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Stereo-electroencephalography (sEEG) is a method that uses stereotactically implanted
depth electrodes for extra-operative mapping of epileptogenic and functional networks.
sEEG derived functional mapping is achieved using electrical cortical stimulations (ECS)
that are currently the gold standard for delineating eloquent cortex. As this stands
true especially for primary cortices (e.g., visual, sensitive, motor, etc.), ECS applied to
higher order brain areas determine more subtle behavioral responses. While anterior and
posterior language areas in the dorsal language stream seem to share characteristics
with primary cortices, basal temporal language area (BTLA) in the ventral temporal
cortex (VTC) behaves as a highly associative cortex. After a short introduction and
considerations about methodological aspects of ECS using sEEG, we review the sEEG
language mapping literature in this perspective. We first establish the validity of this
technique to map indispensable language cortices in the dorsal language stream.
Second, we highlight the contrast between the growing empirical ECS experience
and the lack of understanding regarding the fundamental mechanisms underlying ECS
behavioral effects, especially concerning the dispensable language cortex in the VTC.
Evidences for considering network architecture as determinant for ECS behavioral
response complexities are discussed. Further, we address the importance of designing
new research in network organization of language as this could enhance ECS ability
to map interindividual variability, pathology driven reorganization, and ultimately identify
network resilience markers in order to better predict post-operative language deficit.
Finally, based on a whole body of available studies, we believe there is strong evidence
to consider sEEG as a valid, safe and reliable method for defining eloquent language
cortices although there have been no proper comparisons between surgical resections
with or without extra-operative or intra-operative language mapping.

Keywords: language, stereo-electroencephalography, basal temporal language area, functional mapping, cortical
electrical stimulation, naming, epilepsy

Abbreviations: AD, After Discharges; ALA, Anterior Language Area; BTLA, Basal temporal language area; ECoG,
Electrocorticography; ECS, Electrical Cortical Stimulations; ESM, Electrical Stimulation Mapping; HFA, High Frequency
Activity; PLA, Posterior Language Area; sEEG, stereo-Electroencephalography; VTC, Ventral Temporal Cortex.
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INTRODUCTION

Cognitive mapping of the cerebral cortex using electrical
cortical stimulation (ESC) is a safe, readily available technique
that has largely contributed to current practice in functional
neurosurgery. However, it has remained one of the most complex
endeavor for functional neurosurgery, especially epilepsy surgery.
There is indeed an important gap between the growing empirical
experience and the lack of fundamental evidences regarding
the mechanisms underlying behavioral effects of electrical
cortical stimulation (Borchers et al., 2012). Moreover, its ability
to reliably map brain function and predict post-operative
outcome is debated when it comes to cortical regions beyond
primary cortices.

We chose to review language mapping with sEEG in a way that
parallels this debate. We will first address methodological aspects
of ECS using sEEG. In the next two sections, we will review and
discuss separately the findings of ECS in what Penfield called
indispensable and dispensable eloquent cortices (Penfield, 1954).
In indispensable language eloquent cortices discussed in the
second section, we will mainly address the issue of reliability of
ECS for mapping brain areas considering individual variability or
pathology driven reorganization. In the last section, focusing on
the dispensable language eloquent cortices in the ventro-temporal
cortex, we will mainly address the pertinence of ECS for mapping
language considered as a complex function within distributed
dynamic systems organized in spatially segregated modules.

METHODOLOGICAL ASPECTS OF
ELECTRICAL CORTICAL STIMULATION
USING sEEG

Historical Considerations of ECS
The technique of applying direct electrical stimulation to the
human brain has been intimately linked to the development
of functional neurosurgery and also to concepts regarding
cerebral organization and function. The first ECS of the
mammalian cortex performed by Fritsch and Hitzig (1870)
provided experimental evidences for a functional segregation of
the brain as opposed to the first half of the nineteenth century
conception of the brain functioning as a “single unit” (Flourens,
1824). The use of alternating current for ECS in animals by
Ferrier (1873) definitely provided reproducible experimental
evidence of brain stimulation effects, heralding the functional
localization era.

Macewen and Horsley were the first to integrate ECS in
their neurosurgical practice in order to map brain functions.
They performed in 1886 intraoperative cortical stimulations in a
patient presenting seizures starting from the face with no obvious
underlying brain lesion and used their ECS localization findings
to plan the resection, setting the theoretical and empirical
base for functional epilepsy surgery relying on anatomo-clinical
correlations (Horsley, 1887; Horsley and Schafer, 1888). These
conceptual and technical advances strongly supported Jackson
clinical observations on epilepsy and his concept of focal seizures

as resulting from a “discharging lesion of the brain” that
starts locally and is able to “spread” to the adjacent cortex
(Jackson, 1863). Nevertheless, it took almost half a century
until Krause and also Foerster, thanks to the progress in
anesthesiology, described the epileptogenic or “excitable” cortex
and proposed a wider cerebral functional mapping by correlating
behavioral effect of ECS with post-operative deficits (Foerster,
1931, 1936). Further progress and the dawn of modern epilepsy
came with the discovery of EEG (Berger, 1929), technique
that was rapidly integrated by Foerster who also reported the
first series of intraoperative cortical EEG recordings (Foerster
and Altenburger, 1935). Wilder Penfield, a student of Foerster,
who used intraoperative ECS and electrocorticography (ECoG),
compiled the most comprehensive and influential studies of brain
functional mapping, setting the frame for nowadays methodology
for extra and intraoperative cortical stimulations (Penfield and
Rasmussen, 1950). He also was the first to report and extensively
use ECoG to extra-operatively record and map the human cortex
as modern technological advances allowed transition from the
“peg” epidural electrodes (Penfield, 1954). Further reports on the
safety and efficacy of ECoG have led to its increasing worldwide
use that is still on-going (Ojemann, 1983; Wyler et al., 1984;
Schaffler et al., 1994; Hermann et al., 1999; Tandon et al., 2019).

Stereo-electroencephalography developed by Talairach and
Bancaud emerged as a completely new technique and method
with a new philosophy in the mid-1960s in France (Talairach
et al., 1962). It allowed extra operative recordings of interictal
and more importantly, ictal discharges. Bancaud and Talairach
proposed the new concept of epileptogenic zone derived from
these recordings and also from electrical cortical stimulation.
Since then, ECS during sEEG have been used to both elicit
habitual seizures and map brain functions.

The main advantages of sEEG are the ability to target
deep structures, and sulci. The targets are chosen according
to prior individualized anatomo-electro-clinical hypothesis
established on non-invasive work-up (Chauvel and McGonigal,
2014). It further allows bilateral implantation and has low
complication rates (Mullin et al., 2016). This method relies on
a 3D representation of the epileptogenic zone (EZ) (Kahane
et al., 2006), later conceptualized as an epileptogenic network
(Bartolomei et al., 2017). The relevance of sEEG for language
mapping using ECS has been questioned by some users of ECS
with subdural grids (Young et al., 2018). These authors have
argued that in contrast to sEEG, subdural grids or strips of
circular electrodes placed at the surface of the brain, offered
a wider and denser spatial coverage of the cortical surface
in a given anatomical area. It is important to keep in mind
that sEEG has never aimed at providing a uniform and dense
spatial coverage of the brain convexity since it relies on an
intra-cortical sampling of distributed regions of interest carefully
selected on anatomo-electro-clinical correlations as part of the
presumed epileptogenic and propagation networks. The resulting
individualized strategy of electrodes implantation not only allows
delineating the epileptogenic network but also mapping eloquent
cortex (Li et al., 2020). There have been in the past decade
a growing interest in sEEG because it allows accessing deep
structures such as insula or hippocampus (Salado et al., 2018) and
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has a lower complication rates than subdural grids (Tandon et al.,
2019; George et al., 2020).

Technical Consideration of Electrical
Stimulation Mapping (ESM)
Electrical stimulation mapping can be performed using probe
electrodes intra-operatively or extra-operatively using subdural
grids and sEEG. Intraoperative setting offers more flexibility in
choosing stimulation sites (although limited by the bone window)
but is limited by poor testing conditions (short time and limited
patient cooperation). Extra operative setting provides fixed pre-
established electrode location but better patient cooperation and
more extended time or repeated sessions. ECoG uses grids or
strips of circular electrodes placed at the surface of the brain with
a diameter of 2.4 mm and distanced of 10 mm. sEEG uses deep
electrodes inserted in the brain of 0.8–0.86 mm diameter with
contacts (5–18 depending of the electrode length) of 2–2.29 mm
and distanced of 1.5–10 mm (DIXIT R©, ADTech R©).

French guidelines on stereo electroencephalography
recommend applying ECS between two contiguous contacts
of the same electrode using bipolar and biphasic square wave
current (Isnard et al., 2018). Two types of stimulations protocols
have been recommended:

(1) High frequency, 50 Hz, phase duration of 0.5–1 ms,
intensity of 0.5–5 mA and stimulation duration of 3–8 s best
suited for functional mapping outside the primary cortices.

(2) Low frequency, 1 Hz, phase duration of 0.5–3 ms, intensity
of 0.5–4 mA and stimulation duration of 20–60 s best suited
for functional mapping of the primary cortices because of
the risk of triggering generalized tonic-clonic seizures.

For language mapping, considering the intensity of
stimulation, a French team used the above parameters with
intensities varying from 0.5 to 2.5 mA (phase duration: 1000 µs)
with effects increasing with stimulation intensity. To prevent
false negative stimulation the authors concluded that intensities
up to at least 1.5 mA were required (Trébuchon and Chauvel,
2016). Other sEEG studies reported comparable parameters
(Bédos Ulvin et al., 2017; Arya et al., 2019) applied ECS with
intensities up to 8 mA (phase duration: 300 µs) or until the
occurrence of behavioral effects, after discharge (AD) or seizure.
Higher intensities, up to 10 mA were reported for ECS in anterior
language area (ALA) but were also coupled with narrower phase
width of 0.3 ms (Alonso et al., 2016). Compared to subdural
grids, sEEG stimulation parameters were found to be slightly
different. Globally a larger pulse duration is used in sEEG
(0.5–1 ms for high frequency ECS protocol and 0.5–3 ms for
low frequency ECS protocol) compared to grids (0.30 ms) while
stimulation intensity is generally lower in sEEG (1–5 mA) than in
grids (1–10 mA). However, density charge remains comparable
(see section below) (Donos et al., 2016).

Considering the frequency of stimulation, the low frequency
protocol tends to lack sensitivity for language mapping
(Cuisenier et al., 2020).

Considering delivered density charge, this parameter takes
into consideration safety issues to avoid possible tissue injury.

For both the subdural grids and sEEG electrodes a charge
density less than 50 µC/cm2 is considered safe. Usual ECS
protocols deliver a charge density much lower than this threshold
that would require intensities around 8 mA for continuous
stimulation up to 50 Hz to be reached (Ritaccio et al., 2018).
It is interesting to note that the magnitude of the responses
to single-pulse electrical stimulation depends of the charge per
phase parameter as amplitude or phase duration can vary in both
ways simultaneously (Donos et al., 2016).

Procedural Considerations for Electrical
Stimulation Mapping of Language
The general principles of ESM imply a behavioral (positive or
negative) response defining the eloquent cortex corresponding
anatomically to the stimulated sites. Electrical stimulation
is thought to disrupt a particular function at a particular
site (Hamberger, 2007). For language, using proper
neuropsychological tasks during stimulation is of paramount
importance because high order cortex is generally “silent” if not
simultaneously tested. Failing to do so results in false negative
conclusions and erroneous mapping (Trébuchon et al., 2020).
Language ESM studies have converged toward the segregation
of three main functional regions coined anterior language
area, posterior language area and basal temporal language area
(Schaffler et al., 1996; Trébuchon and Chauvel, 2016).

Considering functional organization of language, basic tasks
such as automatic speech (counting, reciting the alphabet)
have been used during ECS. The drawback of those basic
language tasks is their low sensitivity as they fail to unveil
about 2/3 of language sites detected with more oriented tasks
(Schwartz et al., 1999). Most of the epilepsy centers use in
their clinical practice higher level tasks such as visual naming,
auditory description naming, reading, comprehension or verb
generation. For a comprehensive review see Hamberger (2007).
The advantage of these tasks is, beside their sensitivity, the ability
to disentangle different specific language processes and to better
address functional specificity of language sites. Of particular
interest is visual naming because it is easy to use, disturbed in
most forms of aphasia and therefore considered sensitive for
language ESM (Ojemann, 1983; Corina et al., 2010). Emerging
evidences emphasize auditory confrontation naming especially
in mapping basal temporal and lateral temporal language regions
(Hamberger et al., 2003).

There is currently no consensus on a unified clinical language
testing protocol. It is generally admitted that multiple language
tasks specifically oriented to the targeted language site should
be used (Wellmer et al., 2009). Specifically for sEEG ESM, most
of the centers use visual naming and consider this task relevant
for all language areas (Trébuchon and Chauvel, 2016; Arya
et al., 2019) specifically analyzed the effect of task according
to stimulated regions. Results indicate that naming and reading
are the most sensitive tasks for the majority of studied regions.
Naming seems more sensitive for the ALA (generally assigned
to the posterior part of the inferior frontal gyrus corresponding
cyto-architectonically to Broadman areas BA44 and BA45 –
as discussed in the following sections), middle and posterior
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VTC and lateral temporal cortex. Automatic speech was the
least sensitive task although one team successfully managed to
find ALA in all patients using a speech arrest task (Alonso
et al., 2016). Visual naming coupled with a control semantic
matching task was used in Bédos Ulvin et al. (2017) for the
basal temporal language area (BTLA – located generally from
2 to 9 cm from the temporal pole in the VTC and whose ECS
evoke language disturbances – as discussed in the following
sections). These authors reported a clear-cut dissociation
between these two tasks with a preserved performance at the
control semantic matching task at the sites whose stimulation
evoked anomia or paraphasia. They also reported right and
left positive sites (whose ECS determine naming impairment)
across patients but strictly unilateral at the individual level,
suggesting that the BTLA was strongly lateralized, and could
be a marker of hemispheric dominance. Passive Mapping based
on intracranial recordings during linguistic tasks have also been
widely used to map human language regions (Martin et al.,
2019). Complex and specific linguistic tasks are designed in
cognitive research protocols using sEEG (Lochy et al., 2018) in
order to consider multiple steps underlying reading processes
or multiple modalities, e.g., auditory, visual as well as other
complex cerebral function as memory (Llorens et al., 2011;
Cuisenier et al., 2020). Intracranial studies have been used
to map the auditory and visual language networks at the
whole-brain level (e.g., Nakai et al., 2017). Particularly, the
auditory naming task was suggested to recruit the left frontal
region more extensively than picture naming (Nakai et al.,
2019).

Seizures (Bank et al., 2014) or sustained electrical after
discharges (AD) evoked during ESM (or appearing a few seconds
after) can be observed. AD presence is proportional to the charge
density of the stimulation (Donos et al., 2016) and its functional
signification has remained elusive (Blume et al., 2004). It appears
that both intra and inter patient high variability exists across
different brain region regarding the threshold for AD but none
of the analyzed patient characteristics predicted its occurrence
(Corley et al., 2017). Interestingly, the behavioral threshold was
below the AD threshold in gray matter but not white matter
in a recent sEEG study (Arya et al., 2019). Findings might also
depend on the orientation and location of stimulated sites. In
this matter, sEEG differs dramatically from subdural grids as
sEEG contacts are intra-cortical and have a variable orientation
in relation to cortical layers as opposed to subdural grids where
contacts are parallel to the cortical surface. Using pre-medication
with phenytoin before ECS language mapping was found to
decrease the cortical excitability threshold and ECS induced
seizure but not affecting the temporal language threshold (Arya
et al., 2018). This pharmacological approach is generally not used
in adults. Overall, it is believed that language disturbance in the
presence of AD results from a wider effect of stimulation. In
this line, assessing AD threshold is useful because it would allow
inferring a more local and specific effect of ECS when language
disturbance is obtained below this threshold. In the absence of
language disturbance, it is recommended to increase intensity
of ECS up to the AD threshold in order to maximize sensitivity
(Trébuchon and Chauvel, 2016).

Electrical stimulation mapping using SEEG is considered to
be safe in children as demonstrated by Taussig et al. (2014) and
by an Italian team in very young children (Cossu et al., 2012).
Specific elements as the early impact of epilepsy on language
and myelination should be considered. Developmental lesion
and early onset seizures are thought to not displace language
cortex from prenatally determined sites but acquired lesions
before the age of 5 may relocate language areas to the opposite
hemisphere (Duchowny et al., 1996). Stimulation parameters
should be adapted as a subdural electrodes study showed that
with age, current thresholds decrease and the probability for AD
or seizure occurrence increases (Aungaroon et al., 2017). Similar
results were found using sEEG. In contrast to subdural electrodes,
mean behavioral thresholds were below mean AD thresholds.
This may be explained by the more focal stimulation in SEEG,
limited to cortical layer (Arya et al., 2019). In one subdural grids
study, phenytoin was used in order to decrease the incidence
of iatrogenic seizures in children (Arya et al., 2018). “Ecologic”
language tasks (language production as counting, reading a book
aloud or spontaneously generating speech) were used by a team
while performing language mapping with sEEG. Speech arrest
were found on eight out of 184 depth electrode contacts in three
patients using stimulation intensities between 2 and 5 mA while
6 mA (phase duration of 0.3 ms) was the maximum stimulation
for the negative contacts (de Ribaupierre et al., 2012).

MAPPING INDISPENSABLE ELOQUENT
LANGUAGE CORTEX USING sEEG

Electrical cortical stimulation was the first technique to
provide experimental proof for the concept of functional
brain localization (Fritsch and Hitzig, 1870). Reproducible
behavioral responses during ECS under strict methodological
conditions allow delineating the eloquent cortex for a specific
function. Observing strong correlations with postoperative
outcome after resections of such eloquent areas, Penfield further
differentiated indispensable eloquent cortex (whose resection
would be associated with permanent and significant deficit)
from dispensable eloquent cortex (whose resection would lead
mostly to minimal and/or reversible functional deficit) (Penfield,
1954). In this section we will address the following question:
are ECS induced deficits able to predict a severe and permanent
postoperative deficit? This correlation was clearly established in
the primary motor cortex (Laplane et al., 1977) where the ECS
induced deficit closely correlated with the post-operative deficit,
respecting the somatotopy of the central sulcus. But does it hold
true for language mapping and where?

Anterior language area is generally assigned to the
posterior part of the inferior frontal gyrus corresponding
cyto-architectonically to Broadman areas BA44 and BA45, with
some authors suggesting a larger representation including areas
47 and 46 (Ardila et al., 2016) as represented in Figure 1A.
Anterior eloquent language cortex (corresponding to the ECS
definition) was extensively studied in 117 patients by Ojemann
using intra-operative ECS (Ojemann et al., 1989) and found
to be usually organized in patches limited to one or two
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FIGURE 1 | Cortical projections of human language areas. Hatched areas for projections common to all publications, colored areas for extended and debated limits
(see text for details). (A) Lateral view, ALA, anterior language area (blue, hatched areas: pars opercularis, pars triangularis of the frontal operculum; colored areas:
pars orbitalis of the frontal operculum), PLA, posterior language area (green hatched areas: posterior part of the superior temporal gyrus, angular gyrus, colored
areas: posterior part of the middle temporal gyrus including the inferior temporal sulcus, supra-marginal gyrus, part of the angular gyrus), BTLA, basal temporal
language area (red). (B) Ventral view, BTLA (red hatched area). PHG, parahippocampal gyrus; FG, fusiform gyrus; ITG, inferior temporal gyrus; OTS,
occipito-temporal sulcus (orange).

centimeters-square with clear cut borders most of the times
in the close anterior vicinity of the ventral premotor cortex.
Although intra-operative setting allowed the neurosurgeon to
“freely” apply bipolar ECS to exposed sites, ECS did not allow
localizing eloquent frontal cortex in 21% of patients. In another
extensive study using extra-operative ECoG in 45 patients
(Schaffler et al., 1996), the authors found anterior eloquent
language cortex within the same cortical region but with less
inter-individual variation. The authors failed to find anterior
eloquent cortex in 30% of the patients. Discrepancies could be
explained by the technical differences between extra-operative
(fixed electrodes) and intra-operative settings. Despite the facts
that ECS were able to map discrete location of the anterior
eloquent language cortex that were predictable based on cortical
anatomy (Quiñones-Hinojosa et al., 2003), for other authors, the
discrete and variable localizations between individuals reflected
the lack of reliability of anatomical landmarks alone to localize
ALA (Ojemann et al., 1989; Pouratian and Bookheimer, 2010).
Indeed, anatomical landmarks can vary largely across normal
individuals (Ebeling et al., 1989) and brain pathology can further
alter the ability to anatomically localize specific language regions
(Skirboll et al., 1996), stressing the importance of an individual
assessment of the ALA by ECS.

Posterior language area (PLA) resides in the posterior part
of the superior and middle temporal gyrus, angular gyrus, and
supramarginal gyrus (Penfield and Rasmussen, 1950; Ojemann,
1991; Ardila et al., 2016) as represented in Figure 1A. It was
extensively studied with intra-operative (Ojemann, 1991) and
extra-operative ECS (Schaffler et al., 1996). Both studies found
discrete and limited regions whose stimulation interfered with
language as in the case of anterior eloquent language cortex.
Ojemann (1979) emphasized that “The Wernicke language area

of the classical model is clearly an artifact of combining the
locations of these essential areas in different patients, for rarely
if ever are essential language areas covering the entire classical
Wernicke area found in an individual patient.” In the same
perspective other authors found language sites at an average on
three adjacent cortical electrodes although with a range or 1–7
(1.9 for ALA) (Schaffler et al., 1996).

Few studies have correlated the ECS functional mapping
findings (eloquent language cortex) with post-operative language
outcome in order to infer indispensable language cortex.
However, in an elegantly designed study on low grade glioma
awake surgery, Ius et al. (2011) proposed the concept of
“minimal common brain.” Using intra-operative ECS functional
mapping, they observed that the anterior language area can
be largely and safely resected provided that a small portion
of cortex located anterior to the left ventral premotor cortex
and contiguous to subcortical language tracts was spared.
The same observation holds true for the angular gyrus
and posterior part of the superior temporal gyrus for the
indispensable eloquent posterior language area. It is generally
admitted that a resection limit of 1 cm from a language
site determined by ECS must be observed in order to not
produce permanent and important deficit (Ojemann, 1979).
Moreover, authors reported total resection of the classical
anterior language cortex in glioma surgery if no language
impairment were demonstrated with intra-operatory ECS
mapping (Benzagmout et al., 2007). Considering the ECS ability
to predict indispensable eloquent language cortex (ALA or PLA),
to our knowledge, no study reported ECS functional language
false negative responses with permanent massive language deficit
observed after correct ECS mapping. Finally, authors have
confirmed the resectability of sites with inconsistent language
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TABLE 1 | Reviewed studies reporting language mapping using electrical cortical stimulations applied with depth electrodes (sEEG).

Study Nb. of subj. Mean age at sEEG Stimulation parameters Main findings of the study

Abdallah et al., 2021 29 37 50 Hz, 5–10 s, 0.5–2 mA, 0.5 ms BTLA resection identified by sEEG
ECS predicts early naming decline
in temporal lobe epilepsy

Cuisenier et al., 2020 42 NR 50 Hz, 5 s, 0.2–3 mA, 1–3 ms ECS appears more appropriate for
temporal lobe language mapping
than induced HFA during sEEG

Ervin et al., 2020 21 4.8–21.2 50 Hz, NR, 1–8 mA, NR High-gamma modulation language
mapping with sEEG can accurately
localized neuroanatomic and ECS
delineated language sites

Perrone-Bertolotti et al., 2020 29 NR (adult) 50 Hz, 5 s, 1–3 mA, 1–3 ms High frequency activity induced
during ECS maps functional
language networks during sEEG

Arya et al., 2019 10 5.4–21.2 50 Hz, 5 s, 1–8 mA, 0.3 ms Language mapping with sEEG is a
valid technique compared to a fMRI
standard reference.

Young et al., 2018 10 NR (Adults) 50 Hz, NR, 2–10 mA, 0.5 ms Language mapping using sEEG
may be considered as a clinically
useful alternative to language
mapping with ECoG

Mălîia et al., 2018 31 33 50 Hz, 5 s, 1–3 mA, 1 ms Description of the effective
connectivity of the human
operculum using cortico-cortical
evoked potential for functional
mapping

Bédos Ulvin et al., 2017 23 33 50 Hz, 5–10 s, 0.5–2 mA, 0.5 ms ECS language mapping in the VTC
showed bilateral with left more than
right naming impairments especially
in the occipito-temporal sulcus

Alonso et al., 2016 4 NR, (Pediatric) 50 Hz, 5 s, 1–10 mA, 0.3 ms sEEG is a feasible method to
lateralize speech dominance
making Wada test unnecessary in
bilateral electrode implantations

Trébuchon and Chauvel, 2016 68 NR 50 Hz, 3–5 s, 0.2–2.5 mA, 1 ms ECS during sEEG is a reliable
method for Seizure Induction and
Functional Mapping in epilepsy

Balestrini et al., 2015 172 25.6 50 Hz, 5 s, NR, 1 ms Overview of neurophysiology of
parietal region assessed using ECS
during sEEG

Taussig et al., 2014 65 39/127 m NR sEEG in children is a safe and
useful method with surgical
outcome in younger children at
least as good as in older children.

Cossu et al., 2012 15 34 m NR sEEG has a prominent role in the
presurgical evaluation of focal
epilepsies in children also in the first
years of life

de Ribaupierre et al., 2012 8 11.2 50 Hz, 3–5 s, 1–10 mA, 0.3 ms Prior fMRI was found useful for the
planning of ECS language mapping
in children in order to increase its
sensitivity

Afif et al., 2010 25 29.3 50 Hz, 5 s, 0.2–3 mA, 1 ms The middle short gyrus of insula
was found to be involved in speech
production using ECS during sEEG

Fonseca et al., 2009 1 25 NR, NR, 0.5–2.5 mA, NR Using ECS of the VTC during sEEG
BTLA was found to be a multimodal
region involved in lexico-semantic
processing

Age at sEEG in years (if not otherwise specified) or months (m). Stimulation parameters (all biphasic) stated in order: frequency, total length, intensity, phase length.
NR, not reported.
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disturbances evoked by ECS functional mapping (Ojemann,
1979; Gil Robles et al., 2008).

Stereo-electroencephalography is routinely used in epilepsy
surgery to map eloquent cortex (Isnard et al., 2018). However, few
sEEG studies specifically reported mapping eloquent language
cortex (see Table 1 for details). In a recent study, Trébuchon
and Chauvel (2016) reported findings from ECS for functional
language mapping in 68 patients and found task specific positive
sites in the classical ALA (naming difficulties followed by reading
difficulties but less automatic speech impairments) and PLA
(naming difficulties and reading aloud difficulties with less
repetition impairment). However, no correlation was performed
with post-operative outcome according to the resection status
of these eloquent sites. Perrone-Bertolotti et al. (2020) similarly
reported in 29 patients bilateral, left predominant, widespread
positive language sites in the frontal, temporal and parietal lobes
using a naming task. No correlation was performed with post-
operative outcome. Cuisenier in a recent study found language
functional sites using sEEG in both hemispheres with at least
three patients having bilateral representation of language in
fMRI. Regarding the left hemisphere, more than half language
sites were found in the temporal lobe, a fifth in the frontal
lobe and 5% in the parietal lobe. No correlation was done with
the expected anatomical boundary of classical language areas
(Cuisenier et al., 2020). Mălîia et al. (2018) reported on the
opercular functional responses after ECS mapping using sEEG.
Bilateral positive language sites (whose stimulation resulted in
speech arrest) were found in the frontal operculum with a larger
volume distribution of about 1.1 cm3 in the left hemisphere.
Expressive type of aphasia was reported in 90% of the responses
while a mixed type of aphasia was reported in the remaining cases
using a naming task. Same authors found language functional
responses in the posterior part of the temporal operculum only
in the left hemisphere in 11% of the stimulated contacts. The
resulting deficit was expressive aphasia in two thirds of cases.
They found only one site whose ECS elicited expressive language
deficit in the parietal operculum. After a comprehensive parietal
lobe exploration using more than a thousand ECS delivered
at low frequency via sEEG electrodes, Balestrini obtained only
two speech arrests in the dominant inferior parietal lobule
(Balestrini et al., 2015). In a previous sEEG study, using bilateral
symmetric implantation in four patients, Alonso et al. correctly
lateralized ALA using ECS. They obtained speech arrest after
strictly unilateral posterior inferior frontal gyrus ECS during
a naming task thus validating the ability of the ECS language
mapping to correctly lateralize language (Alonso et al., 2016).
Young et al. (2018) compared ECS language mapping with
sEEG and subdural grids in two different groups of patients and
found similar results. Authors concluded that sEEG was safe,
slightly better tolerated and provided similar information for
ECS language mapping as ECoG. Arya et al. (2019) prospectively
compared sEEG ECS language mapping to a reference standard
of meta-analytic fMRI in 10 patients. ECS language positive sites
did not perfectly match with the ALA and PLA as identified by
fMRI at the group level. It is important to observe that the two
populations were different. This study suggested that findings
derived from ECS may diverge from findings derived from fMRI.

There are very few reported cases of false positive sites identified
by ECS: (Gil Robles et al., 2008) reported a single case of sEEG
ECS positive language site in the posterior part of the superior
temporal gyrus in a case of ganglioglioma epilepsy that was not
reproduced with intra-operative ECS and could be completely
resected without post-operative deficit. It is important to note
that in this single case, language disturbance evoked by ECS in
this site was “inconsistent” according to the authors.

An alternative language mapping approach with intracranial
recordings consist of using High Frequency Activity (HFA)
evoked by language task such as visual or auditory naming.
An early ECoG study showed that auditory-language-related
gamma-increase could provide additional information useful to
localize the indispensable language areas (Kojima et al., 2013).
In the same perspective a recent sEEG study compared ECS and
induced HFA for language mapping. Authors observed that the
induced HFA methods as compared to the reference methods of
ECS had a high specificity but a very low sensitivity (8.9%). When
considering whole brain recordings sites, induced HFA had a
high negative predictive value but this did not hold true when
focusing on the anatomical regions of interest classically involved
in language which led the authors to state that ECS was more
appropriate for extensive temporal mapping than induced HFA
(Cuisenier et al., 2020). Similar results were obtained by Ervin
et al. (2020) using sEEG by comparing ECS and high gamma
induced activity during a visual naming task.

Considering the assessment of the anterior and the posterior
eloquent language cortex in epilepsy surgery, we believe that
sEEG is a safe and useful technique for functional mapping.
Depending on the proximity of the presumed epileptogenic zone
and in order to assess eloquent cortex involvement, specific
electrodes trajectories may be necessary, taking into account both
electro-clinical hypothesis regarding the presumed EZ and also
the presumed cortical locations of indispensable brain language
areas (see discussion above), especially the pars opercularis in
the inferior frontal gyrus for the ALA and the posterior part
of the superior temporal gyrus and the angular gyrus for the
PLA. As mentioned in the previous section, an important aspect
is to carefully set the stimulation parameters in order to avoid
false negatives. Delivering a proper stimulation intensity is of
paramount importance as well as AD monitoring throughout
the stimulation. Likewise, using multiple appropriate language
tasks such as visual naming, reading, completed with auditory
confrontation naming and a more specific semantic task (such
as semantic matching for example) is crucial in our opinion.

In line with other authors (Gil Robles et al., 2008; Arya et al.,
2019), our opinion is that sEEG has a good negative predictive
value in mapping anterior and posterior eloquent language cortex
provided that relevant electrode trajectories, relevant stimulation
parameters and tasks have been used. However, when eloquent
sites are found inconsistent with sEEG ECS, surgery can still be
considered if the EZ is well delineated and chances of seizure
freedom are high. In these cases, we would recommend using
awake surgery with intra-operative ECS mapping. In those cases,
if awake surgery is not possible, using subdural grids may be
an alternative as this technique offers the opportunity to more
densely and extensively cover the cortical surface surrounding the
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anterior and posterior language areas to determine their borders
(Britton, 2018). When complete resection is not an option, a
partial resection up to the eloquent cortex may still be useful and
has to be considered according to some authors (Devinsky et al.,
2003; Jayakar et al., 2018).

Electrical cortical stimulations language mapping is a well-
studied, relatively simple to interpret and cost-efficient technique
to map anterior and posterior language areas. It stands actually
as the gold standard to individually delineate indispensable
eloquent language cortex (ALA and PLA) and take into account
individual variability and functional reorganization.

MAPPING DISPENSABLE ELOQUENT
LANGUAGE CORTEX USING sEEG

As discussed in the previous section, most published reports on
language mapping using ECS have been related to the mapping
of the classical anterior and posterior language areas. However,
behavioral language impairments have been obtained outside the
ALA or PLA especially in the ventral temporal cortex.

The so-called basal temporal language area (BTLA) was
first described by Lüders et al. (1986) who reported transient
anomia resulting from the subdural grids stimulation of the
left fusiform gyrus (FG). Subsequent studies using subdural
electrodes extended the spectrum of ECS induced language
disturbances in the VTC to comprehension and reading tasks
(Krauss et al., 1996), and the anatomical localization of the BTLA
to the left inferior temporal gyrus and the left parahippocampal
gyrus from 1 to 9 cm from the temporal tip (Burnstine et al., 1990;
Schaffler et al., 1994, 1996) as represented in the Figure 1B. More
recently, Bédos Ulvin et al. (2017), assessed the lateralization
and boundaries of the BTLA taking advantage of the sEEG to
explore deep structures and especially sulci with depth electrodes
stereotactically implanted in the right and left VTC. The authors
first reproduced earlier findings from ECoG regarding the
involvement of the dominant fusiform, inferior temporal and
parahippocampal gyri in the BTLA and further extended its
location to the lateral occipito-temporal sulcus. It further showed
a clear left predominance of BTLA sites and that in cases
with bilateral implantation, the BTLA was strictly lateralized,
presumably in the dominant hemisphere.

Basal temporal language area could be a good example of
eloquent but dispensable cortex. Although anomia is considered
to be the most frequent cognitive deficit after left temporal
resection (Sherman et al., 2011), post-operative language deficits
after BTLA resection have been discordant across studies
(Abdallah et al., 2021). Krauss et al. (1996) found that patients
with BTLA resection performed worse on early (6–12 months)
post-operative confrontation naming task whereas (Lüders et al.,
1991) found no lasting language deficit. In a recent study
Abdallah et al. (2021) evaluated early (within 1 year) and late (at
2 years) naming outcome according to the resection status of the
BTLA. Authors found that almost 60% of patients with resection
including BTLA positive sites had an early clinically significant
decline in visual naming. In contrast, sparing BTLA prevented
patients from postoperative naming decline (9%) provided that a

sufficient spatial sampling had been performed with an anterior
and a posterior basal temporal depth electrodes. This study
emphasized also the fact that early naming decline observed
after dominant temporal corticectomy did not depend on the
posterior limits of temporal neocortical resection but was related
to the great inter-individual variability of the BTLA anterior limit.
Indeed, all resected BTLA positive sites were located within the
30 mm from the temporal tip (in average, 24.5 mm) and were
thus included within the usual limits of the so-called standard
left anterior temporal lobectomy. These results strongly suggest
that resection of BTLA increases the risk of post resection early
naming decline and thus plead for an important structural (and
local) role of this area. However, the fact that not all patients
with BTLA resection had post-operative anomia and that when
present early post-operative anomia recovered at least partially at
longer follow-up (2 years) interrogates the role of this structure
within the entire language network.

The location of the BTLA in the contiguity of the ventral
visual stream involved in visual categorization (Cauchoix et al.,
2016) and of the anterior parts of the temporal lobe involved
in semantic processing (Lambon Ralph, 2013) suggests a highly
functional convergence zone (Fonseca et al., 2009). Shimotake
et al. (2015) using subdural electrodes, considered the anterior
FG – ITG as a semantic hub after observing impairments in
semantic tasks during cortical stimulation. Indeed, Forseth et al.
(2018) showed that ECS in the left fusiform gyrus interfered
with both visual and auditory naming and proposed a lexico-
semantic role for this region. Recent reports emphasized the
importance of long distance connections in language models
(Hagoort, 2017). Enatsu et al. (2017) showed that the BTLA was
structurally connected to the temporal pole, medial temporal
structures, and lateral temporal and occipital structures through
the inferior longitudinal fasciculus. Using low frequency ECS
in order to compute cortico-cortical evoked potentials, Araki
et al. (2015) found bidirectional connections between the BTLA
and the posterior language area. These structural and functional
evidences suggest that the BLTA could be strongly structurally
and functionally connected to both the ventral and the dorsal
streams of the perisylvian language network (Duffau et al., 2014).
In a recent study (Perrone-Bertolotti et al., 2020) assessed large-
scale language network correlated with ECS induced naming
errors by quantifying ECS induced HFA changes outside the
stimulated cortical region. The authors found long distance
HFA modification contemporary to ECS naming impairments
suggesting distant effect of ECS. However, using HFA induced
by naming, Cuisenier et al. (2020) found that HFA predicted
electrically induced language disturbances with high specificity
but very low sensitivity. These observations strongly suggest
that ECS positive sites of the BTLA could be an important hub
within a large specific language network extending well beyond
the VTC. We speculate that this area acts as a multimodal
(visual and auditive) (Mandonnet et al., 2010) spread hub,
connected with structures involved in semantic (ventral stream)
and lexical (dorsal stream) functions. The discrepancies between
ECS and inconstant post-resection naming deficit (defining
dispensable eloquent cortex) (Abdallah et al., 2021), could
be explained by the properties of the BTLA hub, i.e., ECS
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would abruptly and transiently disturb large distant connected
areas, while resection could determine early deficit by locally
removing parts of the hub, but leaving the potential for
functional resilience of the remaining network underlying the
slow recovery over time.

Electrical cortical stimulations delivered via sEEG are useful
and important in mapping dispensable eloquent language
cortex like the BTLA. We believe that a particular attention
must be payed to the individual variation in BTLA location
along the VTC as individuals with the most anterior BTLA
localization (within the usual limits of the so called “standard”
anterior temporal lobectomy) are at high risk of early post-
operative naming decline. Implantation of deep electrodes
targeting the anterior and posterior ventral temporal cortex
for the language mapping should be specifically designed when
exploring with sEEG dominant temporal lobe epilepsies for
subsequent surgery.

A particular advantage of sEEG is the ability to safely
explore deep structures like hippocampus, insula (Salado
et al., 2018), medial frontal cortex. Interestingly, several
studies have reported an increased risk of naming decline
after healthy hippocampal resection (Ives-Deliperi and Butler,
2012), after selective amygdalo-hippocampectomy based on
open resection approach (Mansouri et al., 2014) but not
after stereotactic laser amygdalohippocampotomy (Drane et al.,
2015). Hamberger et al. (2010) found naming decline after
hippocampal removal for visual but not auditory stimuli.
While no consistent language impairment is obtained after
hippocampal ECS, sEEG observations nevertheless suggest a
role for this structure in naming. Hamamé et al. (2014)
showed single-trial hippocampal dynamics between visual
confrontation and naming using HFA responses. Moreover,
hippocampal latency responses predict naming latency and
efficiency (Llorens et al., 2016). In this last study, the
authors showed a specific and reliable pattern of hippocampal
activation in naming, modulated by repetition priming and
semantic context, suggesting that hippocampus had a role in
implicit learning and was an active component of naming
network. As hippocampal ECS do not overtly produce naming
impairments, hippocampus is not currently considered as
an eloquent region for language and there is currently no
consensus neither on the effect of dominant hippocampus
resection on post-operative naming, nor on the ECS methods
that could help to predict this outcome. We speculate
hippocampus to be part of the naming larger multi-modal
naming network but not acting as a critical hub and thus
not directly impacted by ECS. Few authors reported insular
positive language sites (Afif et al., 2010; Trébuchon and
Chauvel, 2016) as well as insular HFA changes in response
to naming (Cuisenier et al., 2020). As this structure is not
included in the classical language network models, Ardila et al.
(2016) speculated a role in language coordination while Afif
et al. (2010) underlined the role of the insular middle short
gyrus in speech production. A recent sEEG study reported
speech arrest after medial frontal ECS sometimes associated
with positive or negative motor phenomena of the mouth
or tongue (Trevisi et al., 2018). These findings supports

a phonological-articulatory network between supplementary
motor area and ALA (Hertrich et al., 2016).

CONCLUSION AND PERSPECTIVES

Functional language mapping using ECS has a long history
mainly supported by empirical clinical knowledge. Based on a
whole body of available studies, there are strong evidences to
consider sEEG as a valid, safe and reliable method for defining
eloquent language cortices provided stimulation parameters,
testing procedure and anatomical sampling have been rigorously
designed. French guidelines on sEEG propose a common
frame for stimulation parameters that globally parallels most of
the reported parameters in studies across different countries.
For language mapping high frequency protocols seems most
appropriate with intensities ranging between 0.5 and 5 mA with
longer phase duration (0.5–1 ms) compared to subdural grids
that uses shorter phase duration but higher intensities. After
discharge threshold should be carefully monitored to determine
the maximal threshold of intensity used for language mapping.

In the cases of anterior and posterior language areas,
sEEG ECS can be used for localizing eloquent cortex with
a good negative predictive value in our experience that,
however, needs further precise evaluation. This ESM should
take into consideration inter-individual variability and functional
reorganization resulting from an early onset and long lasting
epilepsy. Discrete and limited patches of indispensable language
eloquent cortex can thus be delineated, usually located in the
posterior part of inferior frontal gyrus (pars opercularis) and
posterior part of superior temporal gyrus (and angular gyrus),
respectively. The eloquent sites would correspond to densely
fold hubs with discrete borders. Surgery sparing those regions
delineated by positive language ECS sites, would prevent post-
operative important and permanent language deficit. Conversely,
in the case of BTLA, language impairments can be obtained
with ECS delivered to different VTC structures (fusiform gyrus,
lateral occipital temporal gyrus, inferior temporal gyrus, and
parahippocampal gyrus) with a great anatomical inter-individual
variability. We hypothesize that in the VTC, eloquent sites
correspond to strongly connected hubs within a large functional
network including the BTLA but also medial temporal structures.
Anomia evoked by local electrical stimulation of these hubs
would result from the transient disorganization of the entire
network. In contrast, surgical removal of these hubs could
produce early but reversible post-operative deficits (defining
dispensable language eloquent cortex) that could recover over
time thanks to the resilience ability of the network.

Indispensable/dispensable cortex concept empirically
prefigures the need of transition from mapping brain areas to
mapping brain functions. Further research is needed in order to
characterize the network properties of language eloquent cortex
as network architecture could account for a rather local or more
distant ECS effect. Low frequency ECS coupled with novel and
powerful computational techniques allows news insights into
effective connectivity through cortico-cortical evoked potentials.
Comparing effective connectivity of the language positive
(BTLA) versus negative sites in the VTC would allow testing this
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hypothesis. Finally, ECS coupled with passive correlative sEEG
methods like task related or electrically induced HFA responses
could further contribute to the development of new biological
markers of language network resilience in epilepsy surgery.
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