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Abstract: Aortic valve-in-valve (ViV) procedure is a valid treatment option for patients affected
by bioprosthetic heart valve (BHV) degeneration. However, ViV implantation is technically more
challenging compared to native trans-catheter aortic valve replacement (TAVR). A deep knowledge of
the mechanism and features of the failed BHV is pivotal to plan an adequate procedure. Multimodal
imaging is fundamental in the diagnostic and pre-procedural phases. The main challenges associated
with ViV TAVR consist of a higher risk of coronary obstruction, severe post-procedural patient-
prosthesis mismatch, and a difficult coronary re-access. In this review, we describe the principles of
ViV TAVR.

Keywords: valve-in-valve; TAVR; bioprosthetic valve failure; structural valve degeneration

1. Introduction

In the last years, implantation of bioprosthetic heart valves (BHVs) is increasingly
becoming the treatment choice in patients requiring surgical aortic valve replacement. At
the same time, trans-catheter aortic valve replacement (TAVR) has been defined as the
preferred mode of intervention for patients aged ≥ 75 years, independently from their
surgical risk [1,2]. Despite engineering refinements, BHVs are prone to an unavoidable
degeneration with the onset of structural valve degeneration (SVD) generally occurring
seven to eight years after implantation [3]. Moreover, data concerning the very long-
term durability of trans-catheter heart valves (THVs) are still missing [4]. Whatever the
type of BHV implanted, surgical re-operative valve replacement of a failed bioprosthetic
valve carries a higher risk of morbidity and mortality compared with the initial valve
replacement [5]. For this reason, the procedure of valve-in-valve (ViV) TAVR has been
established as a valid therapeutic option in this scenario, and the number of such procedures
is inevitably estimated to exponentially increase in the next years. Despite ViV TAVR being
considered a safe and effective procedure, it is more technically challenging when compared
to TAVR for native aortic valve stenosis. The main reasons are represented by the bulky
presence of the failed BHV and the subsequent potential mechanical complications [6]. In
this review, we point out the practical aspects connected to ViV planning and performance.

2. Safety and Efficacy of ViV TAVR

Large registries demonstrated that ViV TAVR can be safely performed in patients
at increased surgical risk [7–9]. Predictable advantages of ViV TAVR consist of its short-
term safety. In fact, 30-day overall mortality was 7.6% in the Valve-in-Valve International

J. Clin. Med. 2022, 11, 344. https://doi.org/10.3390/jcm11020344 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11020344
https://doi.org/10.3390/jcm11020344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-6320-2959
https://orcid.org/0000-0003-2839-0373
https://doi.org/10.3390/jcm11020344
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11020344?type=check_update&version=1


J. Clin. Med. 2022, 11, 344 2 of 14

Data Registry (VIVID), enrolling 459 patients [7], 2.1% in the Society of Thoracic Sur-
geons/American College of Cardiology Transcatheter Valve Therapies Registry enrolling
1150 patients [8], and as low as 0.7% of 365 patients in the continued access PARTNER 2
ViV Registry [9]. However, randomized controlled trials (RCTs) comparing ViV TAVR and
surgical redo are not available and most of the direct comparison data came from propensity
score analyses. Spaziano et al. reported similar 30-day and 1-year mortality, stroke, renal
failure, and pacemaker implantation rates between treatments, with lower gradients with
surgery and shorter hospital length of stay with ViV TAVR [10]. In 262 patients, selected on
the basis of a 1:1 propensity-score match, Tam et al. reported lower early mortality, pace-
maker implantation, and blood transfusion rates for ViV TAVR, in association with a shorter
length of stay and a higher 5-year survival [11]. Similar data come from a large U.S. study,
enrolling more than 4000 patients [12]. Further confirmations, that ViV TAVR is associated
with better short-term outcomes than surgical redo, have been recently emerged from a
French Registry comparing 717 matched patients for each treatment: lower 30-day rates
of the composite of all-cause mortality, all-cause stroke, myocardial infarction (MI), and
major or life-threatening bleeding have been reported in the trans-catheter cohort, whereas
major cardiovascular outcomes did not differ between the two treatments during long-term
follow-up [13]. A meta-analysis, including 12 publications and more than 16,000 patients
proved the lower incidence of post-operative complications and better early survival of ViV
TAVR, at the cost of a higher rate of MI and severe patient-prosthesis mismatch (PPM) [14].
Less evidence is available concerning the long-term safety and efficacy of ViV TAVR. The
3-year follow-up of the PARTNER 2 trial showed that TAVR for BHV failure was associated
with favorable survival, sustained improved hemodynamic status and excellent functional
and quality-of-life outcomes [15]. Analogous findings emerged from the CoreValve U.S.
Expanded Use Study [16]: self-expanding TAVR in patients with failed surgical BHV at
extreme risk for surgery was associated with durable hemodynamics and excellent clinical
outcomes at 3 years. Nevertheless, data on very long-term outcomes after aortic ViV are
scarce. In a retrospective study [17], the estimated survival at 8-year was 38.0%, with a
median survival of 6.2 years: independent predictors of decreased patient survival were
small BHV size, high patient’s age, low baseline left ventricular ejection fraction, other than
transfemoral access and the presence of diabetes mellitus. Although ViV TAVR is now rec-
ognized as a good alternative to redo surgery in high-risk patients with failed surgical BHV,
there are few data concerning ViV within failed THVs. In this context, Landes et al. [18]
provided robust observational data to support the use of redo TAVR as a primary strategy
for the treatment of degenerated THVs, reporting low peri-procedural complication rates
in association with satisfying 30-day and 1-year survival (94.6% and 98.5% and 83.6% and
88.3% for patients presenting with respectively early and late THV dysfunction). Moreover,
in propensity score-matched cohorts of TAVR-in-THV versus TAVR-in-surgical BHV pa-
tients, TAVR-in-THV was associated with higher procedural success and similar procedural
safety and mortality [19]. An overview of the available evidence is reported in Table 1.

Table 1. Available evidence concerning ViV TAVR safety and efficacy.

First Author,
Study Year Study Type Type of Failed

BHV
Comparator/Study

Strategy
Patient Enrolled

(n) FU Main Findings

Dvir D, VIVID
[5] 2014

Retrospective,
observational

registry
Surgical BHV - 459 1

year

- 30-day all-cause mortality: 7.6%
- 30-day major stroke: 1.7%
- 1-year all-cause mortality: 16.8%

Tuzcu EM,
STS/ACC

Registry [6]
2018

Retrospective,
observational

registry
Surgical BHV TAVR in native

valve/1:2 PSM 1150 1
year

- 30-day ViV TAVR all-cause
mortality: 2.9%

- For ViV TAVR lower 30-day
mortality, 1-year mortality and
HF re-hospitalization compared
to TAVR for native valve
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Table 1. Cont.

First Author,
Study Year Study Type Type of Failed

BHV
Comparator/Study

Strategy
Patient Enrolled

(n) FU Main Findings

Webb,
PARTNER 2
ViV Registry

[7,13]

2017
and
2019

Prospective
registry

Surgical BHV at
high surgical

redo risk
- 365 3

years

- 30-day all-cause mortality: 2.7%
(0.7% for continued access
patients)

- 30-day CV death: 2.5%
- 30-day all stroke: 2.7%
- 30-day CO: 0.8%
- 30-day PM implantation: 1.9%
- 1-year all-cause mortality: 12.4%
- 3-years all-cause mortality: 32.7%

Spaziano M [8] 2017 Retrospective
study Surgical BHV Surgical redo/1:1

PSM
205 (78 pairs
after PMS)

1
year

- Similar 30-day all-cause mortality
(3.9% TAVR-in-BHV vs. 6.4%
surgical redo, p = 0.49)

- and 1-year all-cause mortality
(12.3% vs. 13.1%, p = 0.80)

- Similar 30-day stroke and PM
implantation

- Shorter hospitalization for
TAVR-in-BHV

Tam DY [9] 2020
Retrospective,

multicenter
study

Surgical BHV Surgical redo/1:1
PSM

558 (131 pairs
after PSM)

5
years

- Lower 30-day all-cause mortality
(ard: −7.5%), PPM implantation
and blood transfusion for ViV
TAVR

- Higher 5-year survival for ViV
TAVR (76.8% vs. 66.8%, p = 0.04)

Hirji SA [10] 2020 Retrospective
study

Surgical BHV at
high surgical

redo risk

Surgical redo/1:1
PSM

6815 (2181 pairs
after PSM)

30
day

- Unadjusted 30-day ViV TAVR
all-cause mortality: 2.7%

- Lower 30-day mortality (OR:
0.41), morbidity (OR: 0.72) and
major bleeding (OR: 0.66)

Deharo P [11] 2020 Retrospective
study Surgical BHV Surgical redo/1:1

PSM
717 pairs after

PSM
516

days

- Lower 30-day composite
endpoint of all-cause mortality,
all-cause stroke, MI and major
bleeding for ViV TAVR (OR: 0.62
p = 0.03)

- No differences at long-term FU
for composite endpoint of CV
death, all-cause stroke, MI or HF
re-hospitalization (OR: 1.18,
p = 0.26)

Sá MPBO [12] 2021 Meta-analysis Surgical BHV Surgical redo 16207 30
days

- Lower 30-day all-cause mortality
(OR: 0.53), stroke (OR: 0.65), PM
implantation (OR: 0.73), major
bleeding (OR: 0.49) for ViV TAVR

- Higher 30-day MI (OR:1.50) and
severe PPM (OR: 4.63) for ViV
TAVR

Dauerman HL,
CoreValve US
Expanded Use

Study [14]

2019 Prospective
single-arm study

Surgical BHV at
extreme surgical

redo risk
- 226 3

years
- 3-year all-cause mortality or

major stroke: 28.6%

Bleiziffer S
[15], VIVID

Registry
long-term FU

2020
Retrospective
observational

registry
Surgical BHV - 1006 3.9

years
- Estimated 8-year survival: 38%

Landes U [16] 2020
Retrospective
observational

registry
THV - 212 1

year

- VARC-2 device success: 85.1%
- 30-day all-cause mortality: 2.8%
- 1-year all-cause mortality: 13.2%
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Table 1. Cont.

First Author,
Study Year Study Type Type of Failed

BHV
Comparator/Study

Strategy
Patient Enrolled

(n) FU Main Findings

Landes U [17] 2021
Retrospective
observational

registry

Failed THV and
surgical BHV

TAVR-in-THV vs.
TAVR-in-surgical

BHV/1:1 PSM
1058 (165 pairs) 1

year

- Higher procedural success for
TAVR-in-THV (72.7% vs. 62.4%,
p = 0.045)

- Similar procedural safety (70.3%
vs. 72.1%, p = 0.715)

- Similar 30-day (3% vs. 4.4%,
p = 0.570) and 1-year (11.9% vs.
10.2%, p = 0.633) all-cause
mortality

ACC: American College of Cardiology; ard: absolute reduction difference; BHV: bioprosthetic heart valve;
CO: coronary obstruction; CV: cardiovascular; FU: follow-up; HF: heart failure; MI: myocardial infarction;
OR: odd ratio; PARTNER: Placement of Aortic Trans-catheter Valves; PM: pacemaker; PPM: prosthesis-patient
mismatch; PSM: propensity score matching; STS: Society of Thoracic Surgeons; TAVR: Trans-catheter aortic
valve replacement; VARC: Valve Academy Research Consortium; ViV: valve-in-valve; VIVID: Valve-in-Valve
International Data Registry.

3. Type of Aortic THVs and Surgical BHVs

Figure 1 depicts the current portfolio of available THVs and surgical BHVs, classified
according to the main device features. Concerning THVs, beyond the mode of delivery
[self-expanding (SE) vs. balloon-expandable (BE)], a relevant characteristic to be mentioned
is the supra- or intra-annular design. This aspect is crucial especially for a proper THV
selection during ViV TAVR. Likewise, several surgical BHVs, with different features, are
available on the market. Briefly, surgical BHVs are classified according to the type of
leaflet tissue (porcine vs. bovine) and according to the frame design (stented, stentless,
or sutureless). In detail, prosthetic leaflets can be mounted internally or externally to
the BHV frame. On one hand, externally mounted leaflets allow to obtain a larger valve
effective orifice area (EOA), however, on the other, increase the risk of coronary obstruction
during the ViV TAVR. Among stented BHVs, another difference concerns the possibility
to fracture the stent, with some BHVs in which balloon valve fracturing (BVF) is feasible,
others that can undergo balloon valve remodeling (BVR), and the remaining valves that
cannot undergo neither BVF nor BVR. In Table 2 we reported the feasibility of BVF/BVR in
the different BHVs.

The design of stentless prostheses is intended to achieve a more physiological flow
pattern and a superior hemodynamic in comparison to stented valves. Most of the stentless
BHVs partially or fully replace the aortic root and can be implanted by several surgical
techniques: complete or modified subcoronary, root inclusion, and full root. The full root
technique is accompanied by the lowest rate of PPM [20] at the cost of an increased risk of
coronary obstruction during ViV TAVR. Lastly, sutureless devices are BHVs implanted in an
open surgical fashion but require few or no sutures, allowing shortened cardiopulmonary
bypass and cross-clamp times [21]. It is important to note that stentless and sutureless
BHVs cannot undergo BVF.

Table 2. Feasibility of BVF/BVR in surgical BHVs.

BVF Feasibile BVR Feasible BVF/BVR Unfeasible

CE Magna
CE Magna Ease

CE Perimount 2800 and 2900
Mitroflow

Mosaic
Biocor Epic

Trifecta
CE standard

CE supra-annular
Inspiris Resilia

CE Perimount 2700

Hancock II
Avalus

Sutureless BHVs

BHV: bioprosthetic heart valve; BVF: balloon valve fracturing; BVR: balloon valve remodeling.
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Figure 1. Available portfolio of THVs and surgical BHVs regrouped according to their main
features: in purple, devices with self-expanding design; in red, devices with balloon-expandable
design; in green, devices made by porcine tissue; in blue, devices made by bovine pericardial
tissue; in orange, devices made by equine pericardial tissue. BHV: bioprosthetic heart valve; THV:
trans-catheter heart valve. *CE mark for valve-in-valve use.

4. Mode of BHV Failure

According to the Valve Academic Research Consortium (VARC)-3 criteria, four main
mechanisms of BHV failure have been identified: SVD, non-SVD, valve thrombosis, and
valve endocarditis [22]. SVD is defined as intrinsic permanent changes in BHV, including
wear and tear, leaflet disruption, flail leaflet, leaflet fibrosis, and/or calcification and
strut fracture, resulting in stenosis and/or regurgitation. Indeed, non-SVD encompasses
paravalvular leak (PVL) and PPM. A scale of SVD has been proposed by the European
Association of Percutaneous Cardiovascular Interventions endorsed by the European
Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery [23]
(Table 3). The precise diagnosis of the failure mechanism is of utmost importance to
plan the proper treatment. In fact, if patients affected from SVD are suitable for ViV
TAVR, in most of the non-SVD cases trans-catheter correction is not indicated and is
counterproductive. If PVL is the failure mode, understanding the underlying mechanism
is pivotal to predicting the ViV usefulness [24]. A practical diagnostic and therapeutic
algorithm is shown in Figure 2. In general, bovine pericardial BHV is more prone to
stenosis, whereas porcine leaflets tend to fail more commonly by regurgitation [6]. If THVs
and surgical BHVs have similar long-term durability is still an open issue. THV leaflets
are thinner, subjected to higher stresses and strain, and require crimping [25]. Despite
these aspects can predict a faster deterioration, THVs have less PPM and larger mean areas.
Taken together, current data show that THVs perform at least similarly to surgical BHV at
five to six years. Inevitably, the occurrence of PVL is still considered the main issue related
to the use of THVs than surgical replacement [26].
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Table 3. SVD scale provided by EAPCI [23].

Stage Echocardiographic Findings

0 (no SVD) Normal valve morphology and function

1 (morphological SVD)

Intrinsic permanent structural changes to the
prosthetic valve (leaflet integrity or structure

abnormality, leaflet function abnormality, strut/frame
abnormality)

2 (moderate haemodynamic SVD)

Mean transprosthetic gradient ≥ 20 mmHg and
<40 mmHg

Mean transprosthetic gradient ≥ 10 and <20 mmHg
change from baseline

Moderate intraprosthetic aortic regurgitation, new or
worsening (>1 + /4) from baseline

Stage 3 (severe haemodynamic SVD)

Mean transprosthetic gradient ≥ 40 mmHg
Mean transprosthetic gradient ≥ 20 mmHg change

from baseline
Severe intraprosthetic aortic regurgitation, new or

worsening (>2 + /4) from baseline
EACPI: European Association of Percutaneous Coronary Intervention; SVD: structural valve deterioration.
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Figure 2. Practical diagnostic and therapeutic algorithm in case of BHV failure suspicion. BHV:
bioprosthetic heart valve; BVF: balloon valve fracturing; MSCT: multi-slice computed tomography;
PPM: patient-prosthesis mismatch; PVL: paravalvular leak; SVD: structural valve deterioration;
TAVR: trans-catheter aortic valve replacement; ViV: valve-in-valve.

5. The Role of Pre-Procedural Multimodal Imaging

Pre-procedural multimodal imaging is pivotal when ViV TAVR is planned. Echocardio-
graphy and multi-slice computed tomography (MSCT) are the cornerstones in both diagnos-
tic and pre-procedural phases. Transthoracic and transoesophageal echocardiography are
able to differentiate SVD from non-SVD. Abnormal leaflet structure and motion are typical
of BHV SVD, thrombosis, and/or endocarditis, whereas PPM is characterized by normal
valve structure. Identification of high transvalvular gradients (mean gradient > 20 mmHg,
velocity peak > 3 m/s) poses the question of differential diagnosis between PPM and SVD:
a marked reduction of doppler velocity index (≤0.25) in association with reduction of effec-
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tive orifice area (EOA; <1 cm2) denotes SVD, whereas normal EOA value (with reduced
indexed EOA) is consistent with PPM diagnosis. Moreover, PPM is characterized by a
smaller increase in mean gradient during follow-up compared to SVD. Pressure recovery
is an underestimated reason for the potential overestimation of gradients using echocar-
diography, especially in patients with small ascending aortic dimensions. Nevertheless,
the original validation studies found highly significant correlations between simultaneous
echo-Doppler and catheterization systolic gradients also in patients with surgical prosthetic
aortic stenosis [27]. Due to the paucity of data on this topic in the context of THV SVD,
there should be caution in relying on echo-Doppler alone to diagnose true THV obstruction:
it is always important to compare with the Doppler velocity values after the procedure
to determine whether there is a significant change with time. Echocardiography is the
gold standard also to assess the entity, localization and mechanism of PVL, addressing the
feasibility of ViV TAVR to correct the defect. An example of multimodal imaging used to
guide the indication of ViV TAVR to correct a PVL is shown in Figure 3. Subclinical and
clinical leaflet thrombosis are well identified at MSCT as hypo-attenuated thickening and
hypo-attenuation affecting motion as hallmarks [28]. In the pre-procedural phase, MSCT is
mandatory to depict the main anatomical characteristics and to measure native and BHV
dimensions. In fact, beyond the standard analysis of ileo-femoral access, ascending aorta,
and aortic root, MSCT proves priceless information about the virtual-to-coronary (VTC) and
virtual-to-sinotubular junction (VTSTJ) distances, needed to estimate the risk of coronary
obstruction when the BHV posts extend above the coronary artery orifice or the sinotubular
junction (STJ), respectively. Inner stent and true inner diameter (ID) can be reproducibly
measured at MSCT and predict the occurrence of potential post-procedural mismatch.
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Figure 3. Multimodal imaging approach to assess the feasibility of ViV TAVR for PVL correction. A
patient, with previous Evolut R 34 mm (Medtronic) implantation, presented with severe paravalvular leak
(PVL) at transthoracic (A) and transesophageal (B) echocardiography, due to low device implantation.
Multi-slice computed tomography (MSCT) confirmed the PVL mechanism, showing incomplete native
annulus sealing by the narrow part of the trans-catheter (THV) waist (in (C) blue arrows indicate the
two gaps); moreover, also the internal THV skirt was too low and unable to properly work (D.1,D.2).
MSCT allowed a simulation of ViV TAVR using a balloon-expandable Sapien 3 29 mm (Edwards, blue
circle in (E)), able to stretch the self-expanding device frame in order to correctly seal the native annulus.
Angiographic evidence of pre-ViV TAVR PVL with confirmation of previous low THV implantation (F.1)
and final result (F.2). Post-procedural MSCT showed a proper PVL mechanism correction (G.1,G.2), with
only mild residual PVL at pre-discharge echocardiographic assessment (H). TAVR: trans-catheter aortic
valve replacement; ViV: valve-in-valve.
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6. Selection of THV Type

There are no unique recommendations concerning the type of THV that should be
selected for ViV TAVR. The choice should be conducted on the basis of multi-parametric
analysis. In general, is important to keep in mind that BE-THVs have an intra-annular
design, whereas SE-THVs can present prosthetic leaflets in a supra-annular or intra-annular
position. Supra-annular THVs have been associated with a lower incidence of PPM after
ViV [29] and can represent the preferred choice especially in smaller failed BHV (true ID
≤23 mm). However, if BVF is feasible, BE-THVs can be considered a valid option. BE-THVs
are the first choice in case of sutureless BHV SVD presenting with pure aortic regurgitation
or in case of future predictable need of coronary re-access.

The valve-in-valve app (the Aortic Valve in Valve app, Dr. Bapat and UBQO Ltd.)
can help in planning and performing the procedure with a quick and easy reference guide
to the anatomy, dimensions, and design features of available surgical BHVs and THVs,
including their fluoroscopic appearances [30]. Lastly, only Evolut (Medtronic, Minneapolis,
MN, US) and Sapien (Edwards Lifesciences, Irvine, CA, US) THVs have so far obtained the
CE mark approval for ViV TAVR.

7. ViV TAVR Challenges
7.1. Coronary Obstruction

Coronary obstruction is a serious procedural complication, associated with a high mor-
tality rate. This phenomenon is 3- to 4-fold more common after VIV TAVR when compared
with native valve TAVR [31]. Its incidence was 3.5% in the VIVID Registry [32] and 2.5% in
another multicenter registry [31]. After THV implantation, prosthetic leaflets are displaced
in a tubular fashion from the circular frame to which they are attached, creating a cylinder
effect. The “neo-cylinder” can come in direct, or near-direct, contact with the coronary
ostium or the STJ and cause flow sealing off to the coronaries or sinus sequestration, respec-
tively [33]. Predictors of coronary obstruction are dependent on the characteristics of the
degenerated BHV and native aortic anatomy. In general, stentless BHVs and stented BHVs
with externally mounted leaflets [e.g., Mitroflow (LivaNova PLC/Sorin Group, Saluggia,
Italy) and Trifecta (Abbott, Minneapolis, MN, USA)] are at higher risk [34]; the formers
due to the proximity of the leaflets to the usually re-implanted coronary arteries, the latter
because the leaflets extend outward the BHV frame. Moreover, the presence of bulky
bioprosthetic leaflets or a surgical BHV implanted in a supra-annular and/or slightly tilted
position in regard to the long axis of the aortic root (reducing the distance between BHV
and coronary ostia) can increase the risk of coronary obstruction. Among the patient’s
anatomical features, the coronary ostia position above the upper edge of BHV frame mini-
mizes the occurrence of coronary obstruction (type I of VIVID classification). The distance
between the annulus and the coronary ostia (coronary artery height) is less relevant in ViV
scenario if compared with native valve TAVR. In fact, the main predisposing factor is a
short distance between the “neo-cylinder” and the coronary ostia or the STJ. These two
distances can be reliable predicted at pre-procedural MSCT and have been known as VTC
and VTSTJ (Figure 4). Low values are typically associated with narrow aortic root and a
distance < 3–4 mm is considered at high risk for coronary obstruction. When the risk is
prohibitive, bioprosthetic aortic scallop intentional laceration to prevent iatrogenic coronary
artery obstruction (BASILICA) should be considered. However, BASILICA is challenging,
requires a high level of technical skill, and can be associated with a non-negligible incidence
of iatrogenic cerebral stroke [35]. Alternatively, a prophylactic coronary ostium stenting
(Chimney technique) can be considered [36]. A comprehensive classification of aortic root
anatomy in ViV TAVR and the consequently management algorithm has emerged from the
VIVID Registry [37] (Figure 5).
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the sinotubular junction (A.1,A.2), showing RCA distance from the annulus of 3.9 mm). This situation is
potentially at increased coronary obstruction risk. In this case, the following step is to calculate the VTC
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ViV: valve-in-valve; VTC: virtual-to-coronary distance; VTSTJ: virtual-to-sinotubular junction distance.
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7.2. Coronary Re-Access

Predictors of difficult coronary re-access after ViV TAVR are similar to those able to
predict the risk of coronary obstruction. Bioprosthetic leaflets during ViV are tilted up,
creating a “neo-skirt” that closes internally BHV frame struts. In this light, three aspects
should be considered: the coronary ostia location in relation to the “neo-skirt”, the STJ
dimensions, and the type and implantation mode of THV used. Briefly, coronary ostia
can be situated above (sub-coronary risk plane) or below the upper edge (supra-coronary
risk plane) of the BHV frame. The former scenario is associated with a predicted easy
coronary artery re-cannulation, if a proper THV commissural alignment is performed. A
supra-coronary risk plane is instead associated with an increased risk and the assessment
of STJ dimensions is fundamental. A narrow STJ with a small VTSTJ distance (e.g., type
IIa and IIIa of VIVID classification), beyond the increased risk of coronary obstruction, is
associated with a more difficult coronary re-access given the absence of enough space for
catheter manipulation. Lastly, the THV type plays a role in coronary re-access: short-frame
BE-THVs and SE-THVs equipped with large upper stent frames/arches are associated with
easier coronary re-cannulation. Engineering refinements have permitted to furnish the
next-generation SE-THVs of different markers, that guide operators to perform a correct
commissural alignment [38]. Positioning the prosthetic posts in-line with those of the
surgical BHV, increases the chance for co-axial coronary artery re-cannulation. After TAVR-
in-TAVR, coronary access may be challenging in a significant proportion of patients, as
demonstrated by De Backer et al. on the basis of MSCT analyses: in this setting, THVs
with intra-annular leaflet position or low commissural height and large open cells may be
preferable in terms of coronary access after TAVR-in-TAVR [39].

7.3. Potential Post-Procedural Mismatch

One of the main issues related to ViV TAVR is the occurrence of post-procedural severe
PPM, especially if the failed surgical BHV has a small true ID. It is important to remember
that only for stented BHV with externally mounted leaflets the true ID overlaps the stent
ID. For the other stented BHVs, the true ID is smaller compared to the stent ID: In porcine
valves, the difference relies on 2 mm. In low surgical risk patients with a 19- or 21-mm BHV
affected from SVD or severe PPM, repeat surgery should be advocated, with the caveat
that the surgeon may need to perform a root enlargement so as to implant a large surgical
valve size. In patients who are not candidates for surgery, then TAVR treatment for surgical
BHV, compared with TAVR in native aortic valve disease, has demonstrated to have good
durability and clinical outcomes at 3 years, despite higher gradients [15,16]. The use of an
SE-THV with supra-annular design is generally preferred in this scenario, guaranteeing a
better post-implantation hemodynamic profile. The drawback related to a small true ID
and/or a pre-existent significant PPM [40], can be solved by BVF or be partially reduced by
BVR. BVF and BVR are techniques to facilitate ViV TAVR, in which high-pressure balloon
inflation is performed using a non-compliant balloon to either fracture the surgical valve
ring or stretch the surgical valve ring or posts, allowing more optimal expansion of the
THV. The ideal balloon size for BVF should always be more than the true ID of the failed
BHV [6]. In a large multicenter series, BVF was safely performed in conjunction with both
BE- and SE-THVs and resulted in significantly lower final transvalvular residual gradients
and increased valve effective orifice area [41]. Recently, compared to ViV TAVR alone, ViV
TAVR with BVF resulted in a significantly lower transvalvular gradient acutely and at
follow-up [42]. In this study, independent predictors of lower gradients were the use of
SE-THVs and the treatment of BHVs other than Mitroflow, irrespective of BVF performance;
however, BVF significantly reduced the gradient independently from THV or surgical
BHV type. The authors reported a 4% incidence of mechanical complications directly
related to BVF. Nevertheless, the feasibility of BVF or BVR depends according to the type
of failed BHV [43,44]. Moreover, some concerns still persist on the proper timing. If BVF
is performed before TAVR, the advantage is easier implantation of THV with less sizing
mismatch at the cost of a higher risk of hemodynamic collapse due to the occurrence of
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acute severe aortic regurgitation. Contrariwise, performing BVF after TAVR is associated
with less risk of acute severe aortic regurgitation, but the disadvantages are a higher risk of
device embolization and a potential THV leaflets injury. In conclusion, despite an overall
good safety profile, the possibility of mechanical complications associated with BVF raises
concerns about its risk-benefit ratio, particularly considering the lack of data about its
potential beneficial clinical impact [17,45].

8. Knowledge Gaps
8.1. Stroke Risk and Cerebral Embolic Protection

Ischemic cerebral stroke is a rare, but fearsome, TAVR complication. Theoretically,
heavily calcified and/or friable leaflets of a failed BHV can predispose to a higher risk
of procedural ischemic stroke. A recent meta-analysis, including twenty-three studies,
revealed that ViV TAVR is associated with a mean 30-day stroke and mortality rates of
2.2% and 4.2%, respectively [46]. However, no significant differences in 30-day stroke
rate, 30-day mortality, and 1-year mortality between ViV TAVR and comparator treatment
(native TAVR or redo surgical aortic valve replacement) were observed [46]. This finding
makes the routine use of cerebral embolic protection device (CEPD) in ViV TAVR scenario
still debatable. On the basis of the available evidence, CEPD should be positioned in
selected cases, in which the risk of procedural stroke is increased due to several factors
(e.g., patient’s clinical characteristics and/or the need to perform pre- and post-dilatation,
BVF/BVR or BASILICA).

8.2. Antithrombotic Therapy

Recently, a consensus document provided by the ESC has shared light into the optimal
antithrombotic regimen in patients undergoing TAVR [47]. Proposed recommendations
encourage a minimalistic approach, preferring single antiplatelet therapy, whenever fea-
sible. Nevertheless, the available evidence comes from studies in which the ViV TAVR
subpopulation was excluded or under-represented [48–50]. RCTs addressing this topic are
strongly needed.

9. Conclusions

ViV TAVR is a safe and effective treatment option for patients with failed BHVs,
despite very long-term follow-up data are still scarce. Identifying the precise mechanism
at the basis of device failure is pivotal to address the procedural feasibility. Multimodal
imaging is crucial in both diagnostic and pre-procedural planning. The selection of THV
depends on a multi-parametric assessment since special challenges are associated with
ViV procedure. Coronary obstruction, severe PPM and subsequent difficult coronary re-
access are at increased risk with ViV TAVR. For this reason, a detailed assessment and
device selection are mandatory. Further RCTs are needed to address open hot topics in this
scenario, such as the use of CEPD and the optimal post-procedural antithrombotic regimen.
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Abbreviations

BASILICA
Bioprosthetic aortic scallop intentional laceration to prevent iatrogenic
coronary artery obstruction

BE Balloon-expandable
BHV Bioprosthetic heart valve
BVF Balloon valve fracturing
BVR Balloon valve remodeling
CEPD Cerebral embolic protection device
EOA Effective orifice area
ESC European Society of Cardiology
ID Inner diameter
MI Myocardial infarction
MSCT Multi-slice computed tomography
PPM Patient-prosthesis mismatch
PVL Paravalvular leak
RCT Randomized controlled trial
SE Self-expanding
STJ Sinotubular junction
SVD Structural valve deterioration
TAVR Trans-catheter aortic valve replacement
THV Trans-catheter aortic valve
ViV Valve-in-valve
VARC Valve Academic Research Consortium
VIVID Valve-in-Valve International Data Registry
VTC Virtual-to-coronary
VTSTJ Virtual-to-sinotubular junction
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