
David Hoksza is a researcher at the Luxembourg Centre for Systems Biomedicine (LCSB) and Charles University, Prague, working on approaches for network
and molecular visualization, data integration and structural bioinformatics.
Piotr Gawron is a researcher at the LCSB, developing tools for visualization and exploration of complex molecular networks.
Marek Ostaszewski is a scientist and a project manager at the LCSB, working on IT applied to knowledge management in systems biomedicine, in particular
in Parkinson’s disease, including clinical research.
Jan Hasenauer leads research groups at the University of Bonn and the Helmholtz Center Munich. His research focuses on the development and application
of methods for the data-driven modeling of biological processes.
Reinhard Schneider is the head of the Bioinformatics Core Facility at the LCSB. His team develops solutions for efficient data integration, interpretation
and exchange between the experimental, theoretical and medical domains.
Submitted: 22 January 2019; Received (in revised form): 23 April 2019

© The Author(s) 2019. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1249

Briefings in Bioinformatics, 21(4), 2020, 1249–1260

doi: 10.1093/bib/bbz067
Advance Access Publication Date: 5 July 2019
Review article

Closing the gap between formats for storing layout
information in systems biology

David Hoksza , Piotr Gawron, Marek Ostaszewski , Jan Hasenauer and
Reinhard Schneider

Corresponding author: David Hoksza., Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing L-4367
Belvaux, Luxembourg and Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic.
Tel.: (+352) 46 66 44 6451; Fax: (+352) 46 66 44 36451; E-mail: david.hoksza@uni.lu

Abstract

The understanding of complex biological networks often relies on both a dedicated layout and a topology. Currently, there
are three major competing layout-aware systems biology formats, but there are no software tools or software libraries
supporting all of them. This complicates the management of molecular network layouts and hinders their reuse and
extension. In this paper, we present a high-level overview of the layout formats in systems biology, focusing on their
commonalities and differences, review their support in existing software tools, libraries and repositories and finally
introduce a new conversion module within the MINERVA platform. The module is available via a REST API and offers,
besides the ability to convert between layout-aware systems biology formats, the possibility to export layouts into several
graphical formats. The module enables conversion of very large networks with thousands of elements, such as disease
maps or metabolic reconstructions, rendering it widely applicable in systems biology.

Key words: network layout; molecular network; data format; systems biology; conversion

Introduction
Systems biology aims at a detailed understanding of mech-
anisms underlying complex biological processes. To this end,
systems biology combines the vertical approach, when a sys-
tem is studied on different levels of detail, with the horizontal
approach, when different aspects of a system at a given level
of complexity are investigated. This combination of vertical and
horizontal approaches often reveals complex mechanisms driv-

ing the behavior of a biological system. Such a complex system
is then analyzed by computational methods and mathematical
modeling approaches to propose an informed hypothesis about
its functioning, to be subsequently validated in the wet lab [1].
A multitude of software tools focus on different facets of the
field, creating a demand for standardization and interoperability
efforts to enable seamless exchange of information about the
underlying molecular systems. Visualization plays an important
role in understanding of such systems, including graphic display

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0003-4679-0557
http://orcid.org/0000-0003-1473-370X


1250 Hoksza et al.

of the parameters and results of simulations or the topology and
layout of network models.

Layout is an important element for the analysis of complex
networks. Proper visualization, including positioning of molec-
ular entities, can greatly facilitate understanding of the entire
system. Good examples are disease networks [2] or metabolic
reconstructions [3], which can easily contain hundreds or thou-
sands of entities. Layouts for these networks are usually manu-
ally encoded by a curator [4]. If this is not possible, one can rely
on automatic layout to visualize a network. However, automatic
layout has many issues, which still remain a challenge for the
state-of-the-art algorithms [5]. Finally, the curator might prefer a
specific layout to emphasize some properties or pathways of the
system. For all these reasons, in the case of more complex sys-
tems, automatic layout is not possible and the network structure
should be stored in a layout-aware format, i.e. a format allowing
one to encode positions of molecular entities.

The most frequently used community-driven formats to
encode molecular networks are the Systems Biology Markup
Language (SBML) [6] and the Biological Pathway Exchange format
(BioPAX) [7]. BioPAX is a knowledge exchange format used in
pathway repositories such as Reactome [8] or Pathway Commons
[9]. It allows the user to store the structure of a network, but not
layout information. Therefore, it is not discussed here in detail.

SBML allows for storing both the structure of a network and
its layout.

SBML is an XML-based format, and the SBML core provides
a set of basic XML elements to encode and annotate molecu-
lar entities and their interactions. The core is complemented
with extension packages that allow for specification of addi-
tional properties, such as quantitative or visual aspects of the
networks or more complex entity-related properties such as
residue modification or molecular complexes [10]. Specifications
of individual extensions are independent of the core and thus
add extension-specific information to existing molecular rep-
resentation. These extensions do not affect tools that do not
support them. One such SBML extension is the layout pack-
age (see Encoding systems biology layouts for a more detailed
description), which allows for encoding positions of molecular
entities and their interactions.

The ability to extend the SBML core with packages was intro-
duced into the standard with SBML Level 3 (announced in 2010
[10]) with the layout package published in 2013 [11]. The package
provides format for encoding positions of species, reactions,
labels and compartments, but it does not specify how to encode
visual properties of those entities, such as shape, color or thick-
ness of edges. This became possible with the render package,
an adjunct to the layout package, which was introduced in
2017 [12].

Due to the relatively late adoption of the layout and render
packages, other formats filled the gap. Specifically, in 2009 the
Systems Biology Graphical Notation (SBGN) was released [13].
Unlike SBML, SBGN does not describe a data format, i.e. a con-
crete encoding of element of molecular networks, but focuses
on standardization of how networks are visualized. The lan-
guage specifies a set of symbols for displaying molecular entities
and processes. The difference between SBML render package
and SBGN is that the former specifies encoding for shapes and
other visual aspects of the elements, but does not regulate
their appearance in any manner. The latter defines how entities
and processes should look like, but does impose any encoding.
In order to standardize the encoding in SBGN, an XML imple-
mentation of SBGN language, called SBGN Markup Language
(SBGN-ML), was introduced in 2012 [14].

Even though SBGN-ML became available 3 years before the
SBML layout package, it was not the earliest SBGN-inspired net-
work layout solution. Seven years earlier, in 2005, CellDesigner
[15], a very useful diagram editor for designing systems biology
molecular networks, was introduced. CellDesigner features its
own format, which is a software-specific extension of SBML,
consisting of CellDesigner-specific XML tags within the SBML
document. Because the last version of CellDesigner was released
in 2014, it only supports (export to) the SBML Level 3 core
format without layout. The layout information is stored in the
CellDesigner’s SBML extension. Due to CellDesigner’s ubiquity,
its particular format is accepted by many existing tools that are
thus able to parse a layout encoded in CellDesigner files.

In consequence of this historical development, there are
three closely related formats for capturing layout information:
SBML layout and render extension, CellDesigner’s SBML exten-
sion and SBGN-ML. In this article, we present a review of these
layout-encoding notations. We describe general characteristics
of these notations (Encoding systems biology layouts) and
overview their implementation in existing software tools and
repositories (Support of layout in existing tools and repositories).
We argue that, to the best of our knowledge, none of the
existing visualization and editing tools supports full range
of the formats within its import and export routines. To
address this situation, we introduce a tool, which can be
used to convert between these formats (Conversion module).
This new tool is available via a REST API of a platform
for visualization of molecular interaction networks [16] and
allows for conversion between three layout formats. Next,
we discuss the current state of layout encoding formats
(Discussion) and conclude the article (Conclusion).

Encoding systems biology layouts
A format capable of storing a diagram layout needs to han-
dle not only information about the network structure but also
positions of elements and labels, space they occupy and how
they should be rendered, i.e. their shape, color and other visual
aspects. Exchange formats therefore need to be able to encode
the network structure together with the position and rendering
information for network elements and interactions.

Unlike traditional graphs, where nodes can be simply
encoded as points in space connected by simple lines, graphs in
systems biology are more complex, featuring compound objects
and their relations, which in turn requires a more complex
language to describe them.

Systems biology networks following the SBGN guidelines
comprise three types of entities (nodes): species, complexes and
compartments. By species, we understand objects on molecular
or cellular scale, like genes, proteins, RNAs or simple molecules.
Furthermore, we consider phenotype as objects. These are
nodes, representing an entire sub-process in the diagram. In
general, species are simple objects, which can be positioned in
space and their type can be visually encoded by a specific glyph
(marker) or by any visual attribute such as color or fill pattern. A
complex on the other hand has internal, potentially hierarchical,
structure and needs to be described as a bounding object, e.g.
a box or a circle, relative to which objects in the complex are
positioned. Finally, a compartment, which typically corresponds
to a cellular structure in a biological system, consists of a
bounding object, e.g. a box or an oval. The objects inside are
positioned using the respective bounding object as a reference
frame. Species inside a compartment are not treated implicitly
as interacting, as in the case of a complex. Nevertheless, they



Closing the gap 1251

can be connected by reactions and their relative position to the
compartment needs to be considered, e.g. to indicate luminal or
transmembrane proteins.

Biological reactions require a more complex language than
edges in regular graphs. The complexity of the encoding is
affected by two main factors: the hypergraph nature of the
molecular networks and the need to encode reaction types.
Firstly, a reaction typically connects more than two species, e.g.
multiple reactants, modifiers and products; hence, the consid-
ered networks are hypergraphs with reactions being hyperedges.
Secondly, the role of a species in a reaction may affect its layout
and the data format needs to be able to take this into account.
Thirdly, one needs to be able to encode reaction type to visually
distinguish relationships between the reactants and products,
e.g. state transition, transport, as well as the role of the reaction
modifiers, e.g. catalysis, inhibition. Both factors are necessary to
consider, for instance, when fine-grained semantics of a reaction
are captured via Boolean relations between conditions, under
which a reaction can proceed.

Data formats

Although all layout-aware exchange formats encode the intrica-
cies of the systems biology diagrams as described above, they
have their limitations and specifics. In the following paragraphs
we briefly review the main formats focusing on the visual encod-
ing parts of the languages and on the differences between them.
A concise overview of the differences between the discussed
formats can be found in Table 1.

SBML

SBML is the community-driven standard that was initially
designed to encode molecular networks; however, nowadays
it can be used to encode processes and models beyond systems
biology such as population dynamics, etc. Besides its ability
to encode molecular network information, SBML provides
the ability to store visual diagrams via its layout and render
packages. These extend the core language of SBML, used for
describing the structure and dynamics of the underlying system.

SBML packages define XML schemas enriching the SBML
core by adding XML tags that are placed at the root of the
SBML document and thus do not interfere with core XML tags.
The entities described in the core part of a document are
then referenced from an extension using unique identifiers of
species and reactions. In this way, it becomes easy to extend
an existing document by package-specific nodes. SBML core
tags are used to distinguish only basic types of entities such
as species, reactions and compartments. To further distinguish
types of species, one can assign a Systems Biology Ontology
(SBO) term [17] to any element in the model. SBO terms add
additional semantics to the model, which can be then utilized
by software tools, e.g. to determine the shape of an element
based on its type. Additional levels of semantics can be obtained
by using annotations. SBML annotations have a standard
format recommended by SBML specification. Using this format,
entities can refer to controlled vocabulary terms and database
identifiers that define and describe biological and biochemical
entities.

The layout package [11] uses the notion of glyphs to encode
information about positions of species, compartments and reac-
tions. Species (including complexes), reaction and compartment
glyphs use references to map to core elements. Species and
compartments glyphs are described by a position and dimen-
sions, i.e. by their bounding boxes. Reaction glyphs consist of
lists of curved segments and species definitions involved in a
given reaction. Each of the segments includes its type (line, cubic
Bezier) and position needed to specify a segment. The species
information in a reaction glyph contains not only the identifier
to match a given species with its definition in the core but also
the role of the species. Although reaction information in the
core also contains information about the roles of the species,
its role in the reaction glyph is more detailed, distinguishing,
for example, the main substrate from a side substrate or an
activating modifier from an inhibiting modifier.

By separating a layout from its structure, the layout pack-
age can also handle duplicate nodes. Node duplication is a
technique that helps to increase clarity of a diagram. Dupli-
cating species that are highly connected or species far apart

Table 1. Support of the main layout and render-relevant features for species, complex species, reactions and compartments

SBML SBML-CD SBGN-ML Remarks

Set position YES (L) YES YES
Define shape YES (R) NO NO SBML-CD and SBGN-ML allow one to specify size of

elements but not their shape.
Set color YES (R) YES YES
Set label position (L) YES (L) NO YES
Set label font (R) YES (R) YES (−) YES SBML-CD does not allow one to set font size for

compartments and reactions.
Actively developed YES NO YES
Supports species modification YES YES YES
Supports node duplication YES (L) YES NO SBGN-ML only allows one to specify ‘clone’ flag for a

glyph, thus the information about which species is
actually cloned is missing.

Description of different
biological granularities in the
same diagram

YES YES NO SBGN-ML does not allow one to mix the activity flow
(AF), process description (PD) and entity relationship
(ER) notations.

Multiple layouts YES (L) NO NO

If relevant, the SBML column includes information about which package supports given functionality (L = layout, R = render). Moreover, the multi package is required
to support complexes and species modification definition in SBML. Please note that here we focus only on the major features and do not consider features such as
ability to set border width or background opacity.



1252 Hoksza et al.

in the diagram allows one to reduce edge crossings, which
is considered as one of the main aesthetics criteria in graph
drawing [18]. This is especially true in networks where small
molecules such as water are involved in many reactions. The
layout package allows for specifying multiple species glyphs
referencing a single species definition, thus duplicating that
species in the diagram. Such ways of representing duplicates
also retain connections between the duplicates and the original
molecule.

The layout package also allows for storing multiple layouts
for the same network, which can be useful in complex cases, e.g.
networks combining signaling, gene regulatory and metabolic
reactions. In such cases, different aspects of the underlying
biological system can be highlighted by laying out the relevant
processes in different ways.

The render package [12] is an extension of the layout pack-
age, which provides a way to encode precise rendering of the
elements. The render information consists of a set of styles
that can be assigned to objects in the layout package. It is thus
possible to define a visual object, such as a polygon filled with
a given color or pattern, and assign it to a class of objects, for
example all elements in the product role. Although the render
package allows one to specify custom shapes for the elements,
it is also possible to use the SBO terms attributes to derive
the elements shapes when the rendering information is not
available.

CellDesigner’s SBML extension

CellDesigner is a popular diagram editor for creating SBGN-
like networks, introduced long before the layout package was
officially introduced into the SBML standard. Therefore, CellDe-
signer introduced its own SBML namespace, specifying a format
to store the layouts and extending the syntax to encode any
functionality not covered by SBML at the time of creation of the
extension.

CellDesigner extends the SBML core by special tags for nested
complexes and compartments, and species modification states.
These functionalities are currently available in the SBML multi
package [19]. With respect to entities positions, CellDesigner
uses the notion of species alias that plays a similar role as the
species glyph in SBML layout package. Unlike SBML, where the
layout and rendering information are separated, CellDesigner
species aliases contain some information about the rendering.
Specifically, species alias tags include attributes allowing to
specify font, color or line width of the respective bounding
boxes. As for the rendering information, CellDesigner format
does not define the shape of the species or reaction symbols.
Instead, each species and reaction stores additional information
in the CellDesigner extension, such as type (e.g. receptor protein,
transcription) or modification (e.g. phosphorylation, catalysis).
The rendering of the shapes corresponding to these features
is hardcoded in CellDesigner software. This differs from the
more general approach of the SBML render package, where
shapes can be explicitly defined. Obviously, SBML render pack-
age can be used to fully implement the palette of shapes used by
CellDesigner.

Some of the layout information in CellDesigner is stored
directly in the SBML core. For instance, in the case of complex,
polyline reactions, CellDesigner stores information about the
midpoints in extension tags directly within the SBML core anno-
tation tag of the respective reaction. For this reason, the CellDe-
signer encoding does not support multiple layouts. Regardless of
this limitation, the prevalence of CellDesigner makes it a well-

accepted format, handled by a number of the existing systems
biology visualization and editing tools.

SBGN-ML

Since for a period of time SBML did not support layout and
render information, there was a need for storing an SBGN-
compliant layout in a non-proprietary format. In effect, SBGN-
ML [14] was proposed as the XML exchange format for encoding
SBGN-compliant diagrams.

SBGN itself is a visual language, which strives to be unam-
biguous and consistent by using concise and discriminable sym-
bols to represent molecular entities and processes. It consists
of three sublanguages providing separate notations for three
orthogonal types of diagrams: Process Description, Entity Rela-
tionship and Activity Flow [13]. The three languages cannot be
mixed. Therefore, pathways containing, e.g. state transition reac-
tion type (Process Description) and positive influence reaction
(Activity Flow), cannot be captured in a single SBGN-compliant
diagram.

Irrespective of the diagram type, SBGN standardizes graph-
ical notations for types of nodes and edges to be used in a
molecular diagram, but is agnostic to their colors, patterns,
shades, shapes and thickness of edges or fonts. SBGN itself does
not specify the diagram layout, i.e. positions of the elements.
However, to serialize a network into a file to be shared among
different programs, all the information not covered by the SBGN
standard needs to be encoded as well. This is the role of the
SBGN-ML. Importantly, SBGN-ML specification states that an
SBGN-compliant diagram cannot mix the separate notations,
which is a challenge, especially when representing heteroge-
neous networks.

SBGN-ML is a layout-focused format that does not separate
the structure of the network from its layout and rendering infor-
mation, contrary to SBML or CellDesigner. It uses the notions of
glyphs and arcs to define both the network layout and its struc-
ture, and the layout is stored directly with the glyphs and arcs.
Each glyph and arc contains information about the class (type) of
a species or a process it represents. The list of available classes
is limited by the SBGN sublanguage, in which a given network is
described. Based on the class of an element or an interaction, the
SBGN standard specifies how the entity should be rendered. Ren-
dering information that is not specified by the SBGN standard
(colors, font, width of edges, fonts) is then stored via extension
tags that can be assigned to any SBGN element. The structure of
such a tag should be specified via an XML namespace, which can
link, for example, to the SBML render package [20]. Extensions
are also used by SBGN-ML supporting tools to store other infor-
mation, such as element annotations. However, in order for the
extensions to be as general as possible, SBGN-ML does not define
their structure. This, in turn, reduces the capability for sharing
information among different SBGN-ML tools due to the lack of
standardization.

Node duplication is an aspect which SBGN-ML lacks in
comparison with both SBML and CellDesigner SBML, and which
is difficult to solve via SBGN-ML extensions. Although SBGN
provides visual specification for duplicated nodes, they are
not related on the data level, and one can link duplicated
species only by comparing their names and types. This can
cause issues when manually editing such a species, because
all the linked duplicates will need to be manually edited as
well.

Finally, similarly to CellDesigner, SBGN-ML lacks the support
for multiple layouts, which is understandable since SBGN-ML



Closing the gap 1253

encodes the layout and underlying structure of the network by
blending these two information layers together.

Other layout-supporting formats

Although the three aforementioned formats are the most com-
monly used, there are other layout-aware formats. Two impor-
tant examples are KEGG Markup Language (KGML) used in KEGG
[21] and Graphical Pathway Markup Language (GPML) [22] used
by WikiPathways [23]. However, these are tool-specific formats,
used to support storage of networks within their respective
platforms.

Support of layout in existing tools and repositories

Adoption of the layout-aware formats varies considerably
between systems biology tools that deal with molecular
networks. These tools range from those that do not support
visualization at all (e.g. COBRApy [24], PySCeS [25]), through
tools that support visualization, but do not support exchange
of the layout information in a standard format (e.g. COPASI
[26] or iPath [27]), to software platforms that directly focus
on molecular network visualization and support exchange
of the layout information using standard exchange formats
(see below). In this section, we benchmark selected software
solutions supporting layout-aware formats in systems biology
using a set of three diagrams. We focus on the capabilities
of available tools, in particular diagram editors, libraries and
management platforms, to import and export diagrams in the
three formats reviewed before: SBML, CellDesigner SBML and
SBGN-ML.

Benchmark dataset

To test the support of the formats in existing layout-supporting
tools and platforms, we prepared three layout-containing

networks with increasing levels of complexity. Specifically,
we used the Parkinson’s disease map (PD map) [28] from
which we obtained three networks of different sizes: (1)
the inflammation signaling pathway (INP) from the neuron
compartment with 37 species and 20 reactions (Figure 1), (2)
a multi-compartment network describing PD-related processes
in striatal neurons (SNs) with 152 species and 132 reactions
(Figure 2) and (3) the whole Parkinson’s disease map (PDM)
consisting of about 5500 species and almost 2500 reactions in
multiple compartments (Figure 3). All the networks contained
duplicated nodes, proteins with modified residues and species
grouped in complexes. Each of the three networks was exported
from the PD map as a CellDesigner file and adjusted in
CellDesigner. Each of the files was then converted using the
implemented converter module (see Conversion module) to
SBML with layout and to a SBGN-ML Process Description dia-
gram. All the source data and their description are available as
Supplementary Information.

Comparison of the software tools

In our comparison, we focus on tools that can store and export
network layout in one of the above discussed systems biology
exchange formats. For this reason, some recognized software
projects such as COPASI [26] or JWS online [29] are not included,
because they provide network visualization via tool-specific
formats.

Table 2 summarizes the state of support for the data
formats in current tools, libraries and network management
platforms. We focused on three groups of available soft-
ware diagram editors, libraries and management platforms.
In this way, we would like to consider separately three
aspects of working with systems biology networks, namely
their creation, standardization and management of created
content.

Figure 1. Inflammation signaling in neurons.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz067#supplementary-data


1254 Hoksza et al.

Figure 2. PD-related processes in SNs.

Diagram editors

Out of the seven tested diagram editors (CellDesigner [15],
Cytoscape [30] + cy3sbml [31], Cystoscape [30] + cySBGN [32],
Newt [33], Krayon for SBGN [34], PathVisio [22], Vanted [35] +
SBGN-ED [36], yEd [37] + ySBGN [38]), only CellDesigner and Newt
worked without major issues with our test networks. Obviously,
CellDesigner can be used to edit its own files and support export
to SBGN-ML, limited to the Process Description notation of SBGN.
It should be noted that CellDesigner, unlike SBGN-ML, offers a
notation similar to Activity Flow (Reduced notation) and allows
for mixing between different notations. Export to SBGN-ML
therefore supports only Process Description elements, which
is a reasonable choice since it captures biochemical process in
greatest detail.

The SBGN-ML versions of our test networks were without
any issues opened only by Newt, which is currently the most
versatile editor of SBGN-compliant networks, and Krayon. The
Krayon editor had problems with assigning correct rendering
order for nested compartments in case of SN and PDM, but apart
from that, the import process was without any issues. It is worth
pointing out that Newt allows the user to import layouts from
CellDesigner, while CellDesigner itself is not able to fully export
to SBGN-ML (see above). In this particular case Newt allows for
mixing Process Description and Activity Flow notations which,
however, produces diagrams that are not SBGN-compliant.

Both CellDesigner and Newt had performance issues when
working with the PDM network. This is understandable in the
case of Newt, which is a web-based platform using in-browser
rendering of vector graphics to visualize the networks, which
limits the number of visual elements that can be efficiently han-
dled by contemporary browsers. Although CellDesigner is not
limited by the constraints of the web platform, the deterioration
in its performance was substantial as well. We could not identify
the reason of this behavior as CellDesigner is a closed-source
project.

Neither CellDesigner nor Newt support export to SBML with
layout, let alone render, information. Support of SBML with
layout and render is poor in general and the only diagram
editor supporting SBML with layout is Vanted [35]. Although
Vanted handled the layout information correctly, it did not show
compartments in the SN and PDM networks. Another issue with
Vanted is that it does not consider the rendering information
at all, which is to be expected given the render package was
released only recently. Thus, in the resulting visualization every
element is encoded as an ellipsis.

Management platforms

Management platforms for systems biology networks include
both pathway databases and custom platforms for visualization
of contextualized networks, like disease maps. In this category



Closing the gap 1255

Figure 3. PD map, Spring ’18 edition.

of software tools, only MINERVA [16] supports layout encoded
in SBML, CellDesigner SBML or SBGN-ML. NaviCell [39] platform
supports only import from CellDesigner. BioUML [40] supports
CellDesigner SBML and is supposed to support SBGN-ML. How-
ever, during import none of the three tested networks was rec-
ognized as SBGN-ML and export of the networks to CellDesigner
format resulted in an exception.

The support of layout-aware formats in network repositories
differs as well. The biggest repositories supporting visualization
of molecular networks include Reactome [8], Pathway Commons
[9], KEGG Pathways [21], WikiPathways [23] and BiGG Models
[41]. Both Reactome and Pathway Commons store the underlying
network in BioPAX and layouts in SBGN-ML. Moreover, Reactome
uses SBML for the underlying network. BiGG stores its models in
SBML (or COBRA-specific [42] files) while layout for models for
which a diagram exists is stored in custom JSON files. These can
then be loaded by Escher [43], a layout editing tool tightly bound
with the BiGG Models platform. KEGG and WikiPathways both
go in the direction of supporting their own formats, KGML and
GPML, respectively.

Libraries

For both SBML and SBGN-ML languages, libraries are provided,
which support programmatic manipulation of the networks.
LibSBGN [14], the SBGN-ML manipulation library, has support
for Java and C++ languages, while libSBML [44], the main SBML
manipulation library, supports C, C++, C#, Java, Python and
Matlab languages. Alternatively, one can also use JSBML [45] to
work with SBML files.

Conversion between formats

With different sets of formats supported by different tools
and repositories, tools for (batch) conversion between formats
emerged. Conversion between CellDesigner SBML and SGBN-

ML is provided by the cd2sbgnml conversion tool [46]. The
JSBML project contains a CellDesigner plugin [47] that should
support export to SBML with layout. However, using the plugin
(downloaded March 2019) with the latest 64-bit release of
CellDesigner (4.4) resulted in an empty plugins menu and
no error message. Furthermore, there exists a bidirectional
converter between CellDesigner and SBML with layout [48]
that worked well with our benchmarking networks with the
exception of the PDM network (see Table 2). KEGG [49] can be
converted to SBGN-ML with SBGN-ED [50] and to CellDesigner
SBML with KEGGtranslator [49, 51]. EscherConverter [43] provides
export of Escher JSON files to both SBML with layout and
SBGN-ML. Another converter between the non-layout SBML
and other systems biology formats is the Systems Biology
Format Converter (SBFC) project (SFBC has SBML to SBGN-
ML converter module that is ‘in progress’ as of writing this
paper. Moreover, it seems not to take into account layout since
all the bounding boxes in the resulting SBGN-ML have zero
coordinates and dimensions) [52]. However, when the SBML
layout is required, one has to settle with import and export
possibilities of individual tools such as Vanted, which also has
issues (see Table 1). Theoretically, one could also use the online
SBML Layout Viewer [53] (last updated in 2011) to export SBML
files with layout and render information to PNG, PDF, SVG or
TEX files. However, at the time of writing of this paper, only
export to PNG was functional. Also, the viewer did not seem
to take the render information into account at all even for the
simplest system of one reaction with two species (available in
Supplementary Information). We are not aware of any other
converter supporting SBML with the layout or render package.
This situation obviously hinders adoption of SBML layout and
render standards and reinforces the current status quo when
layout of the network is stored alongside the network itself,
which complicates management of networks and adoption of
visualization in existing projects. For this reason, we established
the MINERVA conversion module.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz067#supplementary-data


1256 Hoksza et al.

Table 2. Support of layout-containing formats in existing software tools

Software tool SBML
(with layout)

SBML-CD
(with layout)

SBGN-ML Remarks

Import Export Import Export Import Export

Diagram
editors

CellDesigner
v4.4. [15]

Yes (−) Yes (−) Yes Yes No Yes (−) Supports export and import only from SBML
v2 (without layout)
Export to SBML with layout should be
possible via the CellDesigner plugin [41]
available within the JSBML project. However,
using the plugin with the latest release of
CellDesigner (4.4) results in empty plugin
menu. Another option is using the
CellDesigner parser [42], which worked for
the INP and SN networks, but resulted in an
exception with ‘NumberFormatException’ for
the PDM network.
Supports only PD SBGN, thus some reaction
types cannot be converted to SBGN-ML.

cy3sbml [31] No No No No No Yes Although SBML layout support declared, it
was not able to load correctly positions in
SBML layout; shapes not supported.
It is able to load CellDesigner SBML but drops
layout.

cySBGN v1.2.0
[32]

No No No No – Yes Available only for old version of Cytoscape
(2.8.3)
Loading of all the tested networks failed with
ClassCastException (provided test SBGN files
could be loaded so the issue was not related
to plugin installation)

Newt v1.1.0
[33]

No No Yes (−) Yes Yes Yes When importing a CellDesigner file, positions
of some complexes are not well preserved.
Supports PD and AF SBGN diagrams; allows
one to mix PD and AF resulting in SBGN
non-compliant diagram.

Krayon for
SBGN v1.0.1
[34]

No No No No Yes (−) Yes Supports PD SBGN diagrams.

Does not show bounding boxes for some of
the compartments in SN (e.g. nucleus) and
PDM (e.g. several microtubules) due to
incorrect rendering order.

Vanted [35] +
SBGN-ED [36]

Yes (−) – No No Yes (−) Yes Can load SBML-CD, but without layout.

Can load SBML with layout, but does not
handle compartments and render
information. SBML export fails with an error
message.
Not capable to import SBGN-ML exported
from Newt.

yEd [37] +
ySBGN [38]

No No No No No Yes Generic graph drawing software supporting
export to SBGN-ML via ySBGN plugin.

PathVisio
v3.3.0 [22]

No No No No Yes (−) Yes Should be able to load in SBML, but importing
any of the test networks led to
‘NullPointerException’.
Importing the INP network SBGN-ML results
in ‘ConverterException’.

Libraries libSBML [44],
JSBML [45]

Yes Yes No No No No Both libSBML and jSBML support the SBML
including its extensions.

libSBGN [14] No No No No Yes Yes
Management
platforms

MINERVA [16] Yes Yes Yes Yes Yes (−) Yes (−) Supports PD SBGN, thus some reaction types
cannot be converted to SBGN-ML.

NaviCell [39] No No Yes No No No
Bi [40] No No Yes (−) No – – Imports SBML without layout. Positions in

export to SBML are stored in annotation tag
containing SBGN-ML of that network.
Positions of some complexes and reactions of
the PDM network in SBML-CD were not
recognized.
SBGN-ML support declared, but none of the
SBGN-ML files was recognized during import.
The export of loaded networks to SBGN-ML
resulted in ‘null’ error.

The minus denotes issues with given functionality in at least one of the tested networks; gray areas correspond to failures of the respective program.



Closing the gap 1257

Conversion module
Because the formats for storing layouts were developed largely
side by side, they share many concepts. In consequence, the
semantics of layout-aware languages are largely overlapping.
Therefore, it is possible to convert between the formats, often
without losing any information in the process. Transformation
between CellDesigner’s SBML extension and SBML with layout
and render packages is possible except for multiple layouts
(SBML only) and ability to encode graphical elements that are
not network elements (CellDesigner only). The situation is more
complicated when converting from SBML with layout and ren-
der and CellDesigner’s SBML extension to SBGN-ML, because in
SBGN-compliant diagrams elements from different SBGN sub-
languages cannot mix. However, in many situations complicated
systems are drawn into a single diagram, which then needs
to represent knowledge of varying detail. In some cases, the
available information about a process may be insufficient to
use the Process Description language, but it may be enough
to describe the process with the Activity Flow notation. The
solution is either to support Process Description diagrams only
and not to encode some of the processes or to mix incompatible
notation in one diagram.

Import and export capabilities of MINERVA

We addressed the issue of conversion between layout-aware for-
mats in a recently developed tool, which allows users to convert
between SBML with layout and render packages, CellDesigner
SBML and SBGN-ML Process Description diagrams. The tool is
implemented as a conversion module in the MINERVA platform
[16] and is accessible via publicly available REST API.

MINERVA is a web-based platform for hosting molecular
interaction networks providing their visualization, exploration,
automatic annotation of species, overlay of high-throughput or
genetic variation data or visualization of available structural
information [54]. In order to host various types of interaction net-
works, MINERVA imports and handles a wide range of formats.
Currently, the platform supports all three discussed notations:
SBML, CellDesigner SBML and SBGN-ML. To be able to handle
the specifics of individual formats, its internal data structures
capture a superset of available notations. MINERVA also supports
export of the whole networks or arbitrary subsets of them to
SBML, CellDesigner SBML and SGBN-ML Process Diagrams. In
the case of SBML, MINERVA fully supports the layout package.
The render package is used to encode all visual characteristics
of the network elements except shape, which is encoded using
the SBO term assigned to the elements and visualized using
the CellDesigner palette for species and reactions. Additionally,
MINERVA provides export of networks into SVG, PDF and PNG
graphical formats.

Conversion module interface

In MINERVA, the user primarily uses the GUI to interact with
the hosted networks and administer them. Therefore, to carry
out the conversion using the GUI, one needs to go through
a point-and-click-based conversion process. This is useful for
manual processing, but cumbersome if batch conversion was
required.

Since version 11, MINERVA supports access to the hosted
networks through a REST API [55]. To be able to programmatically
convert between MINERVA supported input and output formats,

we linked the import and export functionalities of MINERVA and
provided access to this implementation by extending the API
by new calls: (1) an API call to query which input and output
formats (systems biology or graphical) are currently available,
(2) an API call to convert between formats and (3) an API call
to export an input format to a graphical format. The conversion
API endpoints require to pass the input network in the body
of a request and returns the network in the specified output
format, which can be either a text format or binary format (e.g.
in case of PNG). Currently, (MINERVA version 12.1) the input
formats include SBML, CellDesigner SBML and SBGN-ML. The
output formats include SBML, CellDesigner SBML, SBGN-ML, PDF,
PNG and SVG. The architecture of the conversion module links
the API to all importers and exporters provided by the queried
MINERVA instance. Thus, when a new importer or exporter
becomes available in MINERVA, it will be automatically available
through the REST API keeping it in sync with the core MINERVA
functionality. The new API is fully described in the documenta-
tion [56], including example calls.

The conversion functionality available via a REST API is
immediately available, and when the platform itself is updated,
the conversion functionality will be updated as well. One
only needs access to a MINERVA instance which supports
this functionality. The API can then be accessed from any
programming language or simply from the command line using
the cURL tool (see examples in the documentation [56]).

Discussion
The existence of three closely related layout-aware formats for
exchanging molecular networks is the consequence of parallel
efforts and reflects the importance of layout. To address the
needs of the quickly evolving domain of systems biology for
visualization of complex diagrams, two of these formats are
refined by ongoing, community-based work, while CellDesigner
is an effect of a decade of work of the Systems Biology Institute
in Tokyo.

CellDesigner extension of SBML is a relatively broad format
that is able to represent most of the aspects of heterogeneous
molecular networks. Unlike SBML and its CellDesigner exten-
sion, SBGN-ML was not developed as an all-purpose molecular
exchange language, but rather as a layout-oriented language. As
the layout implicitly contains the structure of the underlying
network, SBGN-ML can be also used as a network exchange
format. However, it lacks many aspects of SBML such as sup-
port for encoding node duplication, annotations, kinetics or
rendering. For this reason, it is commonly used in repositories
to store only the layout information [8, 9], while the underlying
network is stored in other formats such as BioPAX or SBML.
This situation is problematic, because the situation, where the
layout and the content of a network are stored in separate files,
prevents existing tools that need both data sources from actually
using layouts. For example, to be able to model the flow of
metabolites in a network and to study the effects of various
perturbations of the system, one needs to use the SBML format
to access the reaction rates and parameters. Should the outcome
of the modeling be visualized on a diagram, one also needs
to access the layout information for the same network, stored
in an SBGN-ML file. This raises multiple issues, one of them
being the difficult-to-manage multiple files for a single network.
Moreover, in order to visualize results of the modeling, molecular
entities in the two network files need to be mapped onto each
other. Since the SBML and SBGN-ML files do not share common
identifiers, obtaining the mapping is highly prone to errors. This



1258 Hoksza et al.

issue is further complicated in case of handling of duplicates,
where one species in SBML can correspond to multiple species in
SBGN-ML. This obviously can discourage many developers from
implementing visualization of stored layout, even though such
visualization can be beneficial for interpretation of results and
ease of use of given software. One way around this issue could be
using the recently proposed COMBINE archive and OMEX format
[57]. A single OMEX file can store the network model together
with associated information, including the layout. Although the
OMEX format could simplify the situation with sharing multiple
files for a single network, the issue with mapping of modifiers
remains. Moreover, we are not aware of any major projects
currently supporting this format.

Simultaneous support for the three abovementioned layout-
aware formats is a challenging task. Among all of the available
tools discussed in this article, the management platforms are the
most well positioned to tackle this challenge, as they reflect the
meeting point between drawing the systems biology diagrams
and utilizing them for research. The MINERVA Platform, initially
developed to handle CellDesigner files, currently supports the
SBML layout, SBML render and SBGN Process Description, and
SBGN Activity Flow is foreseen in the upcoming versions. A thor-
ough comparison of the cross-conversion of the three formats
shows similarities between the concepts of network models for
complex biological processes. Harmonization and integration of
these efforts will greatly increase the utility and coverage of
all concerned repositories, including pathway databases, disease
maps and reconstruction databases.

We strongly believe that the adoption of SBML with its
new packages may be an answer to the current unsatisfactory
situation. Being a community-accepted standard, SBML with
the layout package encoding the positional information, the
render package supporting SBGN-compliant rendering (or any
other visual language specification, for that matter) and the
multi package supporting the long missing proper support for
complexes and species modification, has now the potential
to become the convergence point in the development of
standards for representation of systems biology diagrams. It
should be emphasized that rendering information can easily
be determined by visualization software from SBO terms
assigned to entities. A community-approved mapping of SBO
terms to SBGN notation of glyphs allows for SBGN-compliant
visualization without the need for direct support of the SBML
render package.

Conclusion
The current situation, when one format is used for encoding
the structure, dynamics and annotations of molecular network
and the other is used representing layout, is clearly unsatisfac-
tory. This is further complicated by the coexistence of multiple
layout-aware formats. We showed that the difference between
these formats is not substantial; however, the support for encod-
ing complex networks when varying level of understanding to
processes is still missing.

We believe that the recent development of SBML paves a way
toward a unification format, where SBML may be used as a nota-
tion to encode network structure, dynamics and layout, together
with SBGN as a standard to visually encode the appearance of
entities and their relationships. This is especially promising,
since tools supporting serialization to SBGN-ML could easily
implement serialization to the layout and render package aug-
mented SBML.

To at least partially address the current situation, we intro-
duced a conversion module for the MINERVA platform that
allows the user to transform different layout-aware formats.
Having conversion functionality available through the REST API
allows for easy batch processing. The API can also be used
to implement a preview of networks in any online resource
through its ability to export a network to a chosen graphical
format.

Key Points
• With increasing sizes of molecular networks, storing

layout information together with the underlying net-
work structure becomes a necessity.

• There exist three main layout-aware data formats: (i)
SBML with layout and render extensions, (ii) CellDe-
signer’s SBML extension and (iii) SBGN-ML.

• No single tool, management platform or library sup-
ports all three main data formats.

• A new conversion module within the MINERVA plat-
form was introduced providing the ability to convert
between layout-aware formats and to export layouts
into several graphical formats.

• Analysis of the formats shows that SBML with its exten-
sions can serve as a unification format to encode net-
work structure, dynamics and layout, together with the
appearance of entities and their relationships.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.

References
1. Kitano H. Systems biology: a brief overview. Science

2002;295:1662–4.
2. Mazein A, Ostaszewski M, Kuperstein I, et al. Systems

medicine disease maps: community-driven comprehensive
representation of disease mechanisms. NPJ Syst Biol Appl
2018;4:21.

3. Noronha A, Daníelsdóttir AD, Gawron P, et al. ReconMap: an
interactive visualization of human metabolism. Bioinformat-
ics 2017;33:605–7.

4. Ostaszewski M, Gebel S, Kuperstein I, et al. Community-
driven roadmap for integrated disease maps. Brief Bioinform
2018;1–12. https://academic.oup.com/bib/advance-article/
doi/10.1093/bib/bby024/4982567?searchresult=1.

5. Siebenhaller M, Nielsen SS, McGee F, et al. Human-like layout
algorithms for signalling hypergraphs: outlining require-
ments. Brief Bioinform 2018. https://academic.oup.com/bib/
advance-article/doi/10.1093/bib/bby099/5115270.

6. Hucka M, Finney A, Sauro HM, et al. The systems biol-
ogy markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics
2003;19(4):524–31.

7. Demir E, Cary MP, Paley S, et al. The BioPAX community stan-
dard for pathway data sharing. Nat Biotechnol 2010;28(9):935.

8. Fabregat A, Jupe S, Matthews L, et al. The Reactome Pathway
Knowledgebase. Nucleic Acids Res 2018;42(D1):D472–7.

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby024/4982567?searchresult=1
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby024/4982567?searchresult=1
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby099/5115270
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby099/5115270


Closing the gap 1259

9. Cerami EG, Gross BE, Demir E, et al. Pathway Commons, a
web resource for biological pathway data. Nucleic Acids Res
2011;39(Supp 1):D685–90.

10. Hucka M, Bergmann F, Hoops S, et al. The systems biology
markup language (SBML): language specification for level 3
version 1 core (release 1 candidate). Nat Preced 2010. http://
precedings.nature.com/documents/4123/version/1 .

11. Gauges R, Rost U, Sahle S, et al. The systems biology markup
language (SBML) level 3 package: layout, version 1 core. J
Integr Bioinform 2015;12(2):550–602.

12. Bergmann FT, Keating SM, Gauges R, et al. SBML level
3 package: render, version 1, release 1. J Integr Bioinform
2018;15(1) https://www.degruyter.com/view/j/jib.2018.15.
issue-1/jib-2017-0078/jib-2017-0078.xml

13. Le NN, Hucka M, Mi H, et al. The Systems Biology Graphical
Notation. Nat Biotechnol 2009;27(8):735–42.

14. Van Iersel MP, Villéger AC, Czauderna T, et al. Software sup-
port for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics
2012;28(15):2016–21.

15. Funahashi A, Morohashi M, Kitano H, et al. CellDesigner: a
process diagram editor for gene-regulatory and biochemical
networks. Biosilico 2003;1(5):159–62.

16. Gawron P, Ostaszewski M, Satagopam V, et al. MINERVA—a
platform for visualization and curation of molecular inter-
action networks. NPJ Syst Biol Appl 2016;2(1):1–6.

17. Courtot M, Juty N, Knüpfer C, et al. Controlled vocabularies
and semantics in systems biology. Mol Syst Biol 2011;7(1):
543

18. Purchase HC. Metrics for graph drawing aesthetics. J Vis Lang
Comput 2002;13(5):501–16.

19. Zhang F, Meier-Schellersheim M. Multistate, Multicomponent
and Multicompartment Species Package for SBML Level 3.
http://identifiers.org/combine.specifications/sbml.level-3.
version-1.multi.version-1.release-1 (31 May 2019, date last
accessed).

20. König M. SBGN ML_Extensions. https://github.com/sbgn/
sbgn/wiki/SBGN-ML_Extensions/d4ac2c9606bf4f81c2b26
edd874d434de23bd153 (31 May 2019, date last accessed).

21. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new per-
spectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res 2017;45(D1):D353–61.

22. van Iersel MP, Kelder T, Pico AR, et al. Presenting and explor-
ing biological pathways with PathVisio. BMC Bioinformatics
2008;9(1):399.

23. Kutmon M, Riutta A, Nunes N, et al. WikiPathways: capturing
the full diversity of pathway knowledge. Nucleic Acids Res
2016;44(D1):D488–94.

24. Ebrahim A, Lerman JA, Palsson BO, et al. COBRApy:
COnstraints-Based Reconstruction and Analysis for Python.
BMC Syst Biol 2013;7(1):74.

25. Olivier BG, Rohwer JM, Hofmeyr JHS. Modelling cellular sys-
tems with PySCeS. Bioinformatics 2005;21(4):560–1.

26. Hoops S, Gauges R, Lee C, et al. COPASI—a COmplex PAthway
SImulator. Bioinformatics 2006;22(24):3067–74.

27. Darzi Y, Letunic I, Bork P, et al. IPath3.0: interactive pathways
explorer v3. Nucleic Acids Res 2018;46(W1):W510–3.

28. Fujita KA, Ostaszewski M, Matsuoka Y, et al. Integrating
pathways of Parkinson’s disease in a molecular interaction
map. Mol Neurobiol 2014;49:88–102.

29. Olivier BG, Snoep JL. Web-based kinetic modelling using JWS
Online. Bioinformatics 2004;20(13):2143–4.

30. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software
environment for integrated models of biomolecular interac-
tion networks. Genome Res 2003;13:2498–504.

31. König M, Dräger A, Holzhütter HG. CySBML: a cytoscape
plugin for SBML. Bioinformatics 2012;28(18):2402–3.

32. Gonçalves E, Iersel MV, Saez-Rodriguez J. CySBGN: a
cytoscape plug-in to integrate SBGN maps. BMC Bioinformat-
ics 2013;14(1):17.

33. i-Vis Information Visualization Lab. Newt Pathway Viewer and
Editor. http://web.newteditor.org/ (31 October 2018, date last
accessed).

34. Wiese R. Krayon for SBGN. https://github.com/wiese42/
krayon4sbgn (16 April 2019, date last accessed).

35. Rohn H, Junker A, Hartmann A, et al. VANTED v2: a
framework for systems biology applications. BMC Syst Biol
2012;6(1):139.

36. Czauderna T, Klukas C, Schreiber F, et al. Editing, validating
and translating of SBGN maps. Bioinformatics 2011;27:2340–1.

37. yWorks. yED Graph Editor. https://www.yworks.com/
products/yed (31 October 2018, date last accessed).

38. SBGN community. ySBGN. https://github.com/sbgn/ySBGN (31
October 2018, date last accessed).

39. Kuperstein I, Cohen DPA, Pook S, et al. NaviCell: a web-based
environment for navigation, curation and maintenance
of large molecular interaction maps. BMC Syst Biol 2013;
7(1):100.

40. Kolpakov F, Puzanov M, Koshukov A. BioUML: visual model-
ing, automated code generation and simulation of biological
systems. In: Proceedings of the Fifth International Conference
on Bioinformatics of Genome Regulation and Structure. Russia:
Siberian Branch of the Russian Academy of Sciences, 2006.

41. King ZA, Lu J, Dräger A, et al. BiGG models: a platform for
integrating, standardizing and sharing genome-scale mod-
els. Nucleic Acids Res 2016;44(D1):D515–22.

42. Schellenberger J, Que R, Fleming RMT, et al. Quantitative pre-
diction of cellular metabolism with constraint-based mod-
els: the COBRA Toolbox v2.0. Nat Protoc 2011;6(9):1290.

43. King ZA, Dräger A, Ebrahim A, et al. Escher: a web
application for building, sharing, and embedding data-
rich visualizations of biological pathways. PLoS Comput Biol
2015;11(8):e1004321.

44. Bornstein BJ, Keating SM, Jouraku A, et al. LibSBML: an API
library for SBML. Bioinformatics 2008;24(6):880–1.

45. Rodriguez N, Thomas A, Watanabe L, et al. JSBML 1.0: pro-
viding a smorgasbord of options to encode systems biology
models. Bioinformatics 2015;31(20):3383–6.

46. Roy L. cd2sbgnml. https://github.com/royludo/cd2sbgnml
(29 October 2018, date last accessed).

47. SBML team. JSBML CellDesigner plugin. https://github.com/
sbmlteam/jsbml/tree/master/modules/celldesigner/ (4
March 2019, date last accessed).

48. Funahashi A. CellDesigner parser. https://github.com/
funasoul/celldesigner-parser (3 April 2019, date last
accessed).

49. Wrzodek C, Dräger A, Zell A. KEGGtranslator: visualizing and
converting the KEGG PATHWAY database to various formats.
Bioinformatics 2011;27(16):2314–5.

50. Czauderna T, Wybrow M, Marriott K, et al. Conversion of
KEGG metabolic pathways to SBGN maps including auto-
matic layout. BMC Bioinformatics 2013;14(1):250.

51. Wrzodek C, Büchel F, Ruff M, et al. Precise generation of
systems biology models from KEGG pathways. BMC Syst Biol
2013;7(1):15.

52. Rodriguez N, Pettit J-B, Dalle Pezze P, et al. The systems
biology format converter. BMC Bioinformatics 2016;17(1):154.

53. Bergman FT. SBML Layout Viewer. http://sysbioapps.dyndns.
org/Layout (16 November 2018, date last accessed).

http://precedings.nature.com/documents/4123/version/1
http://precedings.nature.com/documents/4123/version/1
https://www.degruyter.com/view/j/jib.2018.15.issue-1/jib-2017-0078/jib-2017-0078.xml
https://www.degruyter.com/view/j/jib.2018.15.issue-1/jib-2017-0078/jib-2017-0078.xml
http://identifiers.org/combine.specifications/sbml.level-3.version-1.multi.version-1.release-1
http://identifiers.org/combine.specifications/sbml.level-3.version-1.multi.version-1.release-1
https://github.com/sbgn/sbgn/wiki/SBGN-ML_Extensions/d4ac2c9606bf4f81c2b26edd874d434de23bd153
https://github.com/sbgn/sbgn/wiki/SBGN-ML_Extensions/d4ac2c9606bf4f81c2b26edd874d434de23bd153
https://github.com/sbgn/sbgn/wiki/SBGN-ML_Extensions/d4ac2c9606bf4f81c2b26edd874d434de23bd153
http://web.newteditor.org/
https://github.com/wiese42/krayon4sbgn
https://github.com/wiese42/krayon4sbgn
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
https://github.com/sbgn/ySBGN
https://github.com/royludo/cd2sbgnml
https://github.com/sbmlteam/jsbml/tree/master/modules/celldesigner/
https://github.com/sbmlteam/jsbml/tree/master/modules/celldesigner/
https://github.com/funasoul/celldesigner-parser
https://github.com/funasoul/celldesigner-parser
http://sysbioapps.dyndns.org/Layout
http://sysbioapps.dyndns.org/Layout


1260 Hoksza et al.

54. Hoksza D, Gawron P, Ostaszewski M, et al. MolArt: a molecu-
lar structure annotation and visualization tool. Bioinformatics
2018;34(23):4127–8.

55. MINERVA team. MINERVA API documentation. https://
minerva.pages.uni.lu/doc/api/12.2/index/ (16 January 2019,
date last accessed).

56. MINERVA team. MINERVA conversion API documentation.
https://minerva.pages.uni.lu/doc/api/12.2/converter/ (16
January 2019, date last accessed).

57. Bergmann FT, Adams R, Moodie S, et al. COMBINE archive
and OMEX format: one file to share all information to repro-
duce a modeling project. BMC Bioinformatics 2014;15(1):369.

https://minerva.pages.uni.lu/doc/api/12.2/index/
https://minerva.pages.uni.lu/doc/api/12.2/index/
https://minerva.pages.uni.lu/doc/api/12.2/converter/

	Closing the gap between formats for storing layout information in systems biology
	Introduction
	Encoding systems biology layouts
	Data formats
	SBML
	CellDesigner's SBML extension
	SBGN-ML
	Other layout-supporting formats
	Support of layout in existing tools and repositories

	Conversion module
	Import and export capabilities of MINERVA
	Conversion module interface

	Discussion
	Conclusion
	Key Points

	Supplementary Data


