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Copy Number Variation (CNV) refers to a type of structural genomic alteration in which a segment of
chromosome is duplicated or deleted. To date, many CNVs have been identified as causative genetic ele-
ments for several diseases and phenotypes. However, performing a CNV-based genome-wide association
study is challenging due to inconsistency in length and occurrence of CNVs across different individuals
under investigation. One of the most efficient strategies to address this issue is building CNV regions (ge-
nomic regions in which CNVs are overlapping - CNVRs). However, this approach is susceptible to a high
false positive rate due to overlapping and co-occurring of confounding CNVRs with true positive CNVRs.
Here, we develop PeakCNV that differentiates false-positive CNVRs from true positives by calculating a
new metric, independence ranking score, (IR-score) via a feature ranking approach. We compared the
performance of PeakCNV with other current existing tools by carrying out two case studies one using
the CNV genotype data for individuals with prostate cancer (194 cases and 2,392 healthy individuals)
and the second one for individuals with neurodevelopmental disorders (19,642 cases and 6,451 healthy
individuals). Crucially, our benchmarking analyses on prostate cancer cohort indicated that PeakCNV
identifies a fewer risk candidate CNVRs with shorter lengths compared to other tools. Importantly, these
CNVRs cover a greater proportion of case over healthy individuals compared to other tools. The accuracy
of PeakCNV in identifying relevant candidate CNVRs was reproducible in the case study on neurodevel-
opmental disorders. Using data from the FANTOM5 expression atlas and the Clinical Genomic Database,
we show that the candidate CNVRs identified by PeakCNV for neurodevelopmental disorders overlap
with a greater number of genes with the brain-enriched expression, and a greater number of genes that
are associated with neurological conditions compared to candidate CNVRs identified by other tools.
Taken together, PeakCNV outperformed current existing CNV association study tools by identifying more
biologically meaningful CNVRs relevant to the phenotype of interest. PeakCNV is publicly available for the
analysis of CNV-associated diseases and is accessible from https://rdrr.io/github/mahdieh1/PeakCNV.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A copy number variation (CNV) is a type of structural change in
the genome in which a segment of the genome is amplified or
deleted [1]. To date, many CNVs have been reported in association
with several phenotypes, traits, and diseases such as different
types of cancers and neurodevelopmental disorders (NDD) [2,3].
For instance, duplication of the APP gene caused by a CNV has been
shown to be associated with increasing the risk of developing Alz-
heimer’s disease [4]. The CNV deletion or duplication at 15q11-q13
is linked to the development of Prader-Willi and Angelman syn-
dromes [5]. A CNV deletion at 1q21.1 locus was found to be linked
with the development of intellectual disability and autism [6].
Another example is a CNV deletion at 2p24.3 locus [7] which is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.09.001&domain=pdf
https://rdrr.io/github/mahdieh1/PeakCNV
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:h.alinejad@ieee.org
https://doi.org/10.1016/j.csbj.2022.09.001
http://www.elsevier.com/locate/csbj


M. Labani, A. Afrasiabi, A. Beheshti et al. Computational and Structural Biotechnology Journal 20 (2022) 4975–4983
associated with increasing the risk for progressive prostate cancer.
It has been also reported that the CNV duplication at 14q32.33
genomic region resulting in duplication of IGHG3 gene contributes
to high prevalence and mortality of prostate cancer [8].

Identifying risk CNVs can be used as a handle to improve the
diagnosis and potentially disease management. To identify risk
CNVs, a genome-wide association study needs to be performed
on the genomic regions that harbor CNVs. However, one of the
major obstacles in a CNV-based genome-wide association study
occurs when categorizing CNVs across all cases (individuals with
the phenotype of interest) and controls (healthy individuals),
which is challenging because CNVs are inconsistent in sequence,
size, and genomic coordinates across individuals [9]. To address
this issue, one effective approach is to build CNVRs (genomic
regions where CNVs are overlapping - CNVRs) prior to identifying
those CNVRs statistically associated with the phenotype of interest.
There are few tools currently available that utilize the abovemen-
tioned strategy as the cornerstone of their analytic pipelines. The
CNVRuler tool [10] provides three different strategies including
reciprocal overlap, overlapping regions and segmentation at CNV
boundaries to define CNVRs and then estimates the association of
each defined CNVR with the phenotype of interest. CNVRuler also
offers logistic regression, linear regression, chi-squared, and fisher
exact test to perform the association test. PLINK [11] performs a
permutation-based one-sided overrepresentation test to carry out
a CNVR-phenotype association study and determine the empirical
p value for each CNVR. To determine the associated CNVRs with
small size in length, Single Nucleotide Association Test CNV
(SNATCNV) [12] was proposed. This tool firstly identifies genomic
regions in which more often deleted/duplicated among cases than
healthy individuals at a single base pair resolution using one-tailed
Fisher’s exact test following series of permutations. Then SNATCNV
merges the resultant significantly associated base pairs if they are
in close proximity to generate associated CNVRs with the pheno-
type under investigation. CoNVAQ [13] defines CNVRs by segmen-
tation of genomic regions that CNVs overlapping. Then, it
determines the statistically significant CNVRs with using a fisher’s
exact test.

Nevertheless, these existing approaches are susceptible to high
false positive rates due to CNVRs which overlap or co-occur with
true positive CNVRs. We here proposed a novel Artificial Intelli-
gence (AI) based tool, PeakCNV, to correct this bias by distinguish-
ing independent CNVR associations from that of confounding
CNVRs within the same loci, resulting in identifying more accurate
and biological meaningful list of CNVRs associated with phenotype
of interest via a genome-wide CNV-phenotype association study.
2. Methods

PeakCNV first builds deletion and duplication CNVR maps for
case and control individuals separately. Then to perform the
CNV-phenotype association study with the single nucleotide reso-
lution, it assesses the association of each base pair within deletion
and duplication CNVR maps and identifies the nucleotides with
deletion or duplication that are significantly over-represented for
cases over controls. Then, PeakCNV identifies groups of CNVRs
which have a similar association significance with their respective
phenotype. Next to differentiate false positive CNVRs from true
positives within each group (cluster), PeakCNV calculates a new
metric, which we termed independence ranking score (IR-score)
via a feature ranking algorithm. This score identifies a true positive
CNVR when its significance of association is independent of any
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other overlapping or co-occurring CNVRs within that cluster (inde-
pendent CNVRs). Lastly, PeakCNV identifies the true positive
CNVRs with the highest IR-scores within each cluster as cluster
representative CNVRs. The final output of the PeakCNV is a list of
CNVRs with a greater probability of being true positives.
2.1. CNVR map building

PeakCNV builds deletion and duplication CNVR maps for cases
and controls by mapping the genomic coordinates of deletion
and duplication CNVs, respectively (Fig. 1A1). Then, PeakCNV esti-
mates the probability of either deletion or duplication in cases ver-
sus controls for each base pair within these maps using a one-
tailed Fisher’s exact test. This provides every nucleotide (base pair)
that are significantly more frequently deleted or duplicated in
cases than controls (p value < 0.05 - Fig. 1A2). Then, it merges sig-
nificant nucleotides where they are in near proximity (within one
base pair distance) to identify significant CNVRs. PeakCNV per-
forms this process for the nucleotides that are significantly deleted
or duplicated in cases versus controls, separately.
2.2. Clustering process

PeakCNV uses the DBSCAN [15] clustering algorithm to identify
groups of CNVRs containing CNVRs with a similar association sig-
nificance with their respective phenotype. A number of clustering
algorithms including hierarchical clustering gap, hierarchical clus-
tering with Silhouette, spectral clustering, model-based clustering,
and DBSCAN were tested using the Dunn Index method to deter-
mine the best performing clustering algorithm for grouping CNVRs
with the similar CNV-phenotype association significance level. We
performed the above-mentioned clustering algorithms for group-
ing CNVRs on chromosome 10 which are significantly (p
value < 0.05) associated with PC. We then assessed the efficiency
of each clustering algorithm using the Dunn Index method. The
results indicated that DBSCAN had the highest efficiency (Supple-
mentary Table 1). DBSCAN requires two hyperparameters includ-
ing MinPts and �. MinPts determines the minimum number of
CNVRs required to form a cluster. Since, it has been reported that
for two dimensional data, DBSCAN performs most efficiently where
the hyperparameter MinPts specified to four [14], we used the
same value for MinPts hyperparameter. The hyperparameter �
determines the maximum pairwise distance for a set of CNVRs
within a given cluster. We identified the optimised value of � for
analysing CNVRs in each chromosome using k-distance plot [14].
The k-distance plot for each chromosome was generated by per-
forming a k-nearest neighbours as the k specified to the same
value, we used for MinPts. Two features (CNVR uniqueness and
the genomic distance between CNVRs) obtained from paired wise
comparison of CNVRs are used as inputs for the clustering step
(Fig. 1B and Fig. 2). Uniqueness value refers to the number of case
samples covered by a given CNVR after subtracting the common
case samples between each pair of CNVRs. This value is obtained
through Equation (1).
Uniqueness Rið Þ ¼ SRi � SRi\Rj ð1Þ
where Ri and Rj are the two CNVRs, and SRi shows the number of
similar case samples covered by Ri and Rj.



Fig. 1. The schematic workflow of PeakCNV. PeakCNV consists of three main steps; (A) CNVR Map Building, (B) Clustering and (C) Selection Processes. In the CNVR map
building step, PeakCNV builds deletion and duplication CNVR maps for case and control individuals by merging the genomic coordinates of deletion and duplication CNVs,
respectively (A1). Then, PeakCNV estimates the probability of either deletion or duplication in case over control for each nucleotide within these maps using a one-tailed
Fisher’s exact test. This provides CNVRs that are significantly (p value < 0.05) more frequently occurring in case than control individuals (A2). In the clustering step, PeakCNV
groups CNVRs which have a similar association significance with the phenotype of interest using two features obtained from paired wise comparison of CNVRs: CNVR
uniqueness and the genomic distance between CNVRs (B1 and 2). In the selection, PeakCNV differentiates false positive CNVRs from true positives within each cluster by
calculating an independence ranking score (IR-score) for each CNVR (C1). Then, PeakCNV merges CNVRs with the highest IR-score in each cluster if they are in near proximity.
The final output of the PeakCNV is a list of CNVRs with a greater probability of being true positives (D). CNV and CNVR stand for copy number variation and copy number
variation region, respectively.
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2.3. Selection process

In the selection process, PeakCNV identifies the most indepen-
dent CNVRs within each cluster using the IR-score. Independent
CNVRs are those detected in the greatest number of cases while
having a minimum co-occurrence of other CNVRs (Fig. 1C1).
PeakCNV estimates the IR-score for CNVRs by performing a feature
ranking algorithm with two objectives (Equation (2)): summation
and correlation of the uniqueness values of CNVRs within a cluster.
The first objective indicates the absolute case sample coverage rate
by a given CNVR compared to other CNVRs within a cluster, and
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the second objective indicates the co-occurrence (co-duplication
or co-deletion) of a given CNVR with other CNVRs within a cluster.
PeakCNV computes IR-score through Equation (2) for any given
CNVR within each cluster to determine the most independent
CNVRs within each cluster.

IR� Score Rið Þ ¼
X
Ri�C

Uniqueness Rið Þ
SRi

� �

�
X

Ri–RjRi ;Rj�C

Corr Uniqueness Ri;Rj
� �� � ð2Þ
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where C is the number of CNVRs in each cluster, Ri and Rj are the
two randomly chosen CNVRs from the same cluster for pairwise
comparison. SRi is the total number of samples for Ri and
Corr Uniqueness Ri;Rj

� �� �
denotes the correlation between the

uniqueness values of CNVRs within each cluster, that is calculated
by a Kendall’s rank correlation test [16].
Algorithm1. Clustering Process

Input
 CNV: The significant CNV list

eps : Distance threshold
Minpts : The minimum number of points required to
form a cluster (default value is 5)
Output
 Result: Clustered matrix

1:
 Begin algorithm

2:
 For each chromosome

3:
 Compute Uniqueness matrix contains the

number of samples after

removing the common samples between each

two regions.

4:
 Compute distance matrix between each two

regions

5:
 Combine distance matrix and Uniqueness

matrix as the input matrix

6:
 End for

7:
 For each input in each chr

8:
 For each unvisited point p in inputchri

9:
 Mark p as visited

10:
 NeighborPts = find the neighboring points of p

11:
 If ðlengthðNeighborPtsÞ < MinptsÞ

12:
 Mark p as Noise

13:
 Else

14:
 C = next cluster

15:
 Add P to cluster C

16:
 For each point P0 in NeighborPts

17:
 If P0 is not visited

18:
 Mark P0 as visited

19:
 NeighborPts0 = find the neighboring

points of p � �

20:
 If ðlength NeighborPts0 >¼ MinptsÞ

21:
 NeighborPts= NeighborPts0 [ NeighborPts

22:
 End If

23:
 If P0 is not yet member of any cluster

24:
 Add P0 to cluster C

25:
 End If

26:
 End If

27:
 End for

28:
 End If

29:
 End for

30:
 Return clustered matrix as the result

31:
 End for

32:
 End algorithm
Lastly, PeakCNV sorts CNVRs within each cluster by IR-score and
merges regions with the highest IR-score if they are in proximity
(default value is 1000 bp). A pseudo code of the clustering step is
presented in Fig. 3.
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Algorithm2. Selection Process

Input
 Result: CNVs with their clusters

Threshold: maximum distance for merging CNVRs
(default value:1000 bp)
Output
 Final list: Selected CNV regions

1:
 Begin algorithm

2:
 For each chromosome

3:
 C = number of clusters for each chromosome

4:
 For each ci in C

5:
 For each regioni in ci

6:
 Calculate score for each region using Equation

(2).

7:
 End for

8:
 End for

9:
 Sort regions based on the score

10:
 Best region = region with maximum score

11:
 For eachciinC

12:
 For each regioni in ci

13:
 If ðdistance Bestregion; regionið Þ < ThresholdÞ

14:
 StartCNV ¼ StartBestregion

15:
 EndCNV ¼ Endregioni

16:
 End If

17:
 End for

18:
 Return Best region for each Ci
19:
 End For

20:
 End algorithm
3. Results and discussion

We validated the capability of PeakCNV in identifying more
accurate and biological meaningful pathogenic CNVRs by perform-
ing three case studies. In the first case study, we assessed the per-
formance of PeakCNV by analyzing a simulated ground truth CNV
genotype data. We also compared the performance of PeakCNV
in identifying pathogenic CNVRs for PC (case study-two) and
NDD (case study-three) to that of other currently available tools;
SNATCNV, PLINK, CoNVaQ and CNVRuler. SNATCNV was executed
with the default parameters of ‘‘indvbased” mode, which returns
significant CNVRs using a one-tailed Fisher’s exact test. PLINK
v1.9 was performed with ‘‘mperm” mode which identifies statisti-
cally significant CNVRs by providing empirical p values based on
50,000 null permutations. The CoNVaQ was executed in ‘‘statistical
model” mode which uses a Fisher’s exact test to identify significant
CNVRs. The CNVRuler was carried out with ‘‘CNVR method” and
‘‘logistic regression” settings. To discriminate the significantly
associated CNVRs with their respective phenotype, a p value <
0.05 was used as the threshold for statistical significance for the
output of all above mentioned tools.

To interrogate and compare the biological relevance of identi-
fied risk CNVRs by our newly developed tool and other available
tools, we identified genes which overlapped with identified CNVRs
(CNVgenes). The reference gene list that we used here is the com-
bination of FANTOM5 [17], Ensembl [18] and GENCODE [19] gene
annotation files for hg19 genome assembly to curate a comprehen-
sive reference gene list. The FANTOM5 gene annotation file was



Fig. 2. The pseudo-code for the clustering step. First, the genomic distance and uniqueness value for each CNVR was calculated in a pairwise comparison with other CNVRs
(lines 2–6). Then, values of these two features for each CNVR were merged to be used as an input in the clustering step (lines 7–31).
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used as the backbone of our reference gene list, but when the gene
annotation was absent from FANTOM5 these were acquired from
Ensembl and GENCODE. The final reference gene list contained
82,539 genes including 58,000, 24,501 and 38 genes from FAN-
TOM5, Ensembl and GENCODE, respectively (Supplementary
Table 1). Then to identify the list of CNVgenes, we search for CNVRs
and genes with overlapping genomic coordinates using bedtools
v2.30.0 [20].
3.1. Case study-one: Simulated CNV genotype dataset

The ground truth simulated dataset contains the genotype data
(genomic coordinate) of 29,856 number CNVs (14,275 deletion and
15,581 duplication types) for 750 case and 750 control samples.
We first examined the distribution of both frequency and size of
CNVs from multiple real datasets (experimentally identified CNVs)
[21–23] to identify the structure underlying the CNV genotype
data. According to these two obtained distributions, we generated
a random set of genomic coordinates (10,000 genomic regions as
CNV genomic coordinates pool) using ‘‘random” function of the
bedtools package to synthesize a simulated dataset which mimics
the real data architecture and structure. We took advantage of a
hypergeometric distribution model to identify a set of high confi-
dent odds ratios (case to control ratio) for true and false associated
CNVRs. We defined 2.3 � case-to-control ratio as a cut-off for true
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associated CNVRs. The cut-off for false associated CNVRs defined
as � 0.42 case-to-control ratio. Based on these criteria we ran-
domly selected 34,663 CNVs from CNV genomic coordinate pool.
The simulated dataset contained 20 true positive phenotype-
associated CNVRs (including 10 case enriched deletion-CNVRs
and 10 case enriched duplication-CNVRs) and 20 false
phenotype-associated CNVRs (including 10 control enriched
deletion-CNVRs and 10 control enriched duplication-CNVRs).
Application of PeakCNV on this simulated dataset showed that
PeakCNV identifies true associated CNVRs with the 82% accuracy,
86% precision, 89% recall and 86% F-measure, respectievly. The
simulated dataset is provided in Supplementary Table 1.
3.2. Case study-two: Prostate cancer (PC)

To identify CNVRs associated with susceptibility to PC, the
genotype data for 11,564 CNVs (3625 deletions and 7939 duplica-
tions) from 194 patients with PC were obtained from the Interna-
tional Cancer Genome Consortium [21]. The CNV genotype data for
2,392 healthy individuals were also obtained from the 1000 Gen-
omes Project [22] containing the genomic coordinates for 32,449
CNVs (22,318 deletions and 10,131 duplications). The list of CNVs
used in this study is also provided in Supplementary Table 2.
Fig. 4A indicates the statistically significant (p value < 0.05) CNVRs
(both deletion and duplication CNVRs) for PC that were identified



Fig. 3. The pseudo-code for selection step. PeakCNV estimates the IR-score for each CNVRs within each cluster via Equation (2) (lines 2–7). Then, PeakCNV ranks CNVRs in a
descending order. PeakCNV merges CNVRs with the highest scores within each cluster if they had similar scores and were in close proximity to each other. Lastly, PeakCNV
reports a list of top ranked CNVRs from each cluster (lines 8–20).
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by PeakCNV and other tools. The risk CNVs identified by PeakCNV
and other tools (SNATCNV, PLINK, CoNVaQ, and CNVRuler) for PC
are provided in Supplementary Table 3. Fig. 4A also shows that
clearly, the risk CNVRs identified by PeakCNV are less noisy (higher
rate of true positive than false positive hits) compared to other
tested tools. PeakCNV identified 291 risk CNVRs for PC with a total
length of 2661.43 Mbp (Fig. 4B). Although PeakCNV identified a
fewer number of risk-CNVRs with a shorter length for PC compared
to other tools, these risk-CNVRs cover a greater proportion of cases
over controls (Fig. 4C). Risk CNVRs identified by PeaKCNV for PC
had 2.05, 1.14 and 2.04 case over control coverage rate (case-to-
control ratio) for duplication, deletion and total (both duplication
and deletion together) risk CNVRs which are 1.46, 1.44 and 1.19
times greater than the highest case-control ratio of risk-CNVRs
identified by other tools. The list of CNVgenes identified by
PeakCNV and other tools for PC is also provided in Supplementary
Table 4.

3.3. Case study-three: Neurodevelopmental disorders (NDD)

The CNV genotype data for 47,143 (26,546 deletions and 20,597
duplications) and 24,859 (14,025 deletions and 10,834 duplica-
tions) CNVs for 19,644 individuals with different types of NDD
and 6,452 healthy individuals was obtained from AutDB database
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(https://mindspec.org/autdb; download date: Sep 2018) [23] that
contains multiple large CNV datasets (with different microarray
versions and different ‘individual-level’ CNV callers). To validate
the performance of PeakCNV and other tools tested here in identi-
fying meaningful NDD-associated CNVRs; a) CNV-affected genes
(genes that overlap with identified CNVRs - CNVgenes) were deter-
mined, then b) a list of nervous system specific expressing genes
was used to assess the relative biological importance of identified
CNVgenes within the NDD pathogenic contexts [24], and lastly c)
the Clinical Genomic Database [25] was used as a source of patho-
genic genes for neurological disorders to assess the association of
identified CNVgenes with potentially relevant NDD pathogenic
molecular processes.

Fig. 5A indicates the statistically significant (p value < 0.05)
CNVRs (both deletion and duplication CNVRs) for NDD that were
identified by PeakCNV and other tools. The risk CNVs identified
by PeakCNV and other tools (SNATCNV, PLINK, CoNVaQ and
CNVRuler) for NDD are provided in Supplementary Table 5.
Fig. 5A also shows that clearly the risk CNVRs identified by
PeakCNV are less noisy (higher rate of true positive than false pos-
itive hits) compared to other tested tools. PeakCNV identified 52
CNVRs for NDD with a total length of 58.56 Mbp (Fig. 5B). PeakCNV
identified a fewer number of risk-CNVRs with a shorter length for
NDD compared to other tools. However, these risk-CNVRs cover a

https://mindspec.org/autdb


Fig. 4. The results of benchmarking of PeakCNV over other available tools using CNVs for individuals with Prostate Cancer (PC) as case study-two. A) Statistically significant (p
value < 0.05) CNVRs (both deletion and duplication CNVRs) that were identified by PeakCNV in compared with other tools. X axis represents the genomic coordinates of
CNVRs in chromosomes. Y axis represents the negative logarithm base ten of the p value. B) The total number of identified risk CNVRs (both deletion and duplication CNVRs
together) and their genomic size in mega base pair (Mbp) by PeakCNV and other tools. (C), (D) and (E) represent the case-control ratio for duplication, deletion and total (both
duplication and deletion together) risk CNVRs by different tools. The performance of PeakCNV in identifying more relevant CNVRs to PC was compared with PLINK, SNATCNV,
CNVRuler and CoNVaQ through examining the coverage rate (case-to-control ratio) of identified risk CNVRs for case over control samples.
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greater proportion of cases over controls (Fig. 5B). Risk CNVRs
identified by PeaKCNV had 4.07 case over control coverage rate
(case-to-control ratio) for NDD, which are 1.07 times greater than
the highest case-control ratio of risk-CNVRs identified by other
tools. Then, we identified CNV-affected genes with the similar
strategy to PC. The same analysis for CNV-affected genes in PC
was performed.

We then estimated the enrichment of CNVgenes identified by
PeakCNV and other tools for the 508 NDD-related genes (acquired
from the Clinical Genomic Database and provided in Supplemen-
tary Table 6,7) using Equation (3).

Enirchment for NDD� related genes

¼
#CNV affected coding genes overlapping with NDD associated coding genes

#CNV affected coding genes
#NDD associated coding genes

#coding genes

ð3Þ

The result shows that from 1,746 NDD risk CNVgenes identified
by PeakCNV, 321 genes were putatively pathogenic for neurologi-
cal disorders (representation factor 1.14, p value < 0.001), which
is 1.21 times greater than the highest over-representation obtained
by other tools (Fig. 5f-h).

We also identified the brain-specific expressing genes (BSG)
using our previously published approach, with somemodifications.
Briefly, the expression data of 59,111 number genes from 1,897
samples related to 347 cells and tissues was obtained from FAN-
TOM5. Then, for any given gene we first excluded samples with
an expression level of less than one counts per million reads
mapped (CPM), then sorted the remaining samples in descending
order by their expression level. We then determined a gene as a
BSG if the brain related samples were over-represented with p
value threshold <0.001 for the top ranked samples (Supplementary
Table 8). To estimate the enrichment of CNVgenes identified by dif-
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ferent methods for BSGs, we used Equation (4). The list of BSG is
provided in Supplementary Table 9.
Enrichmnet for BSG list ¼
#CNV affected genes overlapping with BSG

#CNV affected genes
#BSG

#All experresing genesðCPM more than 1CPMÞ
ð4Þ

PeakCNV identified a greater number of CNVgenes that are
dominantly expressed in the NDD relevant pathogenic contexts
(nervous system) compared to other tools (24 out of 831 CNV
genes, representation factor 1.15, p value < 0.001), which is 1.07
times greater than the highest enrichment obtained by other tools
(Fig. 5I-K).
4. Conclusion

The current existing tools for performing a CNVR-phenotype
association study fall short to generate a false positive free list of
CNVRs associated with the phenotype of interest. To address this
issue, in the present study we developed PeakCNV, an AI-based
tool to filter out false positive hits and keep true positive candidate
CNVRs. This can enhance the efficiency of downstream analyses for
diagnosis or purposes significantly. The aim of the proposed
method is to identify associated CNVRs with disease using two
new objectives including genomic distance and uniqueness. The
results of benchmarking analysis showed that PeakCNV improves
the CNVR based CNV-phenotype association study by correcting
the biases arising from the overlapping and co-occurrence of con-
founding CNVRs, and therefore outperforms other currently exist-
ing tools by identifying more biologically meaningful candidate
CNVRs.



Fig. 5. The results of benchmarking of PeakCNV over other available tools using CNVs for individuals with Neurodevelopmental Disorders (NDD) as case study-three. A)
Statistically significant (p value < 0.05) CNVRs (both deletion and duplication CNVRs) that were identified by PeakCNV and other tools. X axis represents the genomic
coordinates of CNVRs in chromosomes. Y axis represents the negative logarithm base ten of the p value. B) The total number of identified risk CNVRs (both deletion and
duplication CNVRs together) and their genomic size in mega base pair (Mbp) by PeakCNV and other tools. (C), (D) and (E) represent the case-control ratio for duplication,
deletion and total (both duplication and deletion together) risk CNVRs by different tools, respectively. Case-control ratio is the coverage rate of identified risk CNVRs for case
over control samples. (F), (G) and (H) represent the enrichment of CNV-affected genes (CNVgenes) in NDD-related genes for duplication, deletion and total (both duplication
and deletion together) risk CNVRs identified by different tools, respectively. The NDD-related genes were obtained from the Clinical Genomic Database. (I), (J) and (K)
represent the enrichment of CNVgenes in brain specific expressing genes for duplication, deletion and total (both duplication and deletion together) risk CNVRs identified by
different tools, respectively. The performance of PeakCNV in identifying more biologically meaningful CNVRs related to NDD was compared with PLINK, SNATCNV, CNVRuler
and CoNVaQ. The biological relevance of identified CNVRs was assessed by the overrepresentation of affected genes by these CNVRs for molecular pathways (brain specific
expressing genes and known NDD risk genes) related to NDD pathogenesis as well as higher coverage rate for individuals with NDD over healthy individuals. Representation
factor represents the magnitude of overrepresentation test.
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