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ABSTRACT

Biomedical researchers take advantage of high-
throughput, high-coverage technologies to routinely
generate sets of genes of interest across a wide
range of biological conditions. Although these tech-
nologies have directly shed light on the molecular
underpinnings of various biological processes and
diseases, the list of genes from any individual ex-
periment is often noisy and incomplete. Additionally,
interpreting these lists of genes can be challeng-
ing in terms of how they are related to each other
and to other genes in the genome. In this work, we
present GenePlexus (https://www.geneplexus.net/),
a web-server that allows a researcher to utilize a
powerful, network-based machine learning method
to gain insights into their gene set of interest and ad-
ditional functionally similar genes. Once a user up-
loads their own set of human genes and chooses
between a number of different human network repre-
sentations, GenePlexus provides predictions of how
associated every gene in the network is to the in-
put set. The web-server also provides interpretabil-
ity through network visualization and comparison to
other machine learning models trained on thousands
of known process/pathway and disease gene sets.
GenePlexus is free and open to all users without the
need for registration.
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INTRODUCTION

Most complex functions, phenotypes, traits and diseases
involve complex interactions between many genes. With
the advent of high-throughput, high-coverage technologies
(1,2), researchers are able to measure various types of sig-
nals pertaining to these phenomena on a genome-wide
scale and ultimately generate a list of genes of interest.
For instance, differential expression analysis (3,4) of bulk-
or single-cell transcriptomes allow researchers to generate
gene sets of interest, which provide some initial insight into
the molecular underpinnings of the experimental factors be-
ing studied. However, these gene sets often suffer from a few
drawbacks: (i) the gene sets can be incomplete (i.e. contain-
ing false negatives) and noisy (i.e. containing false positives)
and (ii) the gene list inherently lacks information about how
the individual genes interact with each other and with other
genes in the genome.
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Figure 1. The workflow of the GenePlexus web-server. First the user uploads a gene set of interest and choses the network and representation and how the
negative genes should be selected. Next, the data is prepared, the model is trained and the results are created. Finally, the user can retrieve gene predictions,
gain insight into the trained model and visualize the network connectivity of the top genes interactively through their browser.

The ability to computationally refine an experimentally-
derived gene set by prioritizing genes of interest and predict-
ing other novel genes that may be highly related to the set is
a grand challenge in biomedical research (5-11). Although
experimental validation is always required, the sheer num-
ber of possible novel associations require computational
techniques to guide which genes to study next. Over the
past few decades, computational methods that incorporate
information from genome-wide, context-specific molecular-
networks have shown state-of-the-art results (12-21). Re-
cently, we have shown that directly using the connections
from genome-wide molecular networks as the features to
a supervised machine learning model (referred to as Gene-
Plexus) is a robust, data-driven way to computational pre-
dict how associated a gene is to a given input gene set (22).

As powerful as these computational methods can be, their
impact is fully realized only if they can be put into the hands
of biomedical researchers, regardless of programming and
computational background. Publicly available web-servers
are a great platform for disseminating these results and an
ideal web-server would have the following properties:

e Handle gene sets generated across vastly different biolog-
ical contexts and from different technologies.

e Allow the user to choose from a suite of molecular net-
works that best fit the biological question.

e Provide predictive insights about additional genes most
functionally similar to the user-supplied gene set and pro-
vide a confidence level of these predictions in a timely
manner.

e Enable the researcher to interpret the underlying com-
putational model and to visualize the connectivity of the
top-ranked genes.

e Provide a user interface that is intuitive and easy to use for
a biologist regardless of programming skills, provide ex-
tensive help/tutorials, and provide open-source code for
the predictive model and web-server.

In this work, we present the GenePlexus web-server
which addresses all the needs above [Figure 1]. A user can
upload a set of genes and choose the desired network prop-

erties. Then the web-server trains a custom supervised ma-
chine learning model using the user-supplied genes as pos-
itive labels. Within a few minutes, the user can then re-
trieve an association probability for every gene in the net-
work, interpret the trained model through a comparison to
other models trained on known gene sets that correspond
to process/pathways and diseases from the Gene Ontology
(23,24) and DisGeNet (25,26) databases, respectively, and
visualize the network connectivity of the top-ranked genes.
We believe that the GenePlexus web-server will greatly ben-
efit anyone who is looking to determine novel associations
to a given gene list in a biologically interpretable manner.

There are a number of comparable web-servers that ana-
lyze a user-supplied gene set in the context of a molecular
network, but they all have some limitations. Web-servers for
networks such as STRING (27) and GIANT (20) do not
provide a predictive element, instead focussing on offering
an interactive visualization of the gene set within their net-
works. Web-servers such as GeneMania (12), HumanNet
(28), ToppGene (29) and MaxLink (30) provide predictions
using the method of label propagation, a semi-supervised
method which our model has been shown to outperform
(22). DGLinker (31) is a powerful and comprehensive web-
server that trains a supervised machine learning model on
the user-supplied gene set. However, the supervised learning
model in DGLinker uses three features that are mined from
a vast amount of data sources. In comparison, GenePlexus
uses the entirety of the network connections as input to the
machine learning model. Additionally, DGLinker is specific
to gene-disease discovery, whereas GenePlexus is task ag-
nostic.

A key feature that sets GenePlexus apart is how model in-
terpretation is implemented. All the web-servers mentioned
above only offer (if offered at all) insights about the input
gene set and, possibly, the highly associated novel genes,
through the widely-used analysis technique of gene set en-
richment. As there exist many excellent open-source tools
for enrichment analysis, we chose not to implement that on
GenePlexus. Instead, we provide interpretation of the cus-
tom trained machine learning model. We do this by com-
paring the model trained on the user-supplied gene set to
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The table below shows how many of the input genes were converted to Entrez gene IDs and how many of them are present in the various molecular networks.

Total Number of Edges in the Network

Total Number of Genes in the Network +/0®" Of User-Supplied Genes in i

484,356 19,022 44
5,521,113 18,582 46
2,121,428 17,417 44
38,904,929 25,689 46

Enter/Upload Gene List © X
BioGRID
Or, enter/paste gene list below Download Sample Gene File STRING
STRING-EXP
CCNO GIANT-TN
CENPF
LRRC56 Input genes
ODAD3
DNAAFA train your model (in the panel on the left).
DNAAF6 Sasi i
DNAAF4
DNAH5
DNAH9 ©cDe103 388389
CFAP221
©CDC40 55036
RSPH9
FOXJ1 ccDees 85478
LRRC6 CCNO 10309
Gng212 CENPF 1063
DNAH1
GAS8 CFAP221 200373
DNAI1 CFAP298 56683
STK36
Z CFAP300 85016

DNAAF1 123872

Clearinur m DNAAF2 s

The table below shows the input genes, their corresponding Entrez gene IDs, and if they are present in the various molecular networks. Use this table to select a molecular network to

Show10rows~ Copy Excel PDF

urap 1 wo s o womwesr | omn
Y.

< | <Bl < | z|<|<|=<| =<
< < =< < < =< < =< =< =
< | < Bl < |z |=<|<|=<|<|=<
<| < Bl < | <|=<|=<|<|<|=<

Figure 2. Uploading and validating the gene set. (A) The user can either paste gene IDs or upload them from a file. (B) Upon clicking the Done button,
the genes are converted in Entrez ID space and the overlap of the gene set with the genes in each network is displayed.

thousands of models that were trained on known biological
processes and pathways in the Gene Ontology or diseases in
DisGeNet.

WEB-SERVER WALKTHROUGH

The main purpose of the GenePlexus web-server is to dis-
cover novel genes that are functionally similar to a user de-
fined set of ‘genes of interest’. This purpose is accomplished
by training a molecular-network-informed machine learn-
ing model specific to the user-supplied genes. The key fea-
tures of the web-server are:

e Prediction of how every human gene is functionally sim-
ilar to the user-supplied gene set.

e Allow the user to choose between a number of different
molecular networks, varying in interaction source, cover-
age, and density. The user can also choose how the net-
works are represented in the machine learning model.

e Interpretation of the model by comparing the model
trained using the user-supplied gene set to thousands of
models pre-trained using gene sets annotated to biologi-
cal processes in the Gene Ontology and diseases in Dis-
GeNet.

e Visualization of the network connections for the top-
ranked genes.

e The web-server is open source (https:/github.com/
krishnanlab/geneplexus_app) and has extensive help doc-
umentation, both in the form of a help page as well as
video tutorials.

INPUTS
Adding genes

The first step is for the user to add a set of human genes [Fig-
ure 2A]. Users can do this by either entering the genes man-
ually into a box or uploading a file. The genes can be iden-
tified using Ensembl IDs (ENSG, ENSP or ENST), Gene

Symbols or NCBI Entrez IDs. The web-server uses cook-
ies to allow the added genes to persist as the user navigates
across the pages and to allow the user to edit or add addi-
tional genes manually or with a file. We emphasize that no
tracking cookies are utilized.

Validating genes

The user will then click the ‘Done’ button, which will first
convert the user-supplied genes into Entrez ID space. This is
done because all the networks, gene set collections, and pre-
trained models are in Entrez ID space. Next, the web-server
determines which of the input genes are present in the dif-
ferent molecular networks and returns this information as
a brief summary in the form of a searchable, downloadable
table [Figure 2B].

SELECTING PARAMETERS FOR SETTING UP MA-
CHINE LEARNING MODEL

The user will then select a few parameters that will be used
to train the model and generate the results:

e Molecular Network: The user can choose from four dif-
ferent human networks [Table S1] that vary in interac-
tion source, coverage, and density (BioGRID (v4.2.191)
(32,33), STRING (v11.0) (27), STRING-EXP (v11.0)
(27) and GIANT-TN (v 1.0) (20)).

e Feature Type: This is how the connections in the net-
work are represented in the machine learning model (Ad-
jacency, Influence, Embedding).

e Negative Gene Class: This is a gene set collection [Table
S2] that will be used to select negatives based on whether
the input genes correspond to a process/pathway or a dis-
ease.

For more information about these choices, see the ‘Run-
ning the model’ section and the Supplemental Material. Ad-
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ditionally, the Help page of the web-server provides some
guidance on which choice of parameters would be appro-
priate for a given user-supplied gene set.

The user also has the option to provide two additional
pieces of information:

e Jobname: GenePlexus automatically creates an eight digit
random alpha-numeric job name. In addition, the user is
able to supply a memorable prefix to this name.

e Email: The user can add their email address to receive
a message when the job has started and when the job is
completed. These emails include the job parameters and
the url to retrieve the job results.

RUNNING THE MODEL

When the user hits the ‘Submit’ button, they will be directed
to the jobs page where they can see the status of all recent
jobs that were submitted. Once the job is completed, the
link to display the results will become active. After the job
is submitted, the user’s gene set and selected parameters will
be passed to the computational model that performs the fol-
lowing steps

e Positive and negative gene selection: The positive exam-
ples in the machine learning model are all the genes in
the user-supplied gene list that could be mapped to Entrez
IDs and were present in the chosen network. The negative
examples are chosen in the following way:

e Consider all genes that are present in the selected gene
set collection (‘Negative Gene Class’) as negative ex-
amples.

e Remove from this negative set any genes in the positive
set.

e Additionally, remove genes annotated to gene sets in
the collection that significantly overlap with the posi-
tive set.

e Training a machine learning model: The machine learning
model is a regularized (12-norm) logistic regression model
with a regularization parameter of 1. The features used in
the model are created based on the user’s selection of the
network and feature type, where the feature types are:

e Adjacency: Features are the connections in the original
network.

o Influence: Features are generated by using a random-
walk with restart diffusion kernel on the original net-
work.

e Embedding: Features are generated using the node em-
bedding algorithm node2vec (34).

e Evaluating the machine learning model: If the positive set
contains at least 15 genes, the model is internally evalu-
ated using 3-fold cross validation. The cross validation re-
sults provide a very useful measure of whether the model
worked well on the gene set of interest, and can be used
to help a user choose the optimal network, feature, and
negative selection options.

o Generation of the results: Once the model is trained, it is
used to predict a score for every gene in the network. The
results also include the similarity of thousands of pre-
trained process/pathway- and disease-gene models to the
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custom-trained model, and a visualization of the network
connectivity of the top-ranked genes.

For more detailed information on the machine learning
model see (22) and the Supplemental Material.

RESULTS

The GenePlexus web-server returns a number of useful re-
sults that can either be downloaded as one compressed (zip)
file or individually in multiple useful formats. The results
page can be navigated through a number of tabs, and the
parameters used to generate the results as well as the cross-
validation results are displayed at the top of each tab.

Predicted gene associations

The main result returned is the predicted functional simi-
larity of every gene contained in the selected network to the
user-supplied input list. The first three columns give details
on the genes with hyperlinks to NCBI gene pages with more
information. The last four columns provide the following
information:

e Probability: The predicted probability from the logistic
regression model.

e Training-Label: The label of the gene used during training
with P: positive, N: negative and U: unused.

e Known/Novel: Positive genes are considered ‘Known’ and
negative genes and genes unused during training are con-
sidered ‘Novel’.

e Rank: Provides the ranking of the gene based on its pre-
dicted probability.

These results are returned as a searchable table that is
originally sorted by predicted probability. For example, the
user can display just the scores for the ‘Novel’ genes by typ-
ing ‘Novel’ into the search box above the table.

Model interpretability

In web-servers that provide a similar service, if interpretabil-
ity of the results is offered, it is done so in the form of bio-
logical processes (or other curated gene sets) enriched in the
user-supplied gene set with the addition of predicted genes.
As gene set enrichment is easily accessible through dozens
of web-servers and software packages, we instead provide
the user with some interpretation of the custom-trained ma-
chine learning model.

We accomplish this by comparing the model trained on
the user-supplied gene set to thousands of models pre-
trained using known gene sets corresponding to biological
processes from the Gene Ontology and diseases from Dis-
GeNet. These pre-trained models are built using the same
network, feature, and negative gene set collection used to
train the custom model trained on the user-supplied gene
set. For detailed information on how the similarity score
is calculated, see the Supplemental Material. We highlight
that this feature is unique to GenePlexus. It provides a very
network-specific interpretation of the trained model that re-
lies on data generated using >10 000 computational hours
on high-memory nodes.
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There are two tabs that show the most similar models
trained on biological process (Gene Ontology) and disease
(DisGeNet) gene sets. In each tab, the first two columns in
the table are the ID and long-form name of the known gene
set along with a hyperlink to more information. The last two
columns contain the similarity to the user’s custom-trained
model and the rank.

The tables that contain the predicted gene association
scores or the similarity to pre-trained models only include
the top 500 entries. This is done to increase the speed in
which the user can load and interact with these tables. At
any point, the user can easily download the full results,
which contain >17k gene predictions and similarities to
thousands of known gene sets.

Network graph

Finally, the top gene predictions are also visualized in the
context of the original network that was used to train the
model. The user can directly change the number of nodes
(up to a maximum of 50) or view nodes based on a pre-
diction probability threshold. The set of edges that are dis-
played can also be changed by setting an edge weight thresh-
old. Individual nodes can be dragged to specific positions
and the entire network can be panned and zoomed. Upon
clicking on a node, a list of information about that node is
supplied.

WEB-SERVER IMPLEMENTATION

The web-server is implemented using services on the Mi-
crosoft Azure cloud platform. The front end is a low re-
source service that allows the user to upload genes and
select parameters, and was written using the microframe-
work Flask. When a job is submitted, the web-server au-
tomatically creates a high-resource containerized instance
in Azure that contains a Docker version of the source code
needed to train the model and generate the results. Once the
job is complete, this container is automatically deleted. The
ability of the web-server to automatically create and delete
these high-resource containers on-demand allows it to si-
multaneously train numerous machine learning models at
minimal costs.

A key feature of the GenePlexus web-server is the ability
to allow a user to choose from a variety of networks. Al-
though the networks contained in the current version vary
greatly in interaction source, coverage, and density, our im-
plementation can add new networks based on user feed-
back. We have designed the backend data formats and struc-
ture to be flexible so that it is easy to incorporate new net-
works and gene set collections.

BENCHMARKING THE GENEPLEXUS METHOD

The supervised network-based machine learning model
that forms the backbone of GenePlexus has been ex-
tensively benchmarked in (22). In that work, the super-
vised model was shown to outperform the widely-used,
state-of-the-art method of label propagation (12-15,35—
48). The comparison included a number of different tasks

(function-, disease-, trait-gene prediction), networks (Bi-
oGRID, STRING, InBioMap, GIANT-TN, STRING-
EXP), validation schemes (temporal holdout, study-bias
holdout, 5-fold CV), and evaluation metrics (auPRC,
P@topK, auROC).

ILLUSTRATIVE EXAMPLE

Throughout this work, we demonstrate the utility and fea-
tures of GenePlexus by applying it to discover genes asso-
ciated with primary ciliary dyskinesia (PCD). PCD is a ge-
netic condition in which the microscopic organelles (cilia) in
the respiratory system have defective function. While a few
genes associated with PCD are already known, the genetic
cause of the disorder is unknown in many individuals with
PCD, making it critical to continue identifying novel PCD
genes. Here, we used GenePlexus to predict novel genes as-
sociated with PCD based on a gene interaction network,
starting with a set of 46 known PCD genes, obtained from
the DisGeNet database. The PCD model was trained us-
ing the adjacency matrix representation of the STRING
network, and the negative genes were determined based on
other similar diseases in DisGeNet. This is the same exam-
ple gene set available to a user to explore on the GenePlexus
web-server.

Typically in the GenePlexus web-server, as expected, the
top-ranked genes consist of many genes included in the
user-supplied gene set, and this can be seen for PCD [Figure
3]. A number of these genes belong to the family of axone-
mal dyneins that cause sliding of microtubules in the ax-
onemes of cilia and flagella (49,50). With the above stated
network choices, GenePlexus predicts that DNALII, dynein
axonemal light intermediate chain 1, is functionally similar
to this input set and is highly connected to known positive
genes in the network [Figure 4C]. Additionally, there exists
experimental evidence that DNALI] is associated with PCD
(51,52).

When comparing the user’s custom-trained model to
models pre-trained on known disease gene sets from Dis-
GeNet [Figure 4A], unsurprisingly the closest models are
‘PCD’ (since this was trained using the same input genes
and parameters as the user trained model) and ‘ciliopa-
thy’, which is PCD’s parent term in the Disease Ontology
(53). Other top associated diseases are bronchiectasis, hy-
drocephalus and joubert syndrome, which are other ciliopa-
thy related diseases.

GenePlexus also compares the user’s custom-trained
model to models pre-trained on known biological process
gene sets from Gene Ontology [Figure 4B]. It can be seen
that most of the top models are related to either dynein as-
sembly or cilia movement, which have been shown to be un-
derlying mechanisms deregulated in PCD (52). Though the
above two analyses may seem similar to gene set enrichment
analysis, we note a key difference. Instead of providing in-
terpretation of the list of genes directly, GenePlexus inter-
prets the machine learning model custom-built for PCD to
identify diseases and processes that have highly similar pat-
terns of network connectivity compared to PCD. Thus, even
if a relevant process/pathway/disease has few (if any) genes
overlapping with known PCD genes, it will be considered
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Entrez Probability Known/Novel

1 23639 LRRC6 leucine rich repeat 1.00 Known
containing 6

2: 65172 DNAAF2 dynein axonemal 1.00 Known
assembly factor 2

3 123872 DNAAF1 dynein axonemal 1.00 Known
assembly factor 1

4 345895 RSPH4A radial spoke head 1.00 Known
component 4A

5 64446 DNAI2 dynein axonemal 1.00 Known
intermediate chain 2

6 221421 RSPH9 radial spoke head 1.00 Known
component 9

7 27019 DNAI1 dynein axonemal 1.00 Known
intermediate chain 1

8 54768 HYDIN HYDIN axonemal 1.00 Known
central pair
apparatus protein

9 7802 DNALI1 dynein axonemal 1.00 Novel
light intermediate
chain 1

10 55036 CCDC40 coiled-coil domain 1.00 Known

containing 40

Figure 3. Genome-wide Prediction. For every gene in the genome-scale molecular network that was used to train the model, a score is calculated of how
associated it is to the user-supplied gene set and displayed as an interactive table.

similar to PCD if the two sets of genes have overlapping net-
work neighborhoods. This model interpretation approach
takes advantage of pre-training thousands of models that
took >10 000 computational hours, and is an analysis that
is unique to GenePlexus.

DISCUSSION

The GenePlexus web-server provides a powerful tool that
any researcher can use to understand and expand any list
of human genes generated from an experimental/empirical
study including omics profiling, phenotypic assay, associ-
ation study or drug screen. The web-server leverages the
strengths of genome-scale human gene networks and ma-
chine learning to help users discover additional novel genes
that are functionally similar to their list of input genes.
Given a list of input genes, GenePlexus predicts novel genes
that have similar network neighborhoods with the input
genes, even when these novel genes are not directly con-

nected to the input genes. The web-server achieves this by
building a custom machine learning model that finds pat-
terns of connectivity in the network that are distinctive to
the input genes and then using this model to find other genes
that have similar network patterns. In addition to expanding
the original gene set, this analysis illuminates the functional
relationships between the known and novel genes by plac-
ing them in the context of a molecular network. GenePlexus
also helps the user peer into the blackbox by revealing sim-
ilar machine learning models built for other biological gene
sets. We have implemented features so that, at every stage of
the analysis, users can export both top-ranked and full re-
sults in various convenient formats including plain-text ta-
bles, PDFs and image files (as appropriate).

While the GenePlexus web-server contains a number of
useful features and options to choose from, we are open to
and encourage users to suggest new features. Future ver-
sions of the web-server will likely include a larger variety
of networks (both human and model species), a public and
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A Rank 1 ID Name Similarity
1 DOID:9562 primary ciliary 28.54
dyskinesia
2 DOID:0060340 ciliopathy 16.36
3 DOID:9563 bronchiectasis 9.43
4 DOID:10908 hydrocephalus 5.31
5 DOID:0110980 Joubert syndrome 1 3.74
6 DOID:0050777 Joubert syndrome 3.62
7 DOID:1176 bronchial disease 2.84
8 DOID:1148 polydactyly 2.69
9 DOID:0050778 Meckel syndrome 2.09
10 DOID:4501 orofaciodigital 2.05
syndrome
B Rank 1 ID Name Similarity
1 GO:0070286 axonemal dynein 21.97
complex assembly
2 G0:0036159 inner dynein arm 21.63
assembly
3 GO0:0036158 outer dynein arm 21.58
assembly
4 G0:0001578 microtubule bundle 18.81
formation
5 G0:0035082 axoneme assembly 18.02
6 GO:0003352 regulation of cilium 17.79
movement
7 GO:0060632 regulation of 15.00
microtubule-based
movement
8 GO:0006858 extracellular 13.38
transport
9 GO0:0060295 regulation of cilium 13.05
movement involved
in cell motility
9 GO0:1902019 regulation of cilium- 13.05
dependent cell
motility
LRRC6
DNAAFS " DNAAF1
DNAH11
HYDIN O ®
RSPH4A DNALI1

DNAAF4.
©

CCDC40

DNAI2

. ODAD1
@

DNAI1

. DNAAF2
o

DNAAF3 RSPH9

Figure 4. Interpretability features of GenePlexus. (A) The model trained
using the user-supplied gene set is compared to thousands of models pre-
trained on known gene sets from the (A) GeneOntology and (B) DisGeNet
databases. (C) The network connectivity of the top associated genes are
displayed as an interactive graph.

searchable database of anonymized results from machine
learning models trained by other users, the ability to pre-
dict novel genes in model species based on human gene net-
works, and the option for users to create accounts to help
them keep track of past jobs. We plan on updating the web-
server on a yearly basis, which includes adding additional
features as well as updating the data used by the web-server.
We will continue to have older versions of the web-server
publicly available through links on the most current version.

Though many modern web-servers implement an API
that allows users to access the web-server programmati-
cally, implementing this feature in a predictive web-server
like GenePlexus presents unique challenges. Using an API,
a single user could submit many jobs in a short amount of
time. Though this could be very useful for a computational
biologist looking to expand many gene sets, each submit-
ted job launches a high-resource container on the cloud,
which becomes an expensive endeavor. To this end, we have
released an open source python package (https://pypi.org/
project/geneplexus/) that could be used on its own without
the web-server.
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The GenePlexus web-server is freely available at https:
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