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Alternative splicing is an essential regulatory mechanism for gene expression inmammalian
cells contributing to protein, cellular, and species diversity. In cancer, alternative splicing is
frequently disturbed, leading to changes in the expression of alternatively spliced protein
isoforms. Advances in sequencing technologies and analysis methods led to new insights
into the extent and functional impact of disturbed alternative splicing events. In this review,
we give a brief overview of the molecular mechanisms driving alternative splicing, highlight
the function of alternative splicing in healthy tissues and describe how alternative splicing is
disrupted in cancer. We summarize current available computational tools for analyzing
differential transcript usage, isoform switching events, and the pathogenic impact of
cancer-specific splicing events. Finally, the strategies of three recent pan-cancer studies
on isoform switching events are compared. Their methodological similarities and
discrepancies are highlighted and lessons learned from the comparison are listed. We
hope that our assessment will lead to new and more robust methods for cancer-specific
transcript detection and help to produce more accurate functional impact predictions of
isoform switching events.
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INTRODUCTION

Alternative splicing of precursor messenger RNA (pre-mRNA) is a key regulator of gene expression
in mammalian cells, causing the rearrangement of intron and exon elements into multiple RNA
transcripts via the differential use of splice sites (Matera and Wang, 2014). The enzymatic reactions
of alternative splicing are performed by the spliceosome, a large ribonucleoprotein complex
consisting of small nuclear RNAs (snRNAs) and small nuclear ribonucleoproteins (snRNPs)
(Wahl et al., 2009). The splicing mechanism proposed by Gilbert (Gilbert, 1978) changed the
notation of “one gene → one RNA → one protein” to “one gene → multiple RNA transcripts →
multiple protein isoforms with various functions”. On average, eight exons code for four or more
isoforms per gene creating ∼86,700 protein isoforms from ∼19,700 protein-coding genes in humans
(Ensembl, version 104). More than 95% of human genes with multiple exons undergo alternative
splicing (Nilsen and Graveley, 2010) compared to 25% of protein-coding genes in nematodes
(Ramani et al., 2011), suggesting a role of alternative splicing in the formation of organism
complexity. Alternative splicing events can be classified into five major types according to splice
site selection: cassette exon (exon skipping), mutually exclusive exons, intron retention, alternative
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5’splice site, alternative 3’splice site (Figure 1). In addition, other
pre-mRNA processing events such as alternative start,
termination and promoter sites have also been described
(Reyes and Huber, 2018). In higher eukaryotes, intron
retention events are more frequently observed than exon
skipping events (Grau-Bové et al., 2018). However,
evolutionary analyses have shown that exon skipping events
were the preferred mechanism in early animals for frame-
preserving (frame length divisible by three) isoform generation
(Grau-Bové et al., 2018). In cancer, exon skipping events are also
enriched, occurring 30% more often than in normal tissues
(Kahles et al., 2018).

For splicing to work properly, three main consensus splice
sites must work together in the pre-mRNA: 5′ splice site, 3′ splice
site, and an adenosine nucleotide at the so-called branch point,
which is located 18–40 nucleotide upstream of 3′ splice site
(Kelemen et al., 2013). An additional regulatory region
between the branch point and 3’ splice site is the 15–20
nucleotide long uridine-rich polypyrimidine tract, which serves
as a binding site for U2AF, a core component of the spliceosome.
(Will and Luhrmann, 2011). Splicing events rely on complex
motif recognition, but the splice sites themselves do not carry
sufficient information to define exon boundaries requiring
additional regulatory elements for exact exon-intron boundary
determination (Lim and Burge, 2001). These regulatory elements
include cis-elements within the pre-mRNA and associated trans-
acting splicing factors that trigger or repress splicing with the help
of the spliceosome. In addition to cis-elements, splicing regulatory
proteins recognize other cis-regulatory elements. These elements
are classified based on their location into exonic and intronic
splicing enhancers (ESE and ISE) or exonic and intronic silencers
(ESS and ISS) (Wang et al., 2013). While splicing enhancer
proteins bind to ESE and ISE sites to reinforce splicing,
splicing repressor proteins bind to ESS and ISS sites to repress
splicing at nearby sites. Even though intron removal has been
described as a deterministic process, Wan et al. showed recently

that splicing is often a stochastic process lasting from minutes to
hours (Wan et al., 2021). Using a combination of high-
throughput single-molecule microscopy and deep-sequencing
tools, they measured the dynamics of transcription and found
that stochastic splicing is more common than previously reported
(Sibley et al., 2015).

Interestingly, despite the widespread existence of alternative
splicing in human genes, RNAseq studies have demonstrated that
many genes express only a single dominant transcript in primary
tissues, which are generally referred to as Most Dominant
Transcripts (MDT). In an earlier study by Gonzales-Porta
et al., 80% of expressed human genes were estimated to have
an MDT with an expression at least two-fold higher than the
expression of any other minor alternative transcripts (Gonzàlez-
Porta et al., 2013). In addition, 50% of expressed genes were found
to have the same major transcript across different tissues, while
35% of genes showed switches between major and minor
transcripts across different tissues. This finding was indirectly
confirmed by Reyes et al., who demonstrated that ∼50% of
expressed genes had a tissue-specific transcript (Reyes and
Huber, 2018). Moreover, an earlier study found that some
genes expressed tissue-specific exons that can play a crucial
role in mediating molecular interactions and contributing to
signaling pathways (Buljan et al., 2012). The protein product
of those tissue-specific transcripts often had disordered regions
enriched in protein binding motifs and posttranslational
modification sites (Buljan et al., 2012; Ellis et al., 2012) while
acting as central protein hubs in protein interaction networks
(Bossi and Lehner, 2009).

As different protein isoforms of a gene can have different
functions, their combinatorial expression can result in various
signaling cascades within cells. Marti-Solano et al. demonstrated
the combinatorial effect of isoform expression of GPCR (G
protein-coupled receptor) proteins in 30 TCGA (The Cancer
Genome Atlas) tissues. They found that different gene isoforms
had different tissue-expression signatures i.e., combinations of

FIGURE 1 | Types of alternative splicing events: The left figure shows different pre-mRNA transcripts with exons (E) in different colors and introns as black
connecting lines. Red lines indicate splicing events that join exons intro processed mRNA transcripts (right part of the figure).
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isoform expressions across tissues. As an example, three isoforms
of the GPCR gene CNR1 showed four tissue-expression
signatures across 30 tissues. In contrast, three isoforms of the
GPCR gene CD97 had only one tissue-expression signature in
which all isoforms were expressed across all investigated tissues.
Thus, the signaling responses downstream of CNR1 seemed to be
more tissue-specific and distinct than for CD97 (Marti-Solano
et al., 2020).

In another study, Wineberg et al. identified 57 differentially
expressed cassette exons between epithelial and mesenchymal
lineages in kidney development. For example, the WT1 gene
gradually increases the expression of its exon 5 in the
development of epithelial cells from mesenchymal lineages
resulting in an isoform switching event of WT1 in kidney
development (Wineberg et al., 2020).

In summary, alternative splicing is essential for proper cell and
tissue differentiation and normal cell function. Its dysregulation is
associated with cellular dysfunction causing many diseases like
cardiovascular diseases, diabetes, neurological and muscle
diseases, immunological and infectious diseases and in
particular cancer (Kim et al., 2018; Bonnal et al., 2020; Cherry
and Lynch, 2020). In the forthcoming sections, we will describe
the mutational and molecular mechanisms underlying
dysregulation of alternative splicing with a focus on cancer,
give an overview of computational methods to identify and
measure these dysregulations and compare the strategies of
three recent pan-cancer studies to detect isoform switching
events in numerous cancer types. Based on the comparison,
we list important points that need to be considered when
studying alternative splicing changes. Our recommendations
should help to develop new and more robust methodologies
for future alternative splicing studies and improve the detection
of isoform switching events in cancer.

ABERRANT ALTERNATIVE SPLICING IN
CANCER

Understanding the relationship between the patterns of
alternative splicing and cancer could help to gain insights into
the origins of cancer formation and elicit potential therapies
targeting cancer-specific protein isoforms (Le et al., 2015; Jaudon
et al., 2020; Fuchs et al., 2021; Pan et al., 2021). Aberrant splicing
in cancer can be caused by mutations at consensus sequences (5′
splice site, 3’ splice site and branch point), cis-regulatory elements
(ESE, ESS, ISS, ISE), or mutations and expression changes in
genes encoding splicing regulatory proteins. In the following
sections, we will describe each of the mutational classes in
more detail.

Mutations in Cis-Acting Sequences
Consensus sequences (5′ splice site, 3’ splice site and, branch
point) together with cis-regulatory elements (ESE, ISS, ESS, ISS)
define inclusion or exclusion of exons and introns. Tumor
suppressor genes or oncogenes mutated at those sites can have
disrupted splicing resulting in gene silencing or activation (DiFeo
et al., 2009; Supek et al., 2014; Shiraishi et al., 2018). Interestingly,

in a comprehensive large-scale analysis of 31 cancer types from
8,976 samples, ∼50% of cis-acting splicing-associated variants
were found at non-consensus sequences (Shiraishi et al., 2018).
Tumor suppressor genes harbored most of the splicing-associated
variants causing exon skipping and alternative splice site usages.
Similarly, in another large-scale analysis across 8,656 TCGA
tumor samples, recurrent mutations generating alternative
splice junctions were identified in various tumor suppressor
genes (e.g., TP53, GATA3, PTEN, SETD2, DDX5, BCOR,
SPOP, KDM6A, SMAD4, and BAP1) (Jayasinghe et al., 2018).
A recent comprehensive study on TCGAWhole Genome, Exome
and RNA Sequencing data showed that 562 mutations in non-
coding regions of the human genome created novel splice-site and
exon boundaries. Some of these new splice-sites were found in
cancer-related genes, such as TP53, ATRX, BCOR, and SMAD4
(Cao et al., 2020), leading to aberrant splicing and functional loss
of tumor suppressor genes.

Alterations in Splicing Factors
Many of the genes that encode core components of the
spliceosome and associated regulatory proteins are mutated in
cancer (see for a list of genes (Urbanski et al., 2018)). One of the
most frequently mutated core components of the spliceosome is
the Splicing Factor 3B Subunit 1 (SF3B1). SF3B1 is an essential
member of the U2 snRNP core component of the spliceosome
complex, anchoring it to the branch point. Recurrent mutations
within its C-terminal HEAT (Huntingtin, Elongation factor 3,
protein phosphatase 2A, Targets of rapamycin 1) repeat domains
have been reported in many cancers, including the blood cancer
myelodysplastic syndrome (Malcovati et al., 2011; Papaemmanuil
et al., 2011; Yoshida et al., 2011), breast cancer (Fu et al., 2017),
and uveal melanoma (Furney et al., 2013; Harbour et al., 2013;
Martin et al., 2013). Most cancer-associated mutations in SF3B1
can lead to the usage of an alternative 3′ splice site located
upstream of the canonical 3′ splice site (DeBoever et al., 2015)
or the usage of an alternative branch point (Darman et al., 2015).
Interestingly, alternative 3’ splice sites recognized by mutated
SF3B1 are missed in SF3B1 wildtype knockdown or
overexpression experiments (Alsafadi et al., 2016). In
particular, the SF3B1K700E mutation has been found to reduce
intron retention in transcriptomes (Shiozawa et al., 2018), which
has also been confirmed by Tang et al. using a nanopore
sequencing workflow called Full-Length Alternative Isoform
analysis of RNA (FLAIR). With their new technology the
authors discovered that SF3B1K700E mutations in chronic
lymphocytic leukemia globally downregulate intron retentions
(Tang et al., 2020).

The other most frequently mutated gene among alternative
splicing regulators is Serine/arginine-rich Splicing Factor 2
(SRSF2), encodes for a member of the SR-rich trans-acting
factor protein family. Mutations in SRSF2 have been reported
mainly in hematologic malignancies such as myelodysplastic
syndromes, chronic myelomonocytic leukemia, and acute
myeloid leukemia (reviewed in (Urbanski et al., 2018)).
Almost all mutations in SRSF2 are found at the amino acid
position proline 95. Mutations at this site alter the sequence-
specific RNA binding activity of SRSF2 resulting in the change of
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its recognition preference for exonic splicing enhancer
recognition motifs (Kim et al., 2015). Thus, mutant SRSF2 can
mis-splice the EZH2 gene, which subsequently undergoes
nonsense-medicated decay leading to defects in hematopoietic
differentiation (Kim et al., 2015).

Expression Changes in Splicing Regulators
Up- or down-regulation of splicing regulators are frequently
found in acute myeloid leukemia, breast cancer, colorectal
adenocarcinoma, and prostate cancer, where 70% of splicing
regulators are often upregulated (Sveen et al., 2016). For
example, high co-expression levels of 21 splicing factor genes
in breast cancer were associated with tumor aggressiveness and
high risk for metastasis. One of these splicing factors, hnRNPH,
was observed to control the alternative splicing of the RON
receptor tyrosine kinase. The upregulation of hnRNPH in
gliomas resulted in a switch of the RON protein to a ligand-
independent constitutively active isoform (LeFave et al., 2011). As
hnRNPH binds sphingosine-1-phosphate lyase 1 (SGPL1), its
overexpression causes the stabilization and upregulation of
SGPL1 in colorectal cancer cells, thereby inhibiting apoptosis
and promoting tumor progression (Takahashi et al., 2020).
Interestingly, splicing factors in breast cancers tend to be hit
by copy number alterations and associated expression changes
rather than recurrent mutations (Park et al., 2019).

The majority of chromophobe renal cell carcinomas, on the
other hand, show a somatic copy number loss and associated loss
of SF3B1 expression (Paolella et al., 2017). However, in related
cancer types of clear cell and papillary renal cell carcinomas
(Paolella et al., 2017; Ohashi et al., 2019), SF3B1 tends to be
overexpressed as well as in other cancer types such as
hepatocellular carcinoma leading to lower survival rates
(López-Cánovas et al., 2021).

PRPF6, a U5 snRNP, is another splicing factor frequently
overexpressed in cancer cell lines, including colorectal carcinoma
leading to the aberrant splicing of the oncogenic form of the
mitogen-activated protein kinase 20 (MAP3K20) (Adler et al.,
2014).

COMPUTATIONAL TOOLS AND
RESOURCES TO DETECT DIFFERENTIAL
TRANSCRIPT USAGE AND ITS
FUNCTIONAL IMPACT

To detect the aforementioned splicing events, many
computational software packages and websites have been
developed for differential splicing analysis. They can be
classified into count-based methods and isoform-based
methods, the former which can be further divided into
exon-based methods and event-based methods. Software
tools among the exon-based methods are for example
DESeq2 (Love et al., 2014), DEXSeq (Anders et al., 2012),
edgeR (Robinson et al., 2010; Anders et al., 2012), JunctionSeq
(Hartley and Mullikin, 2016), limma (Ritchie et al., 2015),
while event-based methods include dSpliceType (Zhu et al.,

2015), MAJIQ (https://majiq.biociphers.org), rMATS (Shen
et al., 2014), SUPPA2 (Trincado et al., 2018), and
LeafCutter (Li et al., 2018). Example for isoform-based
methods include Cuffdiff2 (Trapnell et al., 2013) and
DiffSplice (Hu et al., 2013). Exon-based methods compare
read counts at exons or exon-junctions between different
conditions, while event-based methods compare the
percentage of spliced-in values of splicing events such as
intron retention and exon skipping between conditions
(Muller et al., 2021). On the other hand, isoform-based
methods align the collection of all paired-end reads to the
full-length sequence of each isoform to model their
abundances. In a recent comparative study, Mehmood A.
et al. evaluated the performance of 10 differential splicing
analysis tools, including exon-based, event-based, and
isoform-based methods on four different vertebrate data
sets. They measured the tools’ consistency, reproducibility,
precision, recall, and false discovery rate and found that all
exon-based methods outperformed the other tools in
identifying qPCR-validated differential splicing events.
However, overall, the performances varied according to
different data sets, why the authors emphasized running
multiple tools in differential splicing analysis projects
(Mehmood et al., 2020).

In contrast to differential expression analysis, methods that
measure Differential Transcript Usage (DTU) test the
significance of relative abundance changes of transcripts in
different conditions. DTU can provide complementary
information to Differential Gene Expression (DGE)
analysis (Figure 2). Genes with the same total expression
level in different experimental conditions might have a
different predominantly expressed transcript. There are
various Bioconductor packages available for DTU analysis
such as DEXSeq (Anders et al., 2012), diffSpliceDGE
(Robinson et al., 2010), diffSplice (Hu et al., 2013),
DRIMSeq (Nowicka and Robinson, 2016), BANDITS
(Tiberi and Robinson, 2020), IsoformSwitchAnalyzeR
(Vitting-Seerup and Sandelin, 2019) and TSIS (Guo et al.,
2017). These methods have been developed for bulk RNA-seq
data. Their scalability with single-cell RNA-seq (scRNA-seq)
data is limited. Recently, Gilis et al. assessed different DTU
methods on both bulk and scRNA-seq simulated data and
concluded that many DTUmethods are unable to handle large
volumes of data (e.g., 30,000 transcripts), prolonging the
analysis to several days (Gilis et al., 2021). To compensate
for this bottleneck the authors developed SatuRn, which uses
flexible quasi-binomial generalized linear modeling to
enhance DTU analysis (Gilis et al., 2021). The
computational pipeline Sierra (Patrick et al., 2020), on the
other hand, applies a splice-aware peak calling algorithm
based on DEXSeq to cope with massive polyA-captured
scRNA-seq data.

Besides detecting DTU, IsoformSwitchAnalyzeR identifies
functional consequences including intron retention, open
reading frame, nonsense-mediated decay sensitivity, coding
potential etc. (Vitting-Seerup and Sandelin, 2019). It is
dependent on other tools for transcript abundance
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calculations. Similarly, TappAS is a new computational
framework to calculate DTU and study differential polyA site
usage and analysis of UTR lengths between isoforms (de la Fuente
et al., 2020).

ISOexpresso is a web server on isoform switching events that
performs live comparisons between isoform expression levels of
different TCGA cancer types and matched normal samples (Yang
et al., 2016). The domain changer presenter (DoChaP) is a web server
that visualizes exon and protein-domain differences between all
transcripts of a gene (Gal-Oz et al., 2021). The Domain
Interaction Graph Guided ExploreR (DIGGER) database, on the
other hand, provides protein-protein and domain-domain
interaction visualization for known protein isoforms, giving hints
to which interactions are lost or preserved in different isoforms
(Louadi et al., 2021). We have recently developed CanIsoNet, a web
server, to study the pathogenic impact of cancer-specific most
dominant transcript in multiple cancer types (Karakulak et al.,
2021). All the computational tools and resources mentioned above
serve as a gateway to better understand the functional impact of
alternative splicing events.

In recent years, additional strategies have been developed to
study isoform switching events in pan-cancer studies. In the next

section, we will discuss these strategies in detail and highlight the
similarities and differences in their results.

COMPARISON OF PAN-CANCER STUDIES
TO DETECT ISOFORM SWITCHING
EVENTS
Pan-cancer studies aim to dissect genomic and transcriptomics
similarities and differences between various cancer types. Over
the last 4 years, three large pan-cancer projects have utilized
large-scale sequencing data from The Cancer Genome Atlas
(TCGA) (The Cancer Genome Atlas Research Network et al.,
2013), and the Pan-Cancer Analysis of Whole Genomes
(PCAWG) projects (The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020) to analyze isoform switching
events and their functional impact in multiple cancer types. The
first two studies covered 4,542 and 5,500 different cancer samples
from 11 to 12 different cancer types, respectively. The former was
performed by Climente-González et al. (Climente-González et al.,
2017) while the latter was conducted by Vitting-Seerup and
Sandelin (Vitting-Seerup and Sandelin, 2017). Recently, our

FIGURE 2 | Gene Expression of VAV1 and AR in a prostate normal tissue (GTEx) and a prostate cancer (PCAWG) sample. While the VAV1 gene has a similar total
expression, the AR gene is overexpressed in prostate cancer showing Differential Gene Expression (DGE). Despite the similar total gene expression, four of five
transcripts of VAV1 undergo Differential Transcript Usage (DTU) between normal and prostate cancer, symbolized by four green ticks and one red cross in the legend.
The major transcript of AR (dark grey bar) remains highly expressed in prostate cancer, but minor transcripts, including AR-V7 (blue bar), are subjected to DTU.
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lab published the most comprehensive study in terms of cancer
types covering 27 cancer types, including various subtypes with a
total of 1,209 cancer samples (Kahraman et al., 2020).

Interestingly, all three projects report different number of
isoform switching events (see Table 1). The Vitting-Seerup
study discovered 4,446 cancer-specific isoform switching
events (2,792 unique isoform switching events) from 2,352
genes across 12 cancer types (Vitting-Seerup and Sandelin,
2017). Each splicing event was predicted to have a functional
impact due to changes in protein domain structures. The

Climente-González study detected 37,476 cancer-specific
isoform switching events (8,122 unique isoform switching
events) from 6,442 genes (Climente-González et al., 2017)
across 11 different cancer types while the Kahraman study
discovered over 31,748 cancer-specific isoform switching
events (13,498 unique isoform switching events) from 7,143
genes across 27 different cancer types (Kahraman et al., 2020).

With respect to the methodology, each of the three studies
used slightly different definitions for an isoform switching event:
the Climente-González study computed differential transcript

TABLE 1 | Technical details of recent pan-cancer studies on isoform switching events. Abbreviations: CI � Confidence Interval, FDR � False Discovery Rate, FPKM �
Fragments Per Kilobase of transcript per Million mapped fragments, GRCh37 � Genome Reference Consortium human build version 37, IF � Isoform Fraction, MDT �
Most Dominant Transcript, PCAWG � Pan-Cancer Analysis of Whole Genomes, PSI � Percent-Spliced-In, RLE � Relative Log Expression, TCGA � The Cancer Genome
Atlas, TPM � Transcripts Per Million. Definitions of cancer types’ abbreviations can be found in the abbreviation list at the end of the manuscript.

Climente-Gonzales et al. Vitting-Seerup et al. Kahraman et al.

Data source TCGA TCGA PCAWG
Data Set 4,542 cancer samples from 11 solid cancer

types
5,562 cancer samples from 12 solid cancer
types

2,232 GTEx normal samples and 1209 cancer
samples from 27 solid and hematological cancer
types.

Cancer Types BRCA, COAD, KICH, KIRP, KIRC, LIHC,
LUAD, LUSC, PRAD, THCA, HNSC

BRCA, COAD, KICH, KIRP, KIRC, LIHC, LUAD,
LUSC, PRAD, THCA, STAD, HNSC

BRCA, COAD, KICH, LIHC, LUAD, LUSC,
PRAD, STAD, THCA, HNSC.
In addition: Kidney-RCC(KIRP, KIRC), Biliary-
AdenoCA, Bladder-TCC, Bone-Leiomyo,
Breast-LobularCA, Cervix-AdenoCA, Cervix-
SCC, CNS-GBM, CNS-Oligo, Eso-AdenoCA,
Lymph-BNHL, Lymph-CLL, Lymph-NOS,
Ovary-AdenoCA, Panc-AdenoCA, Skin-
Melanoma, Uterus-AdenoCA

Genome Assembly GRCh37 GRCh37 GRCh37
Library Filtering — • Discard samples with <20 million reads • Only Samples labeled as whitelisted in the

PCAWG project
• One library per patient • Discard cancer types with ≤2 samples
• Only cancer types with ≥25 paired samples —

RNA-seq data
processing

• TPM for PSI calculation • RLE normalized FPKM values for IF
calculation

• TPM values for MDT calculations
• Transcripts with TPM <0.1 were ignored • Transcripts with TPM<2 in PCAWG and

TPM<0.2 in GTEx were ignored
Isoform Switch
Calculation

• Genes containing multiple isoforms • Genes containing multiple isoforms • Genes containing multiple isoforms
• Discard genes outside of 95% CI of

normal expression values
• Discard isoforms and genes if 95% CI of

mean expression <1 FPKM
• Compute MDT: 1st ranked transcript

expression ≥ 2 × 2nd ranked transcript
expression

• Discard differentially expressed genes
(Wilcox-Rank Sum test p-value < 0.01)

• dIF � IFtumor—IFnormal • Discard transcripts found as MDT in GTEx

• dPSI � PSItumor –PSInormal • For paired samples in a cancer type,
compute mean of all paired sample dIF

• Discard genes not having an MDT in 50% of
GTEx samples

• Ignore cancer cases with PSItumor <
PSInormal and normal cases with PSInormal

< PSItumor

• Also compute between all cancer and normal
samples difference in mean dIF

• Discard transcripts in a cancer sample, if
relative expression is smaller than median
expression in GTEx.

• Discard lowly recurrent switches
(binomial test, adjusted p < 0.05)

• Significant isoform switch if mean dIF>0.1
and FDR<0.05.

• Cancer-specific MDT if FDR corrected sign-
test<0.01.

• Significant isoform switch if dPSI>0.05
and empirical p < 0.01.

— —

Statistical Tests Empirical p-value computed by comparing
dPSI of a cancer sample to distribution of
dPSI values from all pairwise normal
samples.

Benjamini–Hochberg Benjamini–Hochberg
FDR corrected paired-Mann-Whitney U test for
paired samples, Unpaired-Mann-Whitney U
test for unpaired samples

FDR corrected sign test, in which a transcript’s
relative expression in a cancer sample is
compared to all GTEx expression values and the
frequency of higher and lower values is tested
using two-sided bionomial test.

Unique Isoform
Switching Events

8,122 from 6,442 genes 2,792 from 2352 genes 11,040 from 7,143 genes

Total Isoform Switching
Events Across Different
Cancer Types

37,476 4,446 31,748
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isoform usage by comparing Transcript Per Million (TPM) values
of transcripts in tumor and normal samples from TCGA. A
Proportion Spliced-In (PSI) score assessed the relative expression
of a transcript with respect to the total gene expression. A
differential PSI score defined as dPSI � PSItumor–PSInormal

estimated the differential transcript isoform usage. Where
possible, the matched normal samples were used, or if absent,
the median PSI of a transcript in all normal samples across the
same tissue was utilized. Genes displaying differential expression
were discarded to avoid misleading results in the study.

The Vitting-Seerup study took a similar approach using the
same TCGA data. However, they used Relative Log Expression
(RLE) normalized Fragments Per Kilobase Million (FPKM)
counts and considered only isoform switching events that had
been detected in both matched and unmatched tumor samples
(Table 1). In contrast to Climente-González et al., relative
expression values of the transcripts were termed Isoform
Fraction (IF) and used to compute a dIF score which
compares the difference in the IF values of transcripts between
cancer and normal samples. A minimum number of 25 isoform
fraction values per condition was required for calling an isoform
switch event.

The Kahraman study, identified isoform switching events by
comparing Most Dominant Transcripts (MDTs) within the
PCAWG project. Note, that over 50% of PCAWG’s RNA-seq
samples were originating from TCGA. An MDT was defined as a
transcript whose expression value was at least two-times higher
than the second most expressed alternative transcript of the same
gene in the same sample. As expression values from matched
normal samples were mostly not available in PCAWG, the
Kahraman study used expression values from the Genotype-
Tissue Expression (GTEx) project (Lonsdale et al., 2013). The
GTEx project stores gene and transcript expression information
for 54 tissue types collected from nearly 1,000 individuals. A
cancer-specific MDT (cMDT) was called, if an MDT in a cancer
sample was unique to the cancer and not observed as an MDT in
the matched GTEx tissue type. Similar to the Climente-González
study, Kahraman et al. calculated isoform switching events per-
patient.

To reduce the number of false-positive identification, the
Climente-González study computed an empirical p-value for
each isoform switch using its dPSI value in comparison to the
distribution of dPSI values in normal samples. Each isoform was
required to have a dPSI >0.05 and a p-value <0.01. In contrast, the
Vitting-Seerup study compared the dIF values of matched
samples for each cancer type using a paired Mann–Whitney U
test. To generalize their results, all dIF values in a cancer type were
also compared with a standard Mann–Whitney U test to all dIF
values in normal samples. Genes having at least one transcript
with dIF >10% and FDR corrected p-value < 0.05 were regarded
as having an isoform switching event. The Kahraman study used
various filters and a sign-test to detect significant isoform
switching events. The filters included the uniqueness of a
cMDT to a cancer type, the requirement of a cMDT gene to
have an MDT in ≥50% of the matched GTEx samples, and a
higher relative expression of a cMDT than the median relative
expression in the matched GTEx cohort. To test for significant

hits, a sign-test was utilized comparing the relative expression of
cMDT to its expression values in the matched GTEx cohort.
cMDTs were required to have Benjamini–Hochberg FDR
corrected p-value < 0.01.

To understand to what extent the results of the three pan-
cancer studies resemble each other, we compared the cancer-
specific transcripts reported by each study. Overall, the overlap
between genes undergoing isoform switching events and cancer-
specific isoforms between all three studies was small
(Supplementary File S1, Table 2, Table 3). The highest
number of common events were detected for Kidney-RCC and
Liver hepatocellular carcinoma with 10 and 7 common switches,
respectively (Super Exact Test p-value: < 4.2 × 10−6), while no
overlap was found for prostate adenocarcinoma and thyroid
carcinoma (Figure 3; Table 2).

The overlap of isoform switching events between the
Climente-González and Vitting-Seerup studies was higher
(Supplementary File S2). For the prostate cancer cases
mentioned above, we identified a total of ten common isoform
switches between both studies (Super Exact Test, p-value: 4.6 ×
10−4). The largest overlaps with 154 and 348 common transcript
switches between both studies were found for kidney
chromophobe cancer and again for Kidney-RCC, respectively
(Super Exact Test p-value: < 4.2 × 10−6) (Figure 3; Table 2). In

TABLE 2 | Common isoform switching events between the studies of Climente-
González et al., Kahraman et al. and Vitting-Seerup et al.

Cancer Types Isoform Switching Events

Normal Isoform_Cancer-specific Isoform (Gene Name)

BRCA uc003gbj_uc003gbi (CPLX1)
uc004aso_uc004asp (BICD2)
uc003ncb_uc011djb (CAP2)

COAD uc002vhm_uc002vhq (PNKD)
KICH uc002otv_uc002otw (CEACAM1)

uc001mvx_uc001mvw (CD44)
uc002unj_uc002unn (ZNF385B)

LIHC uc003iew_uc003iex (NUDT6)
uc003tbv_uc010kwf (AQP1)
uc003pko_uc010kbr (NT5E)
uc003tre_uc003trf (NIPSNAP2)
uc002yki_uc002ykj (CXADR)
uc001kgn_uc001kgo (PANK1)
uc001qyu_uc001qyt (YBX3)

LUAD uc003gbj_uc003gbi (CPLX1)
uc002yki_uc002ykj (CXADR)

LUSC uc002uxj_uc010ftb (CASP10)
uc002nym_uc002nyn (LSR)
uc003vqg_uc003vqc (MEST)

PRAD No common isoform switching event
THCA No common isoform switching event
KIRC and KIRP uc001kza_uc001kyy (MXI1)

uc003akb_uc003ake (RNF185)
uc004evg_uc004evi (AIFM1)
uc002bdb_uc002bdc (CIB2)
uc002cok_uc002coi (SLC9A3R2)
uc001dpx_uc001dpy (BCAR3)
uc002yki_uc002ykj (CXADR)
uc004bsg_uc004bsi (FBGS)
uc003aks_uc003akr (PATZ1)
uc003eas_uc003eaq (GRAMD1C)
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general, the higher number of isoform switching events in the
Climente-González study (37,476 in total) compared to the
Vitting-Seerup study (4,446 in total) seemed to be related to the
less stringent criteria for detecting switching events; Climente-
González dPSI ≥0.05 vs Vitting-Seerup dIF ≥0.1 (Table 1).

The paucity of common transcripts detected as switch events
in both studies and the Kahraman study is most likely due to lack
of matched normal samples in the latter study. Contributing to
the difference might also be contaminations in GTEx that were
found in highly expressed and tissue-enriched genes
(Nieuwenhuis et al., 2020). The Kahraman study addressed
these issues by applying various rigorous filters and statistical
tests and by focusing only on MDT calls. In addition, the
Kahraman study used Ensembl (Hubbard, 2002) as a
transcript annotation database, while the other two studies
used the UCSC database. As a result, only 11,495/13,498 of
unique isoform switching events were matched between the
databases. Lastly, the smaller number of isoform switches
reported by the Vitting-Seerup study (4,446 in total) could be
traced back to the focus of the study on isoform switches with
functional consequence only.

DISCUSSION

There were two main drawbacks in our comparison of the three
pan-cancer studies. Firstly, to the best of our knowledge, a gold-
standard data set with experimentally verified isoform switching
events in various cancer types was not available for our
comparison. Without a controlled setting in which only the
parameters of the applied methods are varied, the
identification of the strengths and weaknesses of methods is
difficult to recognize. Secondly, the methods behind the pan-
cancer studies were not readily available as software packages.
Instead, all three methods were loose collections of different
software tools connected with custom scripts into analysis

pipelines, tailored for their particular data sets. Thus, it was
not possible to run the three methodologies on an identical
data set for a thorough assessment of their performances.

Despite the difficulties, our comparison of the three pan-
cancer studies revealed only a small number of common
switching events between the different methods. Given the
discrepancy in the results of the three pan-cancer studies
following important points should be considered for any
isoform switching analysis:

• Matched vs unmatched normal samples: Whenever
possible, matched normal samples should be used. If
matched normal samples are not available, GTEx data
are an alternative. In the latter case, potential biological
artefacts should be controlled as covariates such as gender,
age, tissue type etc. (Wang et al., 2018). Notably, the same
quantification analysis pipeline should be used for cancer
and GTEx samples (Zeng et al., 2019).

• Redundant cDNA sequences: Some protein isoforms have
identical cDNA sequences with different translation start
sites, e.g., TP53-206 and TP53-220 (Ensembl Database v104).
The detection of a single most dominant transcript for such
genes is not trivial. Depending on the analysis pipeline, the user
might want to remove redundant cDNA sequences to improve
the detection of most dominant transcripts.

• Most Dominant Transcripts vs Isoform Fraction: Isoform
switching events can be determined by detecting and
comparing Most Dominant Transcripts (MDT) or
Isoform Fractions between different conditions. As
many genes have a single most dominant transcript
under normal conditions (Ezkurdia et al., 2015), the
identification of MDT switches is a reasonable
approach for detecting cancer-specific alternative
splicing events. However, significant changes in the
expression of minor transcripts can be missed in an
MDT analysis (see next point). Under such

TABLE 3 | List of common genes having an isoform switching event in Climente-González et al., Kahraman et al., Vitting-Seerup et al.

Overlaps of 3 Studies Gene Names

BRCA TNC, ATXN3, FAM76B, CAP2, PNPLA7, PPAN, DACH1, CPLX1, SKA2, BICD2, HOXC6
COAD C19orf60, OSBPL5, CD44, ZFYVE16, TLE2, ST6GALNAC1, LIMS2, CALD1, PNKD, SHC2, RIN2, MYO10, C7orf50, AK3,

RABGEF1, TSPAN7, FMNL3, ING2, PCCA, SH3BGR, BTN3A2
KICH CD44, RC3H2, CEACAM1, NRCAM, CDADC1, GSPT1, CAV1, DNMBP, LIPA, NCOA7, KTN1, PDGFRA, BCAR3, RGS3,

TARS2, ZNF385B, OBSCN, NAGS, BSCL2, PCMTD1, AP1S2, EXD3, ZNF44, WWP2, CTNND1, SCAMP5
LIHC KIF22, NXT2, NT5E, GBAS, PANK1, CXADR, MFAP4, NUDT6, FGGY, AQP1
LUAD SPAG9, LSR, ITM2C, CXADR, CPLX1, TNFRSF10C
LUSC CASP10, SDCCAG8, ATXN3, CECR1, DYRK1B, LSR, MEST, GAB1, CNOT2, MKLN1, SHROOM2, NTRK2, DST, IL17RE,

PPFIBP2, WWOX, CTNND1
PRAD VAMP1
THCA CHF, Clorf198, FAM174B
KIRC + KIRP C19orf60, MLXIPL, PLEKHH1, ATP2B4, SLC9A3R2, FGFR2, RASSF1, ATP2B1, BAZ2A, SMARCA2, EPS15, IPO11,

MMP2, CECR1, MFNG, PATZ1, ASB9, FLT1, TAF1C, ILVBL, TIMM50, ADAP1, CAV1, DOCK8, DNMBP, LIPA, SHOC2,
KLHL2, ST3GAL4, MVK, SCNN1A, BTN3A3, DOCK7, MXI1, ARAP3, ACOT9, IQSEC2, PSD4, EML2, TRPM4, EPS8L1,
DIAPH1, DMGDH, PDGFRA, BIVM, ITM2C, CIB2, BIN1, FPGS, BCAR3, NCOA4, RNF185, SSBP2, DCDC2, ZNF185,
TM7SF2, SCOC, ABI3BP, CXADR, RABGEF1, RMND1, AIFM1, SLC35B2, KALRN, MUM1, TBC1D24, STK36, HDAC11,
MYO5B, TMCC1, GOLGA8A, EFCAB4A, GRAMD1C, LIMK2, SPNS3, AFMID, RBM33, FAM174B, MITF, ZNF559,
TMEM201, ZNF44, WWP2, SCAMP5, PPME1, CUX1

Gene names are shown in italics.
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circumstances, the usage of isoform fractions can be more
appropriate for splicing analysis. A critical step in
isoform fraction analysis is deciding a proper cut-off
for detecting isoform switching events; the lower the
cut-off, the higher the risk for false-positive
identifications.

• Minor transcripts: Changes in the expression of minor
transcripts can be as important as most dominant
transcript switches. For example, the V7 transcript of
the Androgen Receptor (AR-V7) is a constitutively
active nuclear receptor found primarily overexpressed in
metastatic castration-resistant prostate cancers (mCRPC)
(Tan et al., 2015; Zhang et al., 2020). The overexpression of
AR-V7 emerges as a resistance mechanism to androgen
deprivation therapies and is used to switch the treatment
of prostate cancer patients from an AR inhibitor to a

standard of care chemotherapy (Graf et al., 2020).
Despite the over-expression of AR-V7, the main
expressed AR transcript remains the canonical full-
length AR transcript. Therefore, focusing on the most
dominant transcript of AR only would miss significant
expression changes in AR-V7.

• Transcript Count Normalization Methods: Normalization
of raw RNA-seq expression data is crucial for addressing
biases within-samples (e.g., length of a gene, GC content),
and between-samples (e.g., sequencing coverage, total RNA
yield, batch effects) (Evans et al., 2018). FPKM (Fragments
Per Kilobase of transcript per Million fragments mapped)
and TPM (transcripts per million) are often used as
normalizations methods. RPKM and FPKM have been
primarily developed to account for within-sample biases.
On the other hand, TPM takes average invariances into

FIGURE 3 | Venn diagrams showing the number of common isoform switching events in three pan-cancer studies for Kidney-RCC, kidney chromophobe, liver
hepatocellular carcinoma and, prostate adenocarcinoma.

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7269029

Karakulak et al. Alternative Splicing in Pan-Cancer Studies

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


account. As the sum of all TPM values in different samples is
the same, the TPM measure should be used whenever the
expression values of different samples are compared, e.g.,
PCAWG vs GTEx samples.

• Statistical Methods: A paired or unpaired Mann-Whitney U
test is ideal for testing significant alternative splicing changes
between matched or unmatched cohorts, respectively, like in
the Vitting-Seerup study. On the other hand, if patient-
specific differences between isoform expressions should be
detected, variations of a binomial test applied by Climente-
González et al. and Kahraman et al. should be used.
Climente-González used the binomial test to filter out
isoforms switches that are not recurrent across different
cancer samples. The Kahraman study applied a sign-test
with a two-sided binomial test to compare the expression
value of a single cancer sample to the matched GTEx cohort.

A general problem of the three projects mentioned above is their
usage of short-read sequencing data to identify full-length isoform
sequences. Wang et al. identified large differences in the RNA and
protein isoform sequences compared to RefSeq and Ensembl in rat
hippocampus by using full-length RNA sequencing technology in
combination with polysome profiling and ribosome footprinting
(Wang et al., 2019). Thus, the application of long-read third-
generation sequencing (TGS) technologies (Pacific BioScience and
Oxford Nanopore) should be prioritized for future isoform-specific
alternative splicing studies. Furthermore, 40% of alternatively spliced
transcripts include premature termination codons, which are
degraded by the non-sense mediated decay pathway (Tabrez et al.,
2017). The degradation is part of the reason why the correlation
between transcript expression and protein expression is often below
R2 < 0.4 in multi-cellular organisms (de Sousa Abreu et al., 2009;
Schwanhäusser et al., 2011). Under such circumstances, changes in
transcript expression detected in isoform switch analysis can be
buffered out on the proteome level. Thus, it is important to
validate potential transcript biomarkers using proteomics
approaches to ensure that the effect of distinct transcript
expressions unfolds on the proteome and cellular level. This is
especially true for identifying putative splicing-derived neoantigens
for immunotherapy decisions (Kahles et al., 2018).

With new developments of technologies to detect full-length
transcripts and proteins isoforms and the implementation of new
computational methods and databases to analyze these data sets,
we hope that future studies will further highlight the importance
of alternative splicing to disease development and lead to new
targeted therapies against disease-causing splicing events.

METHODS

To understand to what extent the results of the pan-cancer studies
of Climente-González et al., Vitting-Seerup et al., and Kahraman

et al. resemble each other, we collected four different statistics on
the reported isoform switch events per cancer type.

1) Number of common genes having an isoform switching event
2) Number of common transcripts from normal samples found

in isoform switching events
3) Number of common transcripts from cancer samples found in

isoform switching events
4) Number of overlapping isoform switching events where

transcripts from normal samples are identical and
transcripts from cancer samples are identical.

The statistics were assessed only for the cancer types BRCA,
COAD, KICH, LIHC, LUAD, LUSC, PRAD, THCA, Kidney-
RCC (KIRC + KIRP), which were shared between all three
studies.

The Climente-González and the Vitting-Seerup studies used
the UCSC identifiers for isoform annotations, while the
Kahraman study used Ensembl Transcript IDs (ENST IDs).
Thus, we first matched 247,540 UCSC Transcript IDs to
ENST IDs via a mapping table from the UCSC database.
We compared the gene and isoforms identifiers of all cancer-
specific isoforms from the three studies using the ggvenn
package of ggplot2 R library (Wickham, 2016) and the
SuperExactTest package (M. Wang, 2015) (please see Github
repository). The ggvenn library was used to draw Venn diagrams
for each overlap calculation. The SuperExactTest package
was used to compute the significance of overlaps using the
Super Exact significance test, which is related to Fisher’s
Exact test but applicable to multiset intersections and
data sets. R and Python scripts for calculating data set
overlaps can be found at https://github.com/KarakulakTulay/
Isoform_Comparison.
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GLOSSARY

AdenoCA adenocarcinoma

Bladder-TCC bladder transitional cell carcinoma

Bone-Leiomyo bone/soft Tissue leiomyosarcoma

BRCA breast invasive carcinoma

Cervix-SCC cervix squamous cell carcinoma

cMDT cancer-specific most dominant transcript

CNS-GBM CNS glioblastoma

CNS-Oligo CNS oligodendroglioma

COAD colon adenocarcinoma

ColoRect-AdenoCA colon/Rectum adenocarcinoma

DGE differentially expressed genes

DTU differential transcript usage

ESE exonic splicer enhancer

Eso-AdenoCA esophagus adenocarcinoma

ESS exonic splicer silencer

GTEx genotype-tissue expression

Head-SCC head/neck squamous cell carcinoma

HNSC head and neck squamous cell carcinoma

ISE intronic splicer enhancer

ISS intronic splicer enhancer

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

Kidney-RCC kidney renal cell carcinoma, clear cell and papillary

LIHC liver hepatocellular carcinoma

LobularCA lobular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

Lymph-BNHLl ymphoid mature B-cell lymphoma

Lymph-CLL lymphoid chronic lymphocytic leukemia

Lymph-NOS lymphoid–not otherwise specified

Panc-AdenoCA pancreas adenocarcinoma

PCAWG pan-cancer analysis of whole genomes

PRAD prostate adenocarcinoma

STAD stomach adenocarcinoma

TCGA the cancer genome atlas

THCA thyroid carcinoma
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