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Electroencephalogram (EEG)-based emotion recognition (ER) has drawn increasing

attention in the brain–computer interface (BCI) due to its great potentials in

human–machine interaction applications. According to the characteristics of rhythms,

EEG signals usually can be divided into several different frequency bands. Most existing

methods concatenate multiple frequency band features together and treat them as a

single feature vector. However, it is often difficult to utilize band-specific information in this

way. In this study, an optimized projection and Fisher discriminative dictionary learning

(OPFDDL) model is proposed to efficiently exploit the specific discriminative information

of each frequency band. Using subspace projection technology, EEG signals of all

frequency bands are projected into a subspace. The shared dictionary is learned in the

projection subspace such that the specific discriminative information of each frequency

band can be utilized efficiently, and simultaneously, the shared discriminative information

amongmultiple bands can be preserved. In particular, the Fisher discrimination criterion is

imposed on the atoms to minimize within-class sparse reconstruction error andmaximize

between-class sparse reconstruction error. Then, an alternating optimization algorithm

is developed to obtain the optimal solution for the projection matrix and the dictionary.

Experimental results on two EEG-based ER datasets show that this model can achieve

remarkable results and demonstrate its effectiveness.

Keywords: EEG signal, emotion recognition, dictionary learning, fisher discrimination criterion, brain computer

interface

INTRODUCTION

Brain–computer interface (BCI) has been one of the research hotspots in recent years in health
monitoring and biomedicine (Edgar et al., 2020; Ni et al., 2020b). The BCI does not rely on
muscles and the peripheral nervous system. It establishes a direct information transmission channel
between the brain and the outside world. The electroencephalography (EEG) signals captured by
the BCI system are a powerful tool to analyze neural activities and brain conditions. EEG has
the advantages of convenience (i.e. non-invasive, non-destructive and simple) and validity (i.e.
sensitivity, validity and compatibility) (Sreeja and Himanshu, 2020). EEG signal is an important
tool for revealing the emotional state of human beings. It has been shown that when people
are in different thinking and emotional states, the rhythm components of EEG signals are
different from their waveform. In BCI, the operation of emotion recognition (ER) starts from
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external stimuli to subjects, which induce specific emotions
such as happiness, sadness, and anger. These stimuli may be
videos, images, music, and so on. During the session, EEG data
are recorded by EEG devices. Subsequently, the first step is to
extract and preprocess useful features obtained from the recorded
EEG. The next step is to train the classifier and optimize the
parameters. The final step is to test the training model with new
EEG data that are not used in the training process.

Traditional machine learning classifiers have been widely
used in EEG-based ER, such as support vector machine (SVM)
(Zheng et al., 2019), deep learning (Hwang et al., 2020; Song
et al., 2020), nearest neighbor classifier (Li et al., 2019),
random forest (Fraiwan et al., 2012), and probabilistic neural
networks (Nakisa et al., 2018). In recent years, dictionary
learning-based methods have achieved great success in EEG-
based recognition tasks for BCI (Ameri et al., 2016; Gu
et al., 2020; Ni et al., 2020a). In general, dictionary learning-
based classification methods often learn the discriminative and
robust dictionaries from training samples. The test sample is
sparsely represented as a sparse linear combination of atoms
by the learned dictionary, and then, the classification task can
be carried out according to the reconstruction error and/or
the sparse coefficients. Dictionary learning works well-even
with noisy EEG signals. Barthélemy et al. (2013) developed
an efficient method to represent EEG signals based on the
adapted Gabor dictionary and demonstrated on real data that
the learned multivariate model is flexible and the learned
representation is informative and interpretable. Abolghasemi and
Ferdowsi (2015) developed a dictionary learning framework to
remove ballistocardiogram (BCG) artifacts from EEG. Given
the advantage of the noise-robust sparse dictionary, a new cost
function was proposed, which can model BCG artifacts and
then remove them from the original EEG signals. Kashefpoor
et al. (2019) developed a correlational label consistent K-SVD
dictionary learning method applied to EEG-based screening tool.
This method was applied to speckle extraction of EEG signals and
extracted spectral features in both time and frequency domains.
Aiming at the problem that eye movement and blinking can
cause artifacts, Kanoga et al. (2019) proposed a multi-scale
dictionary learning method to eliminate eye artifacts from single-
channel measurement. Specifically, the time-domain waveforms
related to repetitive phase events in EEG signals were learned
within the framework of dictionary learning. And the proposed
multi-scale dictionary learning method was used to represent
the signal components on different timescales. To achieve the
highly accurate classification of EEG in BCI, Huang et al.
(2020) developed a signal identification model using sparse
representation and fast compressed residual convolutional neural
networks (CNNs). The authors used the common spatial patterns
to extract EEG signal features and build a redundant dictionary
using these features. Then, the proposed deepmodel as a classifier
recognized the input EEG signals.

Although machine learning has achieved good classification
performance in some application scenarios, the accuracy and
applicability of the classification do not go far enough. Since
EEG data provide comprehensive information across different
frequency bands to characterize emotions, it was expected to

design an ER method, which utilizes the specific discriminative
information of each frequency band and preserves the common
discrimination information shared by multiple band signals.
After the success of dictionary learning, in this study,
we propose optimized projection and Fisher discriminative
dictionary learning (DDL) for EEG-based ER. According to
the Fisher discrimination criterion of minimum within-class
sparse reconstruction error and maximum between-class sparse
reconstruction error, we learn the discriminative projection
to map the multiple band signals into a shared subspace
and simultaneously build a shared dictionary that establishes
the connection between different bands and represents the
characteristics of signals well. Therefore, the joint learning
of projection and dictionary ensures the common internal
structure of multiple frequency bands of signals to be mined in
the subspace.

The main contributions of this study are as follows:

(1) A multiple frequency band collaborative learning is
introduced in dictionary learning for the EEG-based
ER. This learning mechanism can efficiently integrate
the band-independent information and inter-band
correlation information.

(2) Through the feature projection matrix, the data of multiple
frequency bands are projected into a common projection
subspace to keep the latent manifold of EEG signals.
Meanwhile, the discriminative dictionary is learned by
enforcing the classification criterion so that the learned sparse
code has a strong representation and discrimination ability.

(3) This joint optimization method has some benefits. Learning
independent projection matrices makes this model easily
extensible; meanwhile, learning a dictionary in a subspace
allows abandoning extraneous information in the original
features. In addition, the alternating optimization procedure
ensures the dictionary and projection are optimized at the
same time.

(4) These extensive experiments on the SEED and DREAMER
datasets demonstrate that the multiple band collaborative
learning is effective, and this method can improve the
discrimination ability of sparse coding in EEG-based ER.

BACKGROUND

Datasets
The experimental data in this study are taken from two
public EEG emotion datasets: SEED (Zheng and Lu, 2015) and
DREAMER (Katsigiannis and Ramzan, 2018). Table 1 briefly
describes the information of the two datasets. Both SEED
and DREAMER datasets are collected when subjects watched
emotion-eliciting movies. In the SEED dataset, each subject
participated in three experiments, which were separated into
three time periods, corresponding to three sessions, and each
session corresponds to 15 EEG data trials. Thus, a total of
15 × 3 = 45 trials are formed per subject. The SEED
provided five frequency bands: δ band (1–3Hz), θ band (4–
7Hz), α band (8–13Hz), β band (14–30Hz), and γ band (31–
50Hz). For the DREAMER dataset, the data recorded by each
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subject contain three parts: 18 experimental signal segments, 18
baseline signal segments corresponding to relaxation state, and
18 corresponding labels. The DREAMER data provided EEG
features with frequency bands θ , α , and β .

Machine Learning-Based EEG Signal
Processing Program
For machine learning-based EEG-based ER, feature extraction
and emotion classification are the critical procedures.
Considering the SEED dataset as an example, the process
of constructing five frequency band sequences is described in
Figure 1. Firstly, EEG signals collected by BCI are preprocessed
by filtering. Then, according to the characteristics of different
rhythms of EEG signals, EEG signals usually can be divided into
several rhythmic signal components ranging from 0 to 50Hz.
Secondly, EEG features can be extracted by various strategies.

TABLE 1 | The basic information of SEED and DREAMER datasets.

SEED dataset DREAMER dataset

15 subjects 23 subjects

15 trials using Chinese movie

clips (length of film clips about

4min) to evoke emotions as

negative, positive, and neutral

18 trials using movie clips

(length of film clips

65–393 s) to evoke 9

emotions

In one session, 5 s hint before

each clip, 45 s self-assessment,

and 15 s rest after each clip

At least 61 s of pretrial

baseline data available

Emotion rating metric: negative,

positive, and neutral

Emotion rating scale:

valence, arousal, and

dominance on a continuous

scale from 1 to 5

62-channel electrode cap 14-channel electrode cap

Sampling rate 1,000Hz Sampling rate 128 Hz

Frequency band from 0 to 75Hz Frequency band from 4 to

30 Hz

Time-domain, frequency-domain, and non-linear analysis
methods are the three types of most commonly used EEG feature
extraction methods. The time-domain features aim to capture
the temporal information of EEG signals, such as higher-order
crossings (HOC) (Petrantonakis and Hadjileontiadis, 2010),
Hjorth features (Petrantonakis and Hadjileontiadis, 2010),
and event-related potential (ERP) (Brouwer et al., 2015). The
frequency-domain features aim to capture primarily the EEG
emotion information from a frequency perspective. Then, EEG
features can be extracted by various methods, such as rhythm
(Bhatti et al., 2016), wavelet packet decomposition (WPD)
(Wu et al., 2008), and approximate entropy (AE) (Ko et al.,
2009). Non-linear features are extracted from the transformed
phase space. Non-linear features contain quantitative measures
that represent the complex dynamic characteristics of the EEG
signals, such as Lyapunov exponent (Lyap) (Kutepov et al.,
2020) and correlation dimension (CorrDim) (Geng et al., 2011).
Finally, many machine learning methods are established to
handle EEG emotion classification on extracted feature sets.

A common approach to deal with multiple bands of EEG
data using traditional dictionary learning methods is to directly
concatenate features of multiple bands together in the high-
dimensional space and treat this single feature vector as the input
to the model. However, dictionary learning may not perform
well because different band features usually carry different
characteristics of EEG emotion.

Dictionary Learning
Let X = [x1, ..., xn] ∈ Rm×n be a set of m-dimensional n
training signals. To minimize the reconstruction error and satisfy
the sparsity constraints, the sparse representation and dictionary
learning of X can be accomplished by

min
D,S

‖X−DS‖2F ,

s.t. ‖si‖0 ≤ T,
(1)

FIGURE 1 | The process of constructing multiple frequency band sequences (Wei et al., 2020).
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where D = [d1, ..., dK] ∈ Rm×K is a dictionary with K atoms
S = [s1, ..., sn] ∈ Rm×K is the sparse coefficient matrix of signals
X, and si is the sparse coefficient vector of xi over D. T is the
sparse constraint factor. The ‖si‖0 ≤ T term requires the signal
xi to have fewer than T non-zero items in its decomposition.

It is not easy to find the optimal sparse solution using ℓ0-norm
regularization term; thus, an alternative formulation of Equation
(1) is to replace it with ℓ1-norm regularization as

min
D,S

‖X−DS‖2F + λ‖S‖1,

s.t. ‖di‖
2
2 = 1,∀i

, (2)

Equation (2) can be optimized by many efficient ℓ1 optimization
methods, such as the famous K-SVD algorithm (Aharon
et al., 2006; Jiang et al., 2013). However, Equation (2) is an
unsupervised learning framework. To learn a discriminative
dictionary for classification tasks, different kinds of loss
functions or Fisher discrimination criterion are considered in the
dictionary learning. Fisher discrimination constraints on atoms
of the dictionary (Peng et al., 2020) or sparse coefficient S (Li
et al., 2013) or reconstruction error of X (Zheng and Sun, 2019;
Zhang et al., 2021) strive to preserve the class distribution and
geometric structure of data.

Suppose data matrix X consists of samples from C different
classes, from X, both the sub-dictionary Di and sub-sparse
coefficient matrix Si are learned for the i-th class data (i =

1, 2,...,C). The whole dictionary D is represented as D =

[D1,D2, ...,DC]. Let Ww and W
b
denote the within-class scatter

and between-class reconstruction error of X, respectively, then

Ww =
∑

j

(xj-Dδlj (sj))× (xj-Dδlj (sj))
T , (3)

and

Wb =
∑

j

(xj-Dζlj (sj))× (xj-Dζlj (sj))
T , (4)

where δlj ( ) function returns the sparse codes consistent with the
class of xj (j= 1,2,...,n), and ζlj ( ) function returns the sparse codes

not consistent with the class of xj.

Then, a discriminative dictionary can be learned by reducing
the within-class diversity and by increase between-class
separation using Equations (3) and (4) (Zheng and Sun, 2019;
Zhang et al., 2021).

OPTIMIZED PROJECTION AND FISHER
DISCRIMINATIVE DICTIONARY LEARNING

Objective Function
Here, we describe in detail the optimized projection and Fisher
DDLmodel for collaborative learning of multiple frequency band
EEG signals. The training framework of the OPFDDL model
is illustrated in Figure 2. We learn a discriminative projection
to map multiple frequency band EEG signals into a common
subspace; simultaneously, we learn a common discriminative

dictionary to encode the band-invariant information of multiple
frequency bands. In particular, to promote the discrimination
ability of the model, we utilize the model according to the Fisher
discrimination criterion (Gong et al., 2019) under the structure
of dictionary learning.

Let Xr = {xrj }denote the signal set X of the frequency band

r, where R is the number of frequency bands (r =1,..., R). xrj is

the jth sample in Xr . To build the connection between different
frequency bands and exploit the specific characteristic of each
representation, we project xrj into a feature subspace as zrj =

Qrxrj by using a transformation matrix Qr ∈ Rm×dr . Therefore,

we obtain {zrj }
R
r=1 by {Qrxrj }

R
r=1 as the feature representations

for R frequency bands. Then, we denote the within-class
reconstruction error Jrw and between-class reconstruction error
Jr
b
of the rth frequency band in the projection subspace

Jrw = tr(
nr
∑

j=1
(QrTxrj -Q

rTDδlj (s
r
j ))× (QrTxrj -Q

rTDδlj (s
r
j ))

T
)

= tr(QrT
nr
∑

j=1
(xrj -Dδlj (s

r
j ))× (xrj -Dδlj (s

r
j ))Q

r)

= tr(QrTWr
wQ

r)

, (5)

and

Jr
b
= tr(

nr
∑

j=1
(QrTxrj -Q

rTDζlj (s
r
j ))× (QrTxrj -Q

rTDζlj (s
r
j ))

T
)

= tr(QrT
nr
∑

j=1
(xrj -Dζlj (s

r
j ))× (xrj -Dζlj (s

r
j ))Q

r)

= tr(QrTWr
b
Qr)

, (6)

where Wr
w =

nr
∑

j=1
(xrj -Dδlj (s

r
j ))× (xrj -Dδlj (s

r
j ))

T is the within-

class scatter matrix for sparse coding of the rth frequency band,

and Wr
b
=

nr
∑

j=1
(xrj -Dζlj (s

r
j ))× (xrj -Dζlj (s

r
j ))

T is the between-class

scatter matrix for sparse coding of the rth frequency band.
From the classification point of view, minimizing within-class

scatter and maximizing between-class scatter in the dictionary
learning-based classifier can be represented as

min
Q1 ,...,QR ,D

R
∑

r=1
tr(QrTWr

wQ
r)

R
∑

r=1
tr(QrTWr

b
Qr)

,

s.t. (Qr)T(Qr) = I, ∀r

, (7)

With definition as Q̃ = [Q1,Q2, ...,QR],

W̃w =







W1
w · · · 0

...
. . .

...

0 · · · WR
w






, and W̃

b
=







W1
b

· · · 0
...

. . .
...

0 · · · WR
b






,

Equation (7) can be written as follows:

min
Q̃,D

tr(Q̃TW̃wQ̃)

tr(Q̃TW̃
b
Q̃)

,

s.t. (Q̃)
T
(Q̃) = I,

(8)
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FIGURE 2 | The training framework of optimized projection and Fisher discriminative dictionary learning (OPFDDL) model.

The projection matrix Q̃ is limited to be orthogonal, which
is highly effective in the optimization process. The solution of
Equation (8) refers to the complex inverse operation and is
computationally intensive. Thus, we translate it into the following
quadratic weighted optimization (QWO) problem and obtain the
objective function of OPFDDL

min
Q̃,D,µ

µ2tr(Q̃TW̃wQ̃)− µtr(Q̃TW̃
b
Q̃),

s.t. Q̃TQ̃ = I,
, (9)

It is noted that the parameter µ is an adaptive weight that can
be obtained by a closed-form solution but is not a manually
adjusted parameter.

Optimization
In the following, the alternating optimization approach is used to
update the parameters {Q̃,D,µ} in Equation (9).

(1) Update step for Q̃. With D and µ fixed, and with the known
W̃w and W̃

b
, the optimization of Q̃ can be solved by

(µ2W̃w − µW̃b)Q̃ = γ Q̃, (10)

The projection matrix Q̃ is constituted by the feature
vector corresponding to the first d minimum eigenvalues of
Equation (10).

(2) Update step for D. With the definition of

X̃ =







X1 · · · 0
...

. . .
...

0 · · · XR






, δrlj

= [δlj (s
r
1), δlj (s

r
2), ..., δlj (s

r
nr
)],

ζ r
lj

= [ζlj (s
r
1), ζlj (s

r
2), ..., ζlj (s

r
nr
)], � = [δ1lj , δ

2
lj
, ..., δRlj ],

and 2 = [ζ 1
lj
, ζ 2

lj
, ..., ζR

lj
], and with the known Q̃ and µ,

Equation (9) can be written as

max
D

µ2tr[(Q̃TX̃− Q̃TD�)(Q̃TX̃− Q̃TD�)
T
]

−µtr[(Q̃TX̃− Q̃TD2)(Q̃TX̃− Q̃TD2)
T
], (11)

For each column of X̃, i.e., X̃k, the optimization of D can be
solved by the following problem:

∂L(X̃k)

∂D
= 2Q̃Q̃TD(��T + 22T)− 2Q̃Q̃TX̃k(�

T + 2T),

(12)

Then, D can be updated by

D = D−
λD

n

∑

k

∂L(X̃k)

∂D
, (13)

where λD is the step size.
(3) Update step for S. When D, Q̃, and µ are learned, the sparse

code s for each signal x in the subspace can be obtained by

min
s

∥

∥

∥
QTx−Ds

∥

∥

∥

2

F
+ λ ‖s‖ , (14)

(4) Update step for µ . By recalling that the matrixes, W̃
b
and

W̃w can be built according to the obtained Q̃ and S. When Q̃

and Q̃ are learned, the solution of µ is ∂L
∂µ

= 0, and it can be

obtained by a closed-form solution

µ =
tr(Q̃TW̃

b
Q̃)

2tr(Q̃TW̃wQ̃)
, (15)
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FIGURE 3 | The testing procedure of OPFDDL.

Based on the above analysis, the implementation process of
OPFDDL is described in Algorithm 1. We initialize the sub-
dictionary for each class by the K-SVD algorithm, and then, we
integrate them to form the initialization dictionaryD.

When the projection matrix Q and dictionary D are learned,
we perform the following procedure to run testing work. The
testing procedure of OPFDDL is illustrated in Figure 3. For each
testing EEG signal z, its rth frequency band feature is denoted as
zr . We map zr into projection subspace using Qr and classify its
class label according to the smallest reconstruction error on each
class as follows:

yr = argmin
∥

∥

∥
(Qr)Tzr −DjD̃jz

r
∥

∥

∥

2
, (16)

where D̃j = (DT
j Dj)

−1
DT

j is the pseudo-inverse of dictionary Dj

of class j.
Finally, we use the majority voting to identify the class label of

signal z, i.e.,

y = argmax
j

1j, (17)

where 1j is the number of votes for class j.

Algorithm 1 The OPFDDL algorithm

Input: Multiple frequency band EEG signals Xr(r = 1, 2, ...,R)
with their class labels.
Output: Projection matrixQ and dictionaryD.
Initialization: Initialize D and S using the K-SVD algorithm and
initialize Q̃ such that Q̃Q̃T = 1.
Repeat
Sparse codes update: Compute sparse code s for each training
sample using Equation (14);
Projection matrix update: Compute Q̃ using Equation (10);
Dictionary update: ComputeD using Equations (11–13);
Adaptive weight update: Compute µ using Equation (15);
Until convergence

EXPERIMENT

Experimental Settings
Following the study of Li Y. et al. (2019), we used extracted
methods of three features on the SEED dataset, including

differential entropy (DE), power spectral density (PSD), and
fractal dimension (FD). We investigated the EEG features over
all frequency bands per second with no overlap in each channel.
We used the random 10 trials in each subject for model training
and the rest 5 trials for testing. The classification performance
corresponding to each period is recorded for each subject. For
DREAMER dataset, to balance the number and length of the
segments, we divided the 60-s EEG signals into 59 blocks with
an overlap rate of 50%. The DE feature extraction method was
carried out and 14-dimensional features for each frequency band
were obtained. For each subject, we trained our model using the
random 12 trials and the rest 6 trials for testing.

We compared our proposed model with five machine
learning methods, including SVM (Cortes and Vapnik, 1995),
K-SVD (Aharon et al., 2006), PCB-ICL-TSK (Ni et al., 2020b),
DDL (Zhou et al., 2012), and dictionary pair learning (DPL)
(Ameri et al., 2016). The Gaussian kernel and Gaussian fuzzy
membership were used in SVM and PCB-ICL-TSK, respectively.
The parameters in comparison methods were set according to
the default settings in corresponding methods. In OPFDDL, the
dimension of the projection subspace was set as 90% of the
dimension of the EEG signal features. The number of atoms
in each class was selected in {10, 15, 20, 25, 30, 35}. The λ

parameter in Equation (2) was set as 0.01. We used the 5-fold
cross-validation method to select the optimal parameters, and
we performed five independent runs to evaluate the classification
accuracy of all methods.

Experiment Results on the SEED Dataset
In this subsection, we performed the comparison experiments
on the SEED dataset using various combinations of frequency
bands and various features. The average accuracy performances
of all methods with three feature methods are summarized in
Table 2. From these results, we have the following observations:
(1) Under different frequency band combinations, the results of
total frequency bands of all methods are the best. For example,
the classification accuracy of OPFDDL using all frequency bands
is 6.70, 3.83, and 2.17% higher than that using frequency
bands β + γ , α + β + γ , and θ + α + β + γ . The
classification accuracy of SVM using all frequency bands is
3.57, 2.90, and 1.76% higher than that using frequency bands
β + γ , α + β + γ , and θ + α + β + γ . In addition,
in most cases, the SDs of all methods are small in all five
bands. It demonstrates that multiple bands are helpful for
EEG-based ER, due to that the features of each band have
discrimination ability and five bands are complementary for
distinguishing EEG emotions. (2) The classification performance
of the three features is comparable. The performance of the
DE feature is slightly better and shows an advantage in
most of the cases. The classification accuracy of OPFDDL
using the DE feature is 88.87%. It indicates that the DE
feature is suitable to deal with EEG emotion signals. (3)
OPFDDL outperforms all comparison methods, especially in
the case of all five bands. It is because that OPFDDL can
effectively integrate band-independent information and inter-
band correlation information. The encouraging results indicate
that direct concatenation of five frequency bands of EEG data
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TABLE 2 | The average accuracies (SDs) of all methods under four combinations of frequency bands and three feature methods.

Features Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

PSD SVM 77.41 78.08 79.22 80.98

(12.65) (11.21) (11.01) (10.38)

KSVD 77.03 78.00 79.46 81.28

(12.28) (11.76) (11.28) (10.47)

PCB-ICL-TSK 77.53 80.10 80.29 81.26

(11.76) (11.29) (10.63) (10.23)

DDL 79.79 80.85 81.78 83.16

(10.49) (10.56) (10.01) (9.45)

DPL 80.46 81.12 82.28 83.42

(10.58) (10.02) (9.21) (8.64)

OPFDDL 81.00 83.27 84.93 87.10

(10.26) (9.75) (9.32) (8.32)

DE SVM 79.58 80.46 80.89 81.89

(12.76) (12.88) (11.43) (10.93)

KSVD 78.32 78.83 80.07 82.06

(12.77) (12.05) (12.11) (10.85)

PCB-ICL-TSK 79.66 80.55 81.36 82.49

(11.63) (11.09) (10.35) (10.04)

DDL 80.26 81.52 83.75 84.19

(10.56) (10.09) (9.43) (9.11)

DPL 81.76 82.12 83.37 84.34

(10.74) (10.12) (9.21) (8.65)

OPFDDL 82.09 85.34 86.92 88.87

(10.30) (9.65) (9.21) (8.29)

FD SVM 78.02 78.94 79.42 81.25

(12.43) (12.32) (11.86) (11.01)

KSVD 77.56 78.18 79.79 81.61

(12.48) (12.02) (11.63) (11.12)

PCB-ICL-TSK 78.34 80.43 80.98 81.65

(11.57) (11.21) (10.68) (9.95)

DDL 80.21 81.23 82.46 83.64

(10.75) (10.12) (9.24) (9.15)

DPL 80.74 81.81 82.79 84.09

(10.35) (10.07) (9.31) (9.17)

OPFDDL 81.94 83.96 85.61 87.98

(10.14) (9.64) (9.32) (9.01)

The highest average accuracy is shown in bold type.

cannot well-exploit the inherent distinguishing characteristics
of data. Considering the common information of multiband
and band-specific information shared in each band, it is
important to jointly learn multiple band representations. (4)
Compared with K-SVD and ODFDL, OPFDDL generates the
shared common dictionary on all frequency bands in the
projected subspace, which can maintain the data structure of
multiple frequency bands. In addition, based on the Fisher
discrimination criterion of maximizing within-class compactness
and minimizing between-class separation, OPFDDL can well

learn the discriminative dictionary from the cooperation of
multiple frequency bands.

To further validate the discrimination ability of OPFDDL,
in Figure 4, we reported the confusion matrix of the OPFDDL
model with the DE feature. As shown in Figure 4, OPFDDL
achieves a better classification performance on positive and
neutral emotions than negative emotions in all cases. The
performance result of OPFDDL is similar to that in references
(Zheng and Lu, 2015; Li Y. et al., 2019). This suggests that subjects
may have different EEG signals when experiencing negative
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FIGURE 4 | Confusion matrices of OPFDDL of frequency bands using differential entropy (DE) features. (A) β + γ , (B) α + β + γ , (C) θ + α + β + γ , and (D)

δ + θ + α + β + γ .

TABLE 3 | Average accuracies (SDs) of all methods using DE feature on

DREAMER dataset.

Methods Valence Arousal Dominance

SVM 86.35 86.19 86.43

(5.21) (5.04) (4.89)

KSVD 86.77 86.94 87.38

(5.28) (5.08) (4.89)

PCB-ICL-TSK 86.79 87.66 86.90

(5.26) (5.02) (4.87)

DDL 87.54 87.85 87.99

(5.26) (5.00) (4.93)

DPL 87.61 88.33 87.98

(5.21) (4.94) (4.90)

OPFDDL 89.84 90.11 89.96

(5.19) (4.90) (4.74)

The highest average accuracy is shown in bold type.

emotions and have similar EEG signals when experiencing
positive and natural emotions. In addition, it can be seen
that OPFDDL achieves the best classification performance (see
Figure 4D) which uses all five frequency bands.

Experiment Results on the DREAMER
Dataset
In this subsection, we performed the comparison experiments
on the DREAMER dataset. We performed the comparison
experiment using the DE feature. Similar to the SEED dataset, our
model is compared with the abovementioned fivemethods. In the
experiment, we verified the performance of OPFDDL according
to valence, arousal, and dominance. The accuracy performance
of all methods under the frequency band θ + α + β is shown
in Table 3. From the results, we can see that OPFDDL obtained
the highest accuracies of 89.84, 90.11, and 89.96% in terms of
arousal, valence, and dominance. Similar to the performance

TABLE 4 | Average accuracies of each subject for OPFDDL model using

differential entropy (DE) feature on DREAMER dataset.

Valence Arousal Dominance

Subject 1 93.52 93.13 95.65

Subject 2 90.45 90.08 86.04

Subject 3 86.26 85.53 81.46

Subject 4 96.87 96.32 96.84

Subject 5 93.71 94.56 95.22

Subject 6 81.05 81.04 78.04

Subject 7 84.46 84.02 82.64

Subject 8 85.42 84.97 86.73

Subject 9 81.27 82.43 85.05

Subject 10 88.95 88.04 90.43

Subject 11 82.43 83.10 87.65

Subject 12 92.48 92.15 93.04

Subject 13 89.26 92.07 90.65

Subject 14 95.19 94.66 94.86

Subject 15 98.53 98.75 98.05

Subject 16 87.16 86.78 86.43

Subject 17 87.84 89.01 88.05

Subject 18 89.45 89.02 87.21

Subject 19 94.77 95.43 94.05

Subject 20 91.01 88.03 89.23

Subject 21 93.16 94.20 94.07

Subject 22 94.83 96.04 95.11

Subject 23 88.35 93.21 92.75

results on the SEED dataset, OPFDDL performed best among
all comparison methods. Based on the Fisher discrimination
criterion, OPFDDL can well-learn the intrinsic relationships
of EEG bands and can obtain the discriminative dictionary
from multiple frequency bands cooperation in the projection
subspace. In addition, the joint optimization strategy, which
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FIGURE 5 | The accuracy with the number of iterations on (A) SEED dataset and (B) DREAMER dataset.

FIGURE 6 | The accuracy with different Kc on (A) SEED dataset and (B) DREAMER dataset.

addresses the shared projection subspace and dictionary learning,
also can incrementally enhance the recognition performance
of our proposed model. Thus, our proposed model can utilize
more distinctive representations of multiple frequency bands of
EEG signals.

Then, we recorded the average accuracies of each subject
for the OPFDDL model using the DE feature in terms of
arousal, valence, and dominance. The experimental results are
shown in Table 4. The proposed OPFDDL model had achieved
satisfactory recognition performance for all three dimensions
of arousal, valence, and dominance. Based on the structure
of dictionary learning and the principles of projection and
Fisher discrimination criterion, OPFDDL can make better use of
discriminative information of different frequency band data and
has stronger generalization ability, so it can be effectively used in
EEG emotion classification task.

Parameter Variations
In this subsection, we first discussed the convergence of OPFDDL
using the DE feature of total frequency bands on SEED and
DREAMER datasets. The threshold for iteration stop was set as
10−3. Figure 5 plots the accuracy that varies with the number of
iterations on one subject in two datasets. The results verify the
convergence of OPFDDL. It can be seen that the OPFDDLmodel
can achieve convergence within 20 iterations.

Then, we discussed the number of atoms used in OPFDDL.
The number of atoms in each class Kc was increased from 10 to
35 in increments of 5. Figure 6 plots the accuracy that varies with
the parameter Kc. The results show that after an initial dramatic
increase, the classification accuracy of OPFDDL becomes stable
after Kc = 20. In addition, the variation trend of accuracy is
consistent on two datasets. Thus, the classification performance
of OPFDDL is acceptable for small dictionary sizes.

CONCLUSIONS

Most previous machine learning methods focus on extracting
feature representations for total frequency bands together
without considering specific discriminative information of
different frequency bands. In this study, we propose collaborative
learning of multiple frequency bands for EEG-based ER. In
particular, our model is an integration of projection and
dictionary learning based on the Fisher discrimination criterion.
For subspace projection optimization, a shared subspace is
employed for each frequency band such that the band-specific
representations and shared band-invariant information can be
simultaneously utilized. For dictionary learning optimization,
a shared dictionary is learned from the projected subspace
where the Fisher discrimination criterion is used to minimize
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within-class sparse reconstruction error and maximize between-
class sparse reconstruction error. The joint learning strategy
allows the model to extend easily. Consequently, we obtain a
discriminative dictionary with a small size. We have performed
the experiments and proved the performance of OPFDDL on
two real-world EEG emotion datasets, i.e., SEED andDREAMER.
For further studies, we will try to utilize and test more
discriminative sparse representation criteria in our model. In
addition, we only consider subject-dependent classification in
EEG emotion identification. Applying this model to subject-
independent classification is a challenging work.
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