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An update on genetically encoded lipid 
biosensors

ABSTRACT Specific lipid species play central roles in cell biology. Their presence or enrich-
ment in individual membranes can control properties or direct protein localization and/or 
activity. Therefore, probes to detect and observe these lipids in intact cells are essential tools 
in the cell biologist’s freezer box. Herein, we discuss genetically encoded lipid biosensors, 
which can be expressed as fluorescent protein fusions to track lipids in living cells. We provide 
a state-of-the-art list of the most widely available and reliable biosensors and highlight new 
probes (circa 2018–2021). Notably, we focus on advances in biosensors for phosphatidylino-
sitol, phosphatidic acid, and PI 3-kinase lipid products.

INTRODUCTION
Lipids are fundamental building blocks of cellular life. Their amphi-
philic nature makes them a keystone of bilayer membranes, as simply 
and elegantly illustrated by the double-tailed “tadpoles” of so many 
BioRender cartoons. Yet this deft simplicity belies the diversity of 
phospholipid, sphingolipid, and sterol species that make up biologi-
cal membranes. The tightly crafted recipe of these lipids, with their 
unique shapes and charges, endows key functional properties on 
membranes: fluidity, curvature, and the capacity to selectively recruit 
or activate proteins are all regulated by lipids (Meer et al., 2008; 
Meer and Kroon, 2011; Balla, 2012). For this reason, cell biology de-
mands approaches that can detect and enumerate membrane lipid 
compositions in their native cellular environment (Stahelin, 2009; 
Narwal et al., 2018; Dickson and Hille, 2019; Quinville et al., 2021).

This is where the genetically encoded lipid biosensors enter: 
these are typically lipid-binding domains from effector proteins or 
pathogen toxins, engineered to incorporate a tag for detection. 
Most conveniently, this involves fusion to a fluorescent protein for 
imaging in live cells. In this way, lipid biosensors can give informa-
tion about the relative abundance, dynamics, and subcellular local-
ization of lipids—in real time and in living cells. On the downside, 
the biosensors may be subject to biases in their localization, espe-
cially when not thoroughly characterized. We previously proposed 
two main criteria a biosensor should satisfy: 1) Is the biosensor selec-
tive for the lipid? This is typically determined in vitro. 2) Is the pres-
ence of the lipid both necessary and sufficient to localize the biosen-
sor? This must be determined by modulation of lipids in the native 
cellular environment, and is often overlooked (Wills et al., 2018). 
Other caveats that must be considered include limitation to the de-
tection of lipids in the outer plasma membrane or cytosolic mem-
brane, because limits of fluorescence microscopy make interpreting 
localization in organelle lumens challenging. There are also extreme 
challenges to calibration, generally preventing quantification in 
terms of absolute lipid mass or mole fraction, though there have 
been technical tour-de-force studies that have done so (e.g., Liu 
et al., 2018). The strengths and weaknesses of lipid biosensors have 
already been explored in depth by ourselves and others (Balla et al., 
2000; Lemmon, 2003; Maekawa and Fairn, 2014; Hammond and 
Balla, 2015; Wills et al., 2018). Suffice to say here, when it comes to 
genetically encoded lipid biosensors, a quote from Han Mi-nyeo, a 
character in the hit Netflix show Squid Game, sums it up: “I’m good 
at everything, except the things I can’t do.”

There have been many comprehensive reviews detailing currently 
available lipid biosensors (Stahelin, 2009; Kay et al., 2012; Maekawa 
and Fairn, 2014; Hammond and Balla, 2015; Narwal et al., 2018; 
Wills et al., 2018). We refer the reader to these resources for a com-
prehensive picture. Our goal here is to summarize a few notable 
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recent advances and tools available for specific lipids. We also pres-
ent an updated table (Table 1) showing some of the most widely 
used and (in our opinion) reliable genetically encoded lipid 
biosensors.

The phosphoinositide that we all forget about
There have been many iterations of biosensors for phosphoinositi-
des, which are cardinal regulators of membrane function (Dickson 
and Hille, 2019). These lipids are all phosphorylated derivatives of a 
single parent lipid, phosphatidylinositol (PI). PI is a major lipid, ap-
proximately 10% of cellular phospholipids, with the derivatives be-
ing <1% (Vance, 2015), but a biosensor for PI itself had been lacking. 
As an abundant lipid, its distribution may be assumed to be ubiqui-
tous. Yet, because PI is the key substrate for synthesis of the other 
phosphoinositides, its availability in given membranes is an impor-
tant variable best not left to assumption.

Pemberton et al. recently created a PI biosensor utilizing the Bacil-
lus cereus PI-specific phospholipase C (BcPI-PLC). BcPI-PLC was mu-
tated in order to eliminate catalytic activity of the enzyme, yet retain 
the active site configuration that can accommodate the inositol head-
group (BcPI-PLCH82A). However, in vitro assays showed nonspecific 
BcPI-PLCH82A binding to PC-containing liposomes. To remove this 
nonspecific binding, two membrane-penetrating tyrosine residues 
were mutated to create the BcPI-PLCANH probe. It should be noted, 
though, that neither the BcPI-PLCH82A nor the BcPI-PLCANH probes are 
fully specific for PI in vitro, as the BcPI-PLCANH showed enhanced 
binding to liposomes containing DAG and PI (Pemberton et al., 2020). 
PI was shown to be necessary for membrane localization of both sen-
sors, because depletion of PI by PI-PLC recruitment or AngII stimula-
tion caused a decrease in membrane localization of the biosensors. 
The sufficiency of PI for biosensor recruitment was demonstrated 
when PI levels at the plasma membrane were increased with either 
pseudojanin-induced degradation of PI4P and PI(4,5)P2 to PI, or GSK-
A1 inhibition of PI4KA-mediated conversion of PI to PI4P (Pemberton 
et al., 2020). Notably, the BcPI-PLCANH probe showed similar patterns 
of localization compared with BcPI-PLCH82A within cells. However, the 
BcPI-PLCANH showed more cytosolic localization than BcPI-PLCH82A, 
indicating that BcPI-PLCH82A may be a higher affinity probe for PI.

These probes revealed a surprising distribution of PI: an abun-
dance at the endoplasmic reticulum (ER), peroxisomal, Golgi, and 
mitochondrial cytosolic leaflets, some on the endosomal network, 
but a notable absence at the plasma membrane at steady state 
(Pemberton et al., 2020). Satisfyingly, these findings were corrobo-
rated by additional approaches, including acute activation of PI-PLC 
or PI4Ks to generate diacylglycerol or PI4P from PI localized in spe-
cific membranes, which could be detected with other biosensors for 
these lipids (Pemberton et al., 2020; Zewe et al., 2020), and the 
trafficking of exogenously applied fluorescent PI (Zewe et al., 2020). 
Taken together, these results support a model where PI within the 
ER is transferred to the plasma membrane (PM) and then quickly 
converted into PI4P and PI(4,5)P2 to maintain homeostasis of these 
crucial PM phosphoinositide species.

The phospholipid backbone: phosphatidic acid
Phosphatidic acid (PA) is a crucial lipid, being both an intermediate 
in more complex phospholipid biosynthesis, and a second messen-
ger molecule in diacylglycerol kinase (DGK) and phospholipase D 
(PLD) signaling pathways (Thakur et al., 2019). The most widely 
used biosensor is the phosphatidic acid biosensor with superior 
sensitivity (PASS) developed by Zhang et al. (2014). An added 
nuclear export sequence (NES) to the Spo20 phosphatidic acid–
binding domain (PABD) prevented accumulation of PASS within the 

nucleus. This newly designed probe was able to show clear translo-
cation to the PM after stimulation with phorbol-12-myristate-13-ac-
etate, without having to overexpose images. However, the PASS 
did still retain some slight binding to PI(4,5)P2 and PIP3 within lipo-
somes that the original Spo20 biosensor also showed (Zhang et al., 
2014). A higher avidity, tandem dimer has also been developed 
(Bohdanowicz et al., 2013).

The usefulness of these PA biosensors has been recently cor-
roborated by some new, ingenious tools, which have increased con-
fidence in the accuracy of the Spo20-based PA lipid biosensors. An 
optogenetic bacterial PLD demonstrated that PA production in a 
variety of organelles is indeed sufficient to recruit PASS (Tei and 
Baskin, 2020). Additionally, click chemistry was used to label the 
products of PLD transphosphatidylation reactions as a proxy for PA, 
PLD’s endogenous product. This method showed in real time that 
active PLDs localize to the PM, ER, and Golgi, with slight localization 
on endosomes, lysosomes, and the mitochondria (Liang et al., 2019; 
Tei and Baskin, 2020).

Recent work has gone into characterizing the N-terminus of α-
synuclein as a novel PA biosensor (Yamada et al., 2020). Using lipo-
somes, this construct (α-Syn-N) was shown to be selective for PA as 
compared with other lipids. However, it also showed higher selectiv-
ity for 18:1/18:1 PA species, which could limit its use in endogenous 
systems where many different acyl chains are likely to occur, and the 
18:1/18:1 species is rare (Lorent et al., 2020). Within Cos7 cells, the 
α-Syn-N biosensor was shown to be dependent on PA, as it colocal-
ized with wild-type DGKs and PLD, but not when catalytically dead 
enzymes or inhibitors were used to prevent PA production. How-
ever, it is still not clear that this biosensor will be as sensitive as PASS 
when PA levels are modulated in a more physiological context 
(Yamada et al., 2020). Therefore, we still recommend the more ro-
bustly characterized Spo20-based PA biosensors.

Class I PI 3-kinase products: both of them
The class I PI 3-kinase pathway is a paramount regulator of growth 
in metazoa; it is often activated in cancer and other diseases (Fruman 
et al., 2017). Mechanistically, PI 3-kinase signaling operates through 
production of the lipid second messenger PIP3 by 3-OH phosphory-
lation of PI(4,5)P2. PIP3 can then be converted (to varying extents) 
into an additional signal, PI(3,4)P2, by 5-OH phosphatases (Malek 
et al., 2017). Both PIP3 and PI(3,4)P2 interact with effector proteins, 
which may be selective for one or both lipids (Hawkins and Stephens, 
2016). Therefore, distinguishing these two lipids, and their sub-
cellular localizations, is vital for delineating PI3K signaling at the 
cellular level.

The most popular biosensor for PI3K signaling is the lipid-bind-
ing pleckstrin homology (PH) domain from its most famous effector, 
Akt. Although often mistaken for a PIP3-biosensor, this domain actu-
ally binds to both PIP3 and PI(3,4)P2 (Manna et al., 2007; Ebner 
et al., 2017; Liu et al., 2018; Goulden et al., 2019). It is worth noting 
that the isolated PH domain, from all three isoforms of Akt(1–3), 
actually exhibits a preference for PI(3,4)P2, although this preference 
only holds true for Akt2 in the context of the full-length protein (Liu 
et al., 2018). Therefore, the Akt PH domain-based biosensors can be 
fine indicators of PI3K activity, but they report the convolution of 
PIP3 and PI(3,4)P2 signals.

Our lab has recently published a highly selective and sensitive 
PI(3,4)P2 biosensor, cPHx3, made of a tandem trimer of the C-termi-
nal PH (cPH) domain from tandem PH-domain–containing protein 1 
(TAPP1) fused to a NES and a fluorescent protein tag (Goulden et al., 
2019). The improved sensitivity for PI(3,4)P2, derived from the high 
avidity of the tandem trimers, was evident when we detected the 
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lipid’s synthesis after insulin stimulation, which had not previously 
been evident with lipid biosensors or many biochemical approaches 
(Goulden et al., 2019). Through an assortment of orthogonal ma-
nipulations in cells, we were also able to demonstrate that PI(3,4)P2 
was both necessary and sufficient to drive cPHx3 localization in cells.

As an alternative to tandem arrays, Liu and colleagues improved 
the membrane binding of a single cPH domain by mutating a 
methionine to a membrane-penetrating tryptophan residue. This 
would undoubtedly improve the binding of a fluorescent protein 
conjugate. However, cysteine residues were also removed or in-
serted to produce a single site for chemical ligation of a solvatochro-
mic dye, generating eTAPP1-cPH (Liu et al., 2018). This solvatochro-
mic dye exhibits a spectral shift when inserted into the hydrophobic 
bilayer, permitting ratiometric imaging of the probe’s membrane 
association. When calibrated against known mole fractions of PI(3,4)
P2 in liposomes, precise quantification of lipid concentration was 
realized (Liu et al., 2018). Therefore, precise spatiotemporal detec-
tion of PI(3,4)P2 is now possible, which when combined with recent 
advances in mass spectrometry detection of this lipid (Malek et al., 
2017), will usher in a new era of understanding of this enigmatic 
lipid’s role in PI3K singling.

It is important to note that single PH domains from TAPP1 had 
previously been used as highly selective (but less sensitive) PI(3,4)P2 
biosensors—but these came in two forms: one corresponding to the 
isolated cPH domain, and a second that includes the entire C-termi-
nus of the protein. This C-terminal region contains a clathrin-binding 
domain, which biases the localization of the probe (Goulden et al., 
2019). Therefore, it is critical to work with domains restricted to the 
isolated PH domains.

We also took advantage of the highly PIP3-selective 2G splice 
variant of the ARNO (also known as cytohesin-2) PH domain to make 
a high avidity, tandem dimer probe for this lipid (Cronin et al., 2004). 
We engineered an I303E mutation into each domain to disrupt a 
secondary binding site for Arl-family GTPases; this biosensor 
showed excellent selectivity for PIP3 in cells (Goulden et al., 2019). 
Liu et al. also engineered optimized membrane binding and solva-
tochromic dye–conjugated derivatives of the PIP3-selective Myo-
sinX tandem PH domains, eMyoX-PH (Liu et al., 2018). Thus, there 
are now highly sensitive and selective PIP3 biosensors to accompany 
PI(3,4)P2 biosensors. These are included in Table 1. As noted in the 
table, a potential caveat to these sensors is their binding to soluble 
inositol tetrakisphosphate (IP4), the cognate headgroup of PIP3. This 
could potentially limit membrane translocation when PLC-mediated 
IP4 production is triggered in conjunction with PI3K. This is expected 
to be a more minor caveat for the dimeric probes, where local con-
centration of the lipid on the membrane will favor high avidity bind-
ing to the tandem PH domains.

CONCLUSION
Genetically encoded lipid biosensors continue to be a powerful and 
convenient tool to study lipid dynamics and function in cell biology. 
Here, we have focused on a brief refresher of the principles, and 
highlighted some of the newest biosensors that have appeared in 
the last 3 years. Given the recent trend from the last 3 years in bio-
sensor development, it seems certain that new and improved 
probes are on the horizon, so we encourage the reader to continue 
keeping an eye open for the latest developments!
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