.2–177.3 months). Similarly, all 178 TCGA
patients were diagnosed with high-grade serous histological type and staged according
to FIGO guidelines as stage III (89%) or IV (11%). Patients were followed from the date
of surgery until death or the latest record retrieved (median follow-up, 2.62 years; range,
0–12.7 years). The median age at diagnosis was 60, and the median overall survival (OS)
time was 33.3 months (range 0.8–152.9 months).

3.2. Selection of Hypoxia-Related miRNAs

A Medline search was performed to identify HRMs with a potential role in HGSOC,
and eight articles were selected [11–18]. A total of 8 ovarian cancer-specific miRNAs related
to hypoxia and selected from the abovementioned Medline search [11–18], together with
20 HRMs reported by Kulshreshtha et al. [9], were included in the study (see Supplementary
Results, Table S1). Three miRNAs were in common between the 2 groups; hence, a total of
25 miRNAs were selected for further analysis.

3.3. Evaluation of HRMs in HGSOC Datasets

Expression levels of the 25 selected miRNAs were derived from microarray data of
95 HGSOC patients of the Brescia cohort [20] and from published RNA Seq data of 178
TCGA patients (TCGA/OV project, see Supplementary Methods), and correlated with
response to treatment and prognosis. Three miRNAs (miR-106a-3p, miR-138 and miR-630)
were discarded because they were undetected in RNA-seq data, thus yielding 22 miRNAs
for further analysis. HGSOC patients were classified as ‘Pt-r’ or ‘Pt-s’ based on their
response to carboplatin treatment in the Brescia and TCGA cohorts (73 and 136 samples,
respectively; see Materials and Methods), and the expression of the 22 miRNAs was
evaluated by comparing the 2 groups. Results showed that miR-181c-5p and miR-23a-3p
were significantly over-expressed in platinum-resistant patients in both cohorts (adjusted
p-value ≤ 0.05, Table 2). The prognostic significance of the two miRNAs was assessed by
univariate and multivariate models, accounting for age and residual tumor. As shown
in Table 3, both miRNAs were found to be associated with PFS in the Brescia cohort, by
both univariate and multivariate analysis (p-value ≤ 0.05), while neither miRNA was
significantly associated with OS (Supplementary Results, Table S2).

Table 2. Differential expression analysis. Differential expression analysis for 22 miRNAs in platinum-resistant (Pt-r)
compared to platinum-sensitive (Pt-s) patients.

miRNA Name

Brescia Cohort—Microarray
73 Samples (39 Pt-r, 34 Pt-s)

TCGA Cohort—RNA-seq
136 Samples (75 Pt-r, 61 Pt-s)

Log 2(FC) AveExpr Adj. p-Value Log 2(FC) Mean Adj. p-Value

hsa-miR-103a-3p 0.125 9.956 0.358 0.174 44316 0.324
hsa-miR-107 0.058 9.317 0.682 0.131 152.4 0.323

hsa-miR-125b-5p 0.493 10.508 0.040 ** −0.195 10786.2 0.327
hsa-miR-145-5p 0.602 7.031 0.032 ** −0.169 3572.4 0.314

hsa-miR-181a-5p 0.403 7.724 0.034 ** −0.019 11434.2 0.915
hsa-miR-181b-5p 0.174 5.776 0.309 0.208 1374.8 0.228
hsa-miR-181c-5p 0.547 4.896 0.036 ** 0.650 223.2 0.004 ***
hsa-miR-192-5p −0.082 4.712 0.740 0.241 223.4 0.230
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Table 2. Cont.

miRNA Name

Brescia Cohort—Microarray
73 Samples (39 Pt-r, 34 Pt-s)

TCGA Cohort—RNA-seq
136 Samples (75 Pt-r, 61 Pt-s)

Log 2(FC) AveExpr Adj. p-Value Log 2(FC) Mean Adj. p-Value

hsa-miR-195-5p −0.173 7.756 0.475 0.187 6.7 0.351
hsa-miR-199a-3p 0.684 9.412 0.027 ** −0.064 618.8 0.740
hsa-miR-199a-5p 0.856 7.786 0.012 ** −0.308 770.8 0.161

hsa-miR-21-5p 0.065 13.243 0.759 0.221 11189.6 0.268
hsa-miR-21-3p 0.091 7.215 0.703 −0.182 2141.6 0.305
hsa-miR-210 0.023 8.001 0.910 −0.035 1574.9 0.866

hsa-miR-23a-3p 0.363 10.310 0.007 *** 0.286 6830.0 0.033 **
hsa-miR-23b-3p −0.177 9.554 0.389 0.183 4070.9 0.266
hsa-miR-24-3p −0.008 10.460 0.945 0.252 3371.5 0.058 *
hsa-miR-26a-5p 0.188 10.206 0.138 −0.081 1902.6 0.572
hsa-miR-26b-5p 0.106 9.162 0.480 −0.015 265.4 0.917
hsa-miR-27a-3p 0.440 10.151 0.002 *** 0.193 1397.1 0.208
hsa-miR-30b-5p −0.313 9.202 0.089 * 0.140 186.4 0.429
hsa-miR-93-5p −0.238 8.468 0.109 0.051 16511.6 0.750

Adjusted p-value (FDR). * <0.1 ** <0.05 *** <0.01. Highlighted in bold: significant miRNAs (p value ≤ 0.05) in both cohorts.

Table 3. Progression-free survival analysis. Univariate and multivariate Progression-free survival (PFS) analysis (Coxph)
for miR-23a-3p and miR-181c-5p expression in both cohorts.

miRNA Name
Univariate Multivariate (1)

Hazard SE p-Value Hazard SE p-Value

Brescia Cohort—95 samples

hsa-mir-23a-3p 1.819 0.250 0.017 ** 2.003 0.257 0.007 ***

hsa-mir-181c-5p 1.349 0.111 0.007 ** 1.268 0.113 0.037 **

TCGA Cohort—178 samples

hsa-mir-23a-3p 1.072 0.112 0.539 1.076 0.113 0.517

hsa-mir-181c-5p 1.026 0.070 0.715 1.036 0.072 0.627
(1) Multivariate model accounted for age and residual tumor (2 classes: RT = 0 and RT > 0). ** <0.05 *** <0.01. Highlighted in bold:
significant miRNAs (p value ≤ 0.05).

3.4. Validation of miR-23a-3p and miR-181c-5p Expression by RT-qPCR

The miR-23a-3p and miR-181c-5p expression was assessed by RT-qPCR on 145 HGSOC
tissues from the Brescia cohort (including the 95 samples already profiled for miRNA
expression) and associated with platinum response and survival.

The miR-23a-3p was confirmed to be significantly up-regulated in Pt-r compared to Pt-
s patients (p-value = 0.03, Table 4 and Figure 2A). Multivariate survival analysis, accounting
for residual tumor age and Bevacizumab treatment response on the entire Brescia cohort,
revealed miR-23a-3p over-expression as an independent predictor of worse OS and PFS
(Table 5 and Supplementary Results, Table S3). As expected, a strong association of
known prognostic factors, such as age and residual tumor, with both OS and PFS (p-
value ≤ 0.01) was found (Supplementary Results, Table S3). Moreover, as reported in
the literature [34,35], treatment with Bevacizumab was confirmed to have a beneficial
effect only on PFS. Stratification of the patients based on miR-23a-3p expression yielded
a clear separation of the PFS curves, with patients in the lowest quartile of expression
showing significantly longer PFS than patients in the middle or highest expression quartiles
(HR = 1.92, Supplementary Results, Table S4 and Figure 2B).
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Table 4. Differential expression analysis. The miR-23a-3p and miR-181c-5p expression in Pt-r (n = 48) and Pt-s (n = 48)
patients evaluated by RT-qPCR (Brescia cohort).

miRNA
Name

Mean (sd)
Cq

Mean (sd)
−∆Cq (1) Cq −∆Cq (1)

Pt-r Pt-s Pt-r Pt-s Stat
(95%CI) p-Value Stat

(95%CI) p-Value

hsa-miR-
23a-3p

24.82
(1.3)

25.39
(1.3)

−0.56
(1.0)

−1.04
(1.1)

−2.140
(−Inf,
−0.128)

0.017 ** 1.910
(0.063, Inf) 0.030 **

hsa-miR-
181c-5p

30.61
(2.3)

31.09
(2.5)

−6.35
(2.1)

−6.73
(2.6)

−0.965
(−Inf,
0.345)

0.169 0.812
(0.404, Inf) 0.209

(1) reference miR-16-5p. ** <0.05. One-side, T-test analysis. Highlighted in bold: significant.
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Figure 2. Prognostic performance of miR-23a-3p in the Brescia cohort. (A) Violin plots and error bars (mean +/− standard
deviation) showing normalized miR-23a-3p expression levels measured by RT-qPCR in HGSOC samples from platinum-
resistant patients (Pt-r) compared to platinum-sensitive patients (Pt-s) (p-value = 0.03, one-sided t-test). Complete results in
Table 4. (B) Progression-free survival curves (Coxph model adjusted by residual tumor, age and Bevacizumab), stratified
by quartiles of normalized miR-23a-3p expression levels (Q1: low; Q2–Q3: moderate; Q4: high). Complete results in
Supplementary Results Table S4. (**) p ≤ 0.05, (***) p ≤ 0.01.

Notably, miR-23a-3p was prognostic for PFS even in the subgroup of 22 patients treated
with Bevacizumab, when accounting for residual tumor and age (HR = 1.8, Supplementary
Results, Table S5).

Due to its significant association with response to platinum and prognosis, we selected
miR-23a-3p for further investigations.

3.5. miR-23a-3p Expression in Ovarian Carcinoma Stem-Like Cells

As cancer stem cells (CSCs) have the fundamental property of being resistant to both
chemotherapy and radiation, we tested whether miR-23a-3p might be deregulated in
these cells. Our group recently isolated a population of cells with stemlike characteristics
(OVA-BS4 spheroids) from a primary HGSOC cell line and characterized their miRNA and
mRNA expression profiles by microarrays ([26] and Supplementary Methods, Section S7).
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Using these datasets, we evaluated the expression of miR-23a-3p in CSC cells compared to
their parental lines (Figure 3A). In agreement with our hypothesis, we found miR-23a-3p
resulted significantly up-regulated in the OVA-BS4 spheroid cell line compared to parental
cells (p-value = 0.013, one-tail t-test).

Table 5. Overall and progression-free survival analysis. OS and PFS analysis (Coxph) for miR-23a-3p and miR-181c-5p
expression evaluated by RT-qPCR in Brescia cohort samples (n = 145). Complete results for the multivariate analysis in
Supplementary Results, Table S3.

miRNA Name
Univariate-∆Cq (1) Multivariate (2)-∆Cq (1)

Hazard
(95% CI) SE p-Value Hazard

(95% CI) SE p-Value

Overall Survival (OS)

hsa-miR-23a-3p 1.149
(0.977–1.352) 0.083 0.092 * 1.195

(1.027,1.390) 0.077 0.021 **

hsa-miR-181c-5p 1.026
(0.940–1.121) 0.045 0.561 1.025

(0.938,1.119) 0.045 0.587

Progression-Free Survival (PFS)

hsa-miR-23a-3p 1.178
(1.016–1.366) 0.075 0.030 ** 1.244

(1.071,1.446) 0.077 0.004 ***

hsa-miR-181c-5p 1.034
(0.957–1.118) 0.040 0.399 1.040

(0.960,1.127) 0.041 0.346

(1) reference miR-16-5p; (2) Multivariate model accounted for residual tumor (2 classes: RT = 0 and RT > 0), age and Bevacizumab. * <0.10 **
<0.05 *** <0.01. Highlighted in bold: significant.
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Figure 3. The miR-23a-3p in HGSOC-Stemlike cells. (A) Range (bars) and mean (points) for miR-23a-3p expression levels
measured by microarray in stemlike cell replicates from OVA-BS4 spheroids (1) compared to the parental cell line replicates
(2) (p-value = 0.013, one-tail t-test). (B) Anti-correlation between miR-23a-3p and APAF1 expression levels measured by
matched miRNA/gene microarray (p-value = 0.061, Pearson’s product-moment). (*) p ≤ 0.1, (**) p ≤ 0.05.
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3.6. In Silico miR-23a-3p Target Prediction and Comparative Pathway Analysis

We performed an in silico target analysis using two different algorithms (TargetScan
and microT-CDS), resulting in a set of 753 common predicted targets (Jaccard index: 33.4%).
We then performed ORA analysis comparing—for each pathway—the observed with the
expected number of targets. Twenty out of 303 analyzed pathways (6.6%) were identified
as significantly enriched (adjusted p-value ≤ 0.001). Interestingly, the ‘platinum drug
resistance’ pathway showed the second most prominent enrichment (Table 6), suggesting
the involvement of miR-23a-3p in this process.

Table 6. Over-representation analysis of KEGG pathways for miR-23a-3p target genes. Differentially expressed pathways
(Adjusted p-value ≤ 0.01).

Pathway No. Genes No. Targets −log10 (adj.
p-Value) (1) Target

1 Renal cell
carcinoma 56 13 15.32

ARNT; ARNT2; CREBBP;
CRK; EGLN2; GAB1; MET;

PIK3CB; PIK3R3; PAK3;
PAK6; TGFA; RAP1A

2 Platinum drug
resistance 39 8 10

APAF1; BCL2; FAS;
PDPK1; PIK3CB; PIK3R3;

XIAP; MAP3K5

3 Hedgehog
signalling pathway 47 8 8.21

CSNK1G1; CSNK1G3;
CUL3; HHIP; SMURF2;
SPOPL; BCL2; GSK3B

4
EGFR tyrosine
kinase inhibitor

resistance
79 11 7.41

BCL2; FGF2; GAB1; IL6R;
JAK1; MET; PIK3CB;

PIK3R3; PTEN; TGFA;
GSK3B

5 ErbB signalling
pathway 85 11 6.59

CRK; ERBB4; GAB1; PAK3;
PAK6; PIK3CB; PIK3R3;

TGFA; GSK3B; CBLB;
STAT5B

6 Bacterial invasion
of epithelial cells 53 7 5.57 CRK; GAB1; MET; PIK3CB;

PIK3R3; WASL; DNM3

7 Non-small cell
lung cancer 65 8 5.34

EML4; PDPK1; PIK3CB;
PIK3R3; RXRG; TGFA;

STAT5B; STK4

8

Glycosphingolipid
biosynthesis—

lacto and neolacto
series

27 4 4.72 FUT4; FUT9; GCNT2;
ST8SIA1

9 p53 signalling
pathway 71 8 4.61

APAF1; BCL2; CCNG1;
FAS; PTEN; RCHY1; SESN2;

SESN3

10 mTOR signalling
pathway 142 15 4.51

ATP6V1B2; ATP6V1C1;
ATP6V1E1; FNIP2; FZD4;

FZD5; GSK3B; LRP5;
PDPK1; PIK3CB; PIK3R3;

PTEN; SEH1L; SESN2;
CHUK

11 Prostate cancer 85 9 4.25
CHUK; CREBBP; GSK3B;
PDPK1; PIK3CB; PIK3R3;

PTEN; TGFA; BCL2
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Table 6. Cont.

Pathway No. Genes No. Targets −log10 (adj.
p-Value) (1) Target

12
Aldosterone-

regulated sodium
reabsorption

30 4 4.2 NEDD4L; PDPK1; PIK3CB;
PIK3R3

13 Measles 107 11 4.14

CBLB; CHUK; JAK1;
PIK3CB; PIK3R3; RCHY1;

TNFAIP3; GSK3B; FAS;
IL12B; STAT5B

14
Fc gamma

R-mediated
phagocytosis

91 9 3.66

ASAP1; CRK; PIK3CB;
PIK3R3; PRKCE; WASL;

CFL2; MARCKS;
MARCKSL1

15 Adherens junction 69 7 3.62 CSNK2A2; MET; TGFBR2;
WASL; YES1; TJP1; NLK

16 Small cell lung
cancer 92 9 3.57

APAF1; BCL2; CHUK;
COL4A4; PIK3CB; PIK3R3;

PTEN; RXRG; XIAP

17
Mannose type

O-glycan
biosynthesis

23 3 3.49 CHST10; FUT4; FUT9

18
Non-alcoholic fatty

liver disease
(NAFLD)

71 7 3.42
FAS; IL6R; MAP3K5;

PIK3CB; PIK3R3; GSK3B;
CASP7

19 Phosphatidylinositol
signalling system 86 8 3.1

DGKE; INPP5A; IPMK;
PIK3C2A; PIK3CB; PIK3R3;

PIP4K2B; PTEN

20 IL-17 signalling
pathway 14 2 3.08 FOSB; TAB3

(1) Bonferroni correction.

To further investigate the link between miR-23a-3p and platinum drug resistance, we
evaluated the expression correlation of miR-23a-3p with its eight predicted gene targets
identified in the ‘platinum drug resistance’ pathway (Table 7). We explored miRNA-target
correlation in two different datasets: (i) the matched HGSOC miRNA and gene expression
profiles of the Brescia cohort [20,21], and (ii) the matched miRNA–mRNA dataset of
microarray profiles of HGSOC-stemlike cells (OVA-BS4 spheroids) isolated from a primary
HGSOC cell line [26] (Figure 3B). Assuming that increased miRNA expression induces
target mRNA degradation and/or translational repression [36], we detected a consistent
anticorrelation pattern (Pearson correlation) in both datasets only for the APAF1 gene
(ρ = −0.227 and −0.79).

3.7. The miR-23a-3p/APAF1 Axis and Carboplatin Sensitivity

To functionally assess the miR-23a-3p-APAF1 interaction, we conducted a pilot in vitro
study on an HGSOC primary cell line (OSPC2) and on the widely studied OC cell line
OVCAR3, which express high and low miR-23a-3p levels, respectively (Figure S1). As
described in the Supplementary Results, transfection of OSPC2 with a miR-23a-3p inhibitor
resulted in an increase in APAF1 protein levels, while transfection of OVCAR3 cells with
a miR-23a-3p mimic produced a reduction in APAF1 (Figures S2A,B and S3A,B). Further
experiments provided evidence that miR-23a-3p suppresses apoptosis of tumor cells and
confers platinum chemoresistance by regulating the expression of its direct target APAF1
(Figure S3C,D and Table S6).



Cancers 2021, 13, 3358 12 of 16

Table 7. Predicted miR-23a-3p targets involved in platinum drug resistance pathway. Reported are TargetScan, microT-CDS
scores and Pearson correlations between matched mRNAs and miRNA microarray expression profiles in the Brescia cohort
(73 samples: 39 Pt-r, 34 Pt-s) and OVA-BS4 cell line (6 biological replicates: 3 spheroids vs. 3 parental).

Symbol

Target Scan microT−CDS Tarbase Pearson Correlation

Context Score miTGscore Experimentally
Validated

Brescia Cohort
Microarray

OVA−BS4 Cell
Line

Microarray

APAF1 −0.54 0.96 Yes −0.227 −0.790
BCL2 −0.36 0.73 No 0.250 0.893
FAS −0.51 0.84 No 0.124 −0.783

PDPK1 −0.15 0.92 Yes −0.159 −0.002
PIK3CB −0.17 0.91 Yes 0.040 −0.201
PIK3R3 −0.17 0.95 Yes −0.126 0.927
XIAP −0.28 0.95 No 0.052 −0.907

MAP3K5 −0.08 0.81 No −0.038 0.816

Highlighted in bold: anti-correlated genes (<−0.1) in both considered datasets.

4. Discussion

Resistance to standard platinum-based chemotherapy is the principal cause of poor
outcome in HGSOC patients [2]. Thus, the discovery of reliable biomarkers predictive of
response is crucial to inform patient selection for effective and safe treatment strategies.
In this study, starting from the hypothesis of the involvement of hypoxic miRNAs in a
more aggressive HGSOC phenotype, we demonstrated that over-expression of miR-23a-3p
correlates with chemo-resistant disease and is an independent biomarker of poor prognosis
in HGSOC patients. Importantly, the role of this miRNA as a prognostic biomarker is
independent from other well-recognized clinical characteristics, such as age and residual
tumor. The association of miR-23a-3p expression with a more aggressive tumor phenotype
has been previously reported in OC, both in tissues and in cell lines [37–43]. However, to
our knowledge, this is the first study assessing miR-23a-3p expression by three different
technologies in two independent cohorts of OC patients, clinically homogeneous regarding
histotype (serous), tumor grade (high), stage (advanced) and treatment (first-line platinum-
based chemotherapy). This result provides novel indications for the management of newly
diagnosed HGSOC patients, by identifying women who may not benefit from platinum
therapy and may be directed to alternative treatments. In addition, the evaluation of
miR-23a-3p expression at relapse could help in identifying patients unlikely to respond to
platinum who can be more efficiently treated with other regimens, avoiding the toxicity of
unnecessary therapies. It is worth noting that miR-23a-3p over-expression retained its role
as a marker of poor prognosis in the subgroup of patients treated with Bevacizumab, an
anti-VEGF antibody that has been added to the OC standard of care first and second-line
therapy regimens. The identification of biomarkers able to guide Bevacizumab treatment
is still a pending issue, and our preliminary results indicate that miR-23a-3p might help
to select OC patients who will benefit from antiangiogenic therapy. Consistent with
our hypothesis of a role for miR-23a-3p in chemoresistance, we found that ‘platinum
drug resistance pathway’ was one of the most enriched KEGG pathways for its mRNA
targets. Evaluating the relationship of miR-23a-3p with the target mRNAs annotated in this
pathway and employing an internal collection of gene expression profiles derived from
HGSOC samples and cell lines [20,21], we found APAF1 as the experimentally validated
and more anticorrelated miR-23a-3p target. Of note, miR-23a-3p over-expression together
with APAF-1 downregulation characterized both platinum-resistant tumors and the ovarian
carcinoma-stem-like cells (OVA-BS4 spheroids), previously reported by our group as highly
resistant to platinum treatment. In addition, through a pilot in vitro study, we observed
that by inhibiting miR-23a-3p expression, OSPC2 cells increase APAF1 levels, becoming
more sensitive to carboplatin treatment, through an increase in apoptosis. On the contrary,
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enhanced miR-23a-3p levels caused a reduction in APAF1 expression and decreased cell
death in the OVCAR3 cells, thus inducing a platinum-resistant phenotype.

APAF1, the apoptotic protease-activating factor 1, is a key component of the intrinsic
apoptotic pathway. Indeed, carboplatin causes DNA damage that induces apoptosis, and
one of the potential mechanisms implicated in platinum resistance is the inhibition of
apoptosis [44]. Previously reported evidence for the role of miRNAs in regulating APAF1
expression in the context of ovarian cancer exists. In particular, Yeung et al. showed
that exosomal transfer of stroma-derived miR-21 to OC cells confers chemoresistance and
an aggressive phenotype through binding to the APAF1 mRNA [44]. Additionally, Eoh
et al. reported that an miR-630 inhibitor attenuated chemo-resistant OC proliferation
and invasion, likely by targeting APAF1, re-sensitizing cells to chemotherapy [45]. The
involvement of the miR-23a-3p/APAF1 axis has been reported in several solid cancers,
including colorectal, pancreatic and laryngeal carcinomas and glioma [37,46]. However,
to our knowledge, this is the first study demonstrating the implication of the miR-23a-
3p/APAF1 axis in carboplatin resistance of HGSOC cells.

5. Conclusions

Our results indicate that miR-23a-3p could be considered a candidate biomarker to
direct platinum therapy in HGSOC patients in the first line setting and in the subsequent
lines of therapy. Additional studies in independent multicentric cohorts are needed to
confirm the prognostic value of miR-23a-3p. Furthermore, strategies based on the upregu-
lation of APAF1 might be explored as a novel therapeutic target and a tool to resensitize
HGSOC cells to carboplatin treatment.
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.3390/cancers13133358/s1, Methods S1: Brescia and TCGA cohorts, Methods S2: Tissue collection
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and OVA-BS4 spheroid cell lines, Methods S7: miRNA and gene expression profiles of OVA-BS4
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lines, Figure S3 bottom panel. Barplots representing apoptosis in HGSOC cell lines after transfection
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