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Simple Summary: Like most insects, those that feed on both prey and plant materials harbor
symbiotic bacteria in their body. Yet the involvement of bacteria in the feeding habits of these
omnivorous consumers has yet to be investigated. In the present study, we took the first step toward
testing the hypothesis that bacterial symbionts are involved in the feeding habits of the omnivorous
bug Macrolophus pygmaeus. We (I) characterized the microbiome (the assembly of bacteria and fungi)
of M. pygmaeus, and (II) determined the identity and location of the most dominant bacteria species
within the host body. We found that M. pygmaeus microbiome is dominated by two Rickettsia species,
R. belli and R. limoniae. These bacteria are found in high numbers in the digestive system of the bug,
each exhibiting a unique distribution pattern, and for the most part, do not share the same cells in the
gut. These results strongly suggest that the host bug may gain some nutritional benefits by hosting
the two dominant symbiotic bacteria in its gut.

Abstract: Bacterial symbionts in arthropods are common, vary in their effects, and can dramatically
influence the outcome of biological control efforts. Macrolophus pygmaeus (Heteroptera: Miridae), a key
component of biological control programs, is mainly predaceous but may also display phytophagy.
M. pygmaeus hosts symbiotic Wolbachia, which induce cytoplasmic incompatibility, and two Rickettsia
species, R. bellii and R. limoniae, which are found in all individuals tested. To test possible involvement
of the two Rickettsia species in the feeding habits of M. pygmaeus, we first showed that the microbiome
of the insect is dominated by these three symbionts, and later described the distribution pattern of the
two Rickettsia species in its digestive system. Although both Rickettsia species were located in certain
gut bacteriocyes, in caeca and in Malpighian tubules of both sexes, each species has a unique cellular
occupancy pattern and specific distribution along digestive system compartments. Infrequently,
both species were found in a cell. In females, both Rickettsia species were detected in the germarium,
the apical end of the ovarioles within the ovaries, but not in oocytes. Although the cause for these
Rickettsia distribution patterns is yet unknown, it is likely linked to host nutrition while feeding on
prey or plants.
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1. Introduction

Colonization by microorganisms is a universal phenomenon among animals including insects,
one of the most successful groups in the animal kingdom [1]. Various types of symbiotic associations
with microorganisms including fungi, viruses, protozoans, and particularly bacteria, have contributed
to this success. Indeed, bacterial associations are widespread throughout the Insecta [2,3]. In recent
decades, the working definition of a symbiont has been expanded to include all microbes that colonize
animals, making up the host microbiome [4]. The insect microbiome is a dynamic microbial community
which shapes many life history traits of its host [5]. Some symbiotic bacteria, for example, induce sex
ratio distortion through mechanisms such as male killing, parthenogenesis, feminization, or cytoplasmic
incompatibility [6]. Since microbiota account for up to 1–10% of the biomass of insects [3], they have
become the focus of intense research.

Bacterial symbionts can generally be divided into two main categories: inherited intracellular
symbionts, which are vertically transmitted from one host generation to the next, and extracellular
symbionts, which are acquired from the environment [7]. Symbionts can also be categorized as either
obligatory for the survival and development of their hosts, in that they provide digestive capabilities or
supplement the hosts’ diet with essential nutrients, or facultative, influencing host fitness by altering
host traits and capabilities [8].

It has been suggested that symbionts may be involved in determining the range of food sources
that the host is able to exploit [9]. For instance, in the facultative seed-eating predatory beetle
Harpalus pensylvanicus (Carabidae), more seeds from Chenopodium album were consumed in the presence
of the symbiont Enterococcus faecalis than in its absence [10]. Other studies present evidence that
symbionts may provide nutritional benefits to their hosts by modifying plant defensive pathways,
thus enabling the insects to overcome plant defenses, as was found for the chrysomelid beetles
Diabrotica virgifera on maize [11] and Leptinotarsa decemlineata on Solanum lycopersicum [12].

Insects of the suborder Heteroptera, the true bugs, comprise around 40,000 species worldwide,
some of which are important predators of a wide range of phytophagous pest insects [8,13], and thus
serve in biological control programs. Some others are important agricultural pests [14]. It has been
known for over 50 years that heteropterans harbor symbiotic microorganisms; in many species,
the ability to survive and reproduce on plant materials, prey items, or both resources in various
mixtures has been attributed to the presence of symbiotic bacteria. Previous work suggests that
the absence of symbionts of the genus Burkholderia in the broad-headed bugs Riptortus clavatus is
responsible for a decrease in host fitness [15].

Within the Heteroptera, the nearly 10,000 species of the family Miridae have a diet breadth
that includes various levels of specialization for herbivory, carnivory, or both (i.e., omnivory) [16].
Commercially used mirids, including Macrolophus pygmaeus and Nesidiocoris tenuis, are natural enemies
of pestiferous arthropods and, as such, serve as a component of integrated pest management and
biological control programs [17]. Macrolophus pygmaeus may also display phytophagous habits; it has
been shown to successfully develop and oviposit, although at a lower rate, when feeding exclusively
on leaves of tomato or eggplant [18]. In contrast, Nesidiocoris tenuis is able to feed on plants, but cannot
complete its development in the absence of prey [19]. Although the involvement of bacteria in
the omnivorous feeding habits of mirid bugs has yet to be investigated, some evidence supports
this possibility. The omnivorous bug N. tenuis, for example, is known to harbor both Rickettsia and
Wolbachia endosymbionts, and both have been found not only in host ovaries, but in the gut tissue as
well [20]. Bacteria of these same genera have been reported by Machtelinckx et al. [21] in M. pygmaeus,
a key natural enemy of various economically important agricultural pests of greenhouse vegetable
crops [17]. Two Rickettsia species, R. bellii and R. limoniae, were identified by Machtelinckx et al. [21].
The commercial application of M. pygmaeus as a biological control agent has been limited by its potential
to inflict significant damage by feeding on crop plants when prey becomes scarce [22]. Therefore,
the overall objective of our ongoing research is to test the possible involvement of bacterial symbionts
in the omnivorous feeding habits of M. pygmaeus. To this end, we (I) characterized the microbiome of
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M. pygmaeus, and (II) determined the identity and location of two Rickettsia species within its body.
The results obtained are reported here.

2. Material and Methods

2.1. Insect Rearing

A culture of M. pygmaeus was established in February 2018 with 50 adults (30 females and 20 males)
obtained from a commercial biological control company (BioBee Sde Eliyahu Ltd.). The bugs (Figure 1)
were kept in ventilated cages in a climate chamber (25 ± 1 ◦C 16:8 L:D) and offered symbiont-free frozen
Ceratitis capitata eggs as prey, and tomato seedlings (cv. “Beefsteak”, M. Ben-Shahar Ltd., Tel Aviv,
Israel) as both food and oviposition substrate. The seedlings were replenished twice weekly.
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Figure 1. Adult female Macrolophus pygmaeus.

2.2. Microbiota Characterization

To identify the bacterial and fungal community in M. pygmaeus, total genomic DNA was extracted
using SDS buffer, as described in [23], from five replicates, each consisting of 20 adult females. The DNA
was used as a template for PCR amplification of the V4–V5 variable regions of microbial 16S ribosomal
RNA gene [24] using primers (forward 515F and reverse 926R) and the V7–V8 regions of the fungal 18S
ribosomal RNA gene using primers FF390 and FR1 [25]. A two-stage targeted amplicon sequencing
protocol was used as previously described [26]. Libraries were loaded onto a MiSeq v3 flow cell
and sequenced (2 × 300 paired end reads) using an Illumina MiSeq sequencer. PCR amplifications,
library preparation, and sequencing were performed at the University of Illinois at Chicago Sequencing
Core. Raw sequence data was processed with the Dada2 pipeline [27] in R using package ‘dada2′

(version 1.14.0). Fastq formatted reads were trimmed and filtered for low quality using the command
‘filterAndTrim’ with parameters maxEE = 2, maxN = 0, trimleft = 15. Error rate estimation was
carried out using ‘learnerror’ command with default parameters but the randomize parameter set
to TRUE, in order to sample nucleotides and reads for model building randomly across all samples.
The dada2 algorithm was subsequently implemented for error correction and a count table containing
the amplicon sequence variants (ASVs), forward and reverse reads were merged using the ‘mergePairs’
command and counts per sample was produced. Suspected chimera was detected and filtered out
using the command ‘removeBimeraDenovo’ using default parameters. For each ASV, taxonomy was
inferred by alignment to the Silva non-redundant small subunit ribosomal RNA database (version 132,
Ref. [28]) using command ‘assignTaxonomy’ with default parameters but setting minimum bootstrap
confidence value to 80%. For the bacterial dataset, non-bacterial ASVs, such as of mitochondrial,
or chloroplast origin or unclassified ones, were removed. The resulting count matrix for each ASV in
each sample and their taxonomic annotations were used for further analysis.
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2.3. Screening for Rickettsia bellii and Rickettsia limoniae Prevalance

To study the frequency of R. bellii and R. limoniae in M. pygmaeus, the symbionts were screened
using PCR. Fourteen M. pygmaeus adults, seven females and seven males, were retrieved from the lab
colony and placed in 70% ethanol until processing. Individual insects were ground separately in 90 µL
lysis buffer [29] and checked by PCR with species-specific primers for the 16S rRNA gene of R. bellii
and R. limoniae (Table 1). Negative controls contained sterilized water and DNA of Rickettsia-free sweet
potato whiteflies (Bemisia tabaci). DNA of whiteflies harboring the bacterium served as a positive
control for R. bellii, while the positive control for R. limoniae was the DNA used for deep sequencing, in
which the bacterium has been identified. PCR procedures for adults were conducted in a final volume
of 25 µL containing 10 uL G013-dye 2X PCR Taq MasterMix-abm, 10 pmol per microliter of each primer,
10 µL DDW and 3 µL of DNA. PCR was carried out under the following conditions; R. bellii: 2 min at
94 ◦C, 36 cycles of 30 s at 92 ◦C, 30 s at 60 ◦C, 30 s at 72 ◦C, and a final extension of 5 min at 72 ◦C.
R. limoniae: 2 min at 94 ◦C, 36 cycles of 30 s at 92 ◦C, 30 s at 55 ◦C, 30 s at 72 ◦C, and a final extension
of 5 min at 72 ◦C. PCR products were stained with fluorescent dye (8 µL SafeView™ nuclear stain),
electrophoresed on 1.5% agarose gels × TAE-buffer, stained with ethidium bromide, and visualized
under UV-light (Bio-Rad Gel Doc XR System, 254 nm).

Table 1. Primers and probes used to identify Rickettsia bellii and R. limoniae in M. pygmaeus.

Targeted Gene/Probes Name Sequence Reference

Targeted Genes

16S rRNA gene of R. limoniae
and R. bellii Rick-1F 5′-ATACCGAGTGRGTGAYGAAG-3′ [21]

16S rRNA gene of R. limoniae Ricklimoniae-F 5′-CGGTACCTGACCAAGAAAGC-3′ [21]

16S rRNA gene of R. bellii Rickbellii-R 5′-TCCACGTCGCCGTCTTGC-3′ [30]

16S rRNA Rickettsia 1513R 5′-ACGGYTACCTTGTTACGACTT-3′ [30]

Probes

Rb1-Cy3 R. bellii-specific probe 5′-TCCACGTCGCCGTCTTGC-3′ [30]

Rl1-Cy5 R. limoniae-specific probe 5′-GCTTTCTTGGTCAGGTACCG-3′ [21]

2.4. Location of R. bellii and R. limoniae in M. pygmaeus

2.4.1. Morphology of the Digestive System

To characterize the morphology of female and male digestive systems, over 50 adult females
and 50 males of M. pygmaeus were dissected on microscope slides in physiological saline, using fine
needles. Ovaries and guts were dissected under a stereoscope (Nikon SMZ-1000) by removing the
head, anchoring the body, and gently pulling the edge of the abdomen until the ovaries and digestive
system were revealed. They were photographed under a 3D digital microscope (Hirox RH-2000, Jyfel,
Bâtiment A F-69760, Limonest, France).

2.4.2. PCR for Ovaries and Digestive System

To detect the presence of R. limoniae and R. bellii, nine females and nine males were dissected
individually, as described above. PCR were performed separately for dissected ovaries and the
digestive system, as described above, with the following alteration: ovaries and the digestive system
were ground separately in 40 µL of Lysis buffer. PCR were performed in 13 µL final volume containing
5 µL G013-dye 2X PCR Taq MasterMix-abm, 10 pmol per microliter of each primer, 5 µL DDW, and 2 µL
of DNA.
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2.4.3. Fluorescence in Situ Hybridization (FISH)

To determine the location of the two dominant bacteria, R. limoniae and R. bellii, in the reproductive
organs and digestive system, fluorescent in situ hybridization (FISH) was performed. The analysis
was carried out following the protocol described by Gottlieb et al. [30] for whole mounted samples,
with slight modifications. Each of over 50 ovaries and 50 digestive tracts were placed individually
in a drop of 1X PBS under a stereomicroscope, fixed for 5 min in Carnoy’s fixative (chloroform:
ethanol: glacial acetic acid, 6:3:1), then washed twice in hybridization buffer (20 Mm TRIS-HCL pH
8.0; 0.9 M NaCl; 0.01% SDS; 30% Formamide [F9037] (Sigma-Aldrich Products Ltd., Rehovot, Israel)
without probe, and then hybridized overnight in hybridization buffer with fluorescent probe at 25 ◦C.
Two DNA probes used for the analysis were the R. bellii-specific probe CY3 and R. limoniae-specific
probe CY5 (Table 1). A no-probe experiment and the hybridization of a digestive system were used as
controls. Images were acquired using an OLYMPUS IX 81 (Japan) inverted laser scanning confocal
microscope (FLUOVIEW 500) equipped with 405, 561, 640 nm laser lines, a UplanApo 10 ×/0.4 NA
dry objective, and PlanApo 40 ×/0.9 NA and 60 ×/1.0 NA water immersion objectives. For DAPI;
4′, 6-diamidino-2-phenylindole is a fluorescent stain which binds preferentially to the AT-rich regions
of dsDNA, 405 nm excitation light and a BA430-460 nm barrier filter were used; for the detection
of fluorochrome CY3, 561 nm excitation light and a BA575-620 nm barrier filter were used. For the
detection of fluorochrome CY5, a 640 nm laser line and a BA 660IF filter were used. When DAPI, CY3 and
CY5 were detected in a single sample, a dichroic mirror 405/488/561/640 was used. In all cases where
more than one dye was monitored, sequential acquisition was performed. Confocal optical sections
were obtained at increments of 5 µm, 1.3 µm and 0.8 µm for ×10, ×40 and ×60 objectives, respectively.

3. Results

3.1. Microbiota Characterization

The bacterial data set originating from five samples (pools of 20 female bugs each), resulted in a total
of 94,293 reads mapped to 28 ASVs which were further analyzed (Table S1). Three ASVs, two Rickettsia
populations and one Wolbachia population dominated the M. pygmaeus microbiome with cumulative
relative abundance values of 94.8–98.7% among the five replicates. The similarity between two Rickettsia
ASV was 96% (390 of 407 nucleotides of pairwise aligned sequences), indicating that two separate species
of Rickettsia, namely R. limoniae and R. bellii, occur in the studied M. pygmaeus population. Only five other
ASVs were prevalent in all five samples and included different Actinobacteria. The remaining 20 ASVs
included various Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, with prevalence of
2/5 (1 ASV) and 1/5 (19 ASVs) only (Figure 2 and Table S1). In the fungal dataset, most sequences were
of host origin (94.4–98.0%). The remaining sequences were assigned to 21 fungal ASVs, the majority of
which belonged to Ascomycota (Table S2). Due to the low quantity of sequence data, fungi were not
further analyzed. Moreover, the PCR performed with species-specific primers showed that all females
and males of M. pygmaeus originating from the lab population harbored the two Rickettsia species.

3.2. Location of R. bellii and R. limoniae in M. pygmaeus Body

3.2.1. Morphology of Digestive System

Microscopic observations revealed the structural configuration of the ovaries (Figure 3A) and
female and male guts (Figure 3B,C). While the female digestive system was longer and wider than that
of the males, the alimentary tract of both sexes displayed similar division into morphologically distinct
regions: the foregut, a tubular region directly connected to mouth; the first, anterior region of the
midgut, which was large and sac-like; the second, tubular region of the midgut; the third midgut region,
which was soft and moderately swollen; and the fourth, posterior, moderately swollen, region of the
midgut that was connected to the hindgut at the joining site of the Malpighian tubules.
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Figure 3. Images of M. pygmaeus ovary and male and female digestive systems. (A) An isolated ovary
with several ovarioles; M, mature oocyte; G, Germarium, (B) Isolated male and (C) female digestive
systems; F, foregut; M1, midgut first section; M2, midgut second section; M3, midgut third section
(with outgrowth caeca); M4, midgut fourth section; MT, Malpighian tubules; H, hindgut; AG, accessory
gland; OV, ovipositor. Images A-C were acquired by 3D digital microscopy using identical settings.
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Two specific outgrowth caeca which differ between females and males appear in the tissue of the
third midgut region: in males, they appeared larger, abutting the digestive system, and were located at
the posterior end of the third midgut region. In contrast, in females, the structures were smaller, not in
direct full contact with the digestive system, and located at the posterior section of the third midgut
region, but not at its end (Figure 3B,C).

3.2.2. PCR for Ovaries and Digestive System

A diagnostic PCR using Rickettsia-specific primers on eighteen female and male digestive systems
and ovaries showed that all M. pygmaeus individuals tested harbored both Rickettsia species.

3.2.3. Fluorescence in Situ Hybridization

In situ hybridization targeting bacterial 16S rRNA confirmed the location of the two Rickettsia
species within the ovaries and the digestive system. In the ovaries, R. bellii and R. limoniae were
concentrated in the germarium, at the apical end of the ovarioles (Figure 4A). R. limoniae was scattered
throughout the germarium, whereas R. bellii presented mainly in clusters (Figure 4B).
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(red), R. limoniae specific probes (green), and DNA dye (blue). (A) Ovary with several ovarioles,
R bellii and R. limoniae are concentrated in the germarium; G, Germarium; NC, nurse cells; O, Oocyte.
(B) Enlarged section of the germarium (white circle in A). Images A and B represent serial Z sections of
35 µm and 13.6 µm, respectively.

FISH analysis revealed the presence of large numbers of the two Rickettsia species throughout the
female and male digestive systems. In most cases, they were located in different specific host cells
(hereafter, bacteriocytes) (Figures 5A and 6A). Infrequently, we found the two Rickettsia species sharing
the same bacteriocyte (Figures 7 and 8). The bacteriocytes for R. limoniae were distributed throughout the
entire digestive system, while R. bellii was located primarily in the foregut and midgut. FISH targeting
bacterial 16S rRNA visualized the R. limoniae and R. bellii bacteriocytes in the inner of the two outgrowth
caeca regions, in the tissue of the third midgut section of females and males (Figures 5B and 6C).
Furthermore, FISH analysis detected R. bellii and R. limoniae within the Malpighian tubules of females and
males; R. limoniae was observed in all examined Malpighian tubules, whereas R. bellii was not always
present (Figure 5C).
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Figure 5. FISH of a female M. pygmaeus digestive system (DNA in blue). (A) The whole digestive
system, R. bellii (red), R. limoniae (green). Reconstruction: three frames of the same gut; from F to
M2 picture number 1, M3 picture number 2, M4 to OV picture number 3. (B) Enlarged section of the
outgrowth caeca region, in the gut tissue of the third midgut section (white circle 1 in A). (C) Enlarged
section of Malpighian tubules (white circle 2 in A). Images A number 1, A number 2, A number 3,
B and C represent serial Z sections of 20 µm, 55 µm, 50 µm, 12 µm, 17 µm respectively. F, foregut; M1,
midgut first section; M2, midgut second section; M3, midgut third section (with outgrowth caeca); M4,
midgut fourth section; MT, Malpighian tubules; H, hindgut; OV, ovipositor.
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Figure 6. FISH of the male M. pygmaeus digestive system (DNA in blue). (A) The digestive system,
R. bellii (red), R. limoniae (green), with two outgrowth caeca from the gut tissue of the third midgut
section dissected aside (see circle 2). (B) Enlarged section from the midgut (see circle 1). (C) Enlarged
section of the two outgrowth caeca (see circle 2). Images A, B and C represent serial Z sections of 35 µm,
8.8 µm, 37.7 µm respectively. F, foregut; M1, midgut first section; M2, midgut second section; M3,
midgut third section; MT, Malpighian tubules.
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R. limoniae (green) can be seen to inhabit separate bacteriocytes, as well as occupy the same bacteriocyte
in the outgrowth caeca epithelium, e.g., in Figure F, see arrow. (A–F) Serial Z-sections of 37.7 um
(1.3 um increasement).
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4. Discussion

Bioinformatic analysis in this study revealed that the microbial community associated with a
laboratory strain of Macrolophus pygmaeus is composed of three dominant endosymbionts: Wolbachia sp.,
Rickettsia limoniae and R. bellii. An earlier phylogenetic analysis similarly demonstrated that the
two Rickettsia species in M. pygmaeus are related to two different clades [21]. One falls within the
‘Bellii’ group, together with Rickettsia reported from several agricultural pests, such as the two-spotted
spider mite (Tetranychus urticae), the pea aphid (Acyrthosiphon pisum), and the sweet potato whitefly
(Bemisia tabaci). The second Rickettsia belongs to the ‘limoniae’ group, which has been reported from
the microbiome of non-agricultural insects including the cranefly Limonia chorea [31]. The observed
similarities in symbionts among arthropod species may suggest that bacteria undergo horizontal
transfer between species in the environment. Such a transfer may occur via feeding; omnivorous
species such as M. pygmaeus may acquire the symbionts directly by consuming infected prey or
indirectly by feeding on plants shared with other phytophagous insects. Likewise, other species that
feed on the same host plants might subsequently take up micro-organisms transferred by the bug
to the plants by way of its piercing-sucking mouthparts. Caspi-Fluger et al. [32] had demonstrated
such horizontal transmission of Rickettsia between two different whitefly species, through their shared
cotton host plants. A similar through-the-plant transmission of intracellular bacteria such as, Rickettsia,
Wolbachia, and Cardinium, was reviewed by Chrostek et al. [33] in Euscelidius variegatus leafhoppers.
In addition, symbionts may be transferred between hosts by their shared parasitoids. For example,
Hamiltonella defensa and Regiella insecticola may be transferred between aphid hosts by parasitoid
wasps [34].

Machtelinckx et al. [21] demonstrated the presence of Wolbachia and the two Rickettsia species
in the ovarioles of M. pygmaeus, indicating the presence of vertical transmission. Here, we described
each Rickettsia species and demonstrated that both are found in the germaria at the tip of the ovarioles,
but each species had a unique distribution pattern: while R. limoniae was scattered throughout the
germarium, R. bellii appeared mainly in clusters. Although we did not observe Rickettsia in the
oocytes, the germarium can be an infection zone of Rickettsia for further transmission into the oocytes,
as described in the bulrush bug, Chilacis typhe [35]. It is thus possible that oocyte infection occurs at
a later stage of oocyte maturation, before fertilization and deposition. Alternatively, Rickettsia had
been shown to invade the oocytes of Bemisia tabaci whiteflies during early developmental stages, but is
mostly excluded from the oocytes when eggs mature [36].

Many members of the suborder Heteroptera have established relationships with microbes, which
inhabit specific outgrowths of the midgut caeca. Mirids have been thought to lack these caeca [16,37],
but in this study, two specific outgrowths of the caeca were clearly in evidence in the third midgut
region. They differed in appearance between males and females. To our knowledge, this is the first
report of such structures in the Miridae. A possible nutritional function of these caeca in M. pygmaeus
is suggested by the presence of bacteriocytes that harbor either R. bellii or R. limonia, with a few
bacteriocytes containing both species.

While Wolbachia is known to induce strong cytoplasmic incompatibility in M. pygmaeus and is
virtually absent from the digestive system [21,38], the role of Rickettsia in the biology of this bug
is mostly unknown. As the long-term objective of our study is to test the involvement of bacterial
symbionts in M. pygmaeus diet, we first determined the tissue localization and cellular pattern of the
two Rickettsia species in the alimentary canal of males and females.

Finding both Rickettsia species in M. pygmaeus Malpighian tubules may be indicative of a symbiont
hosting role of these organs, as was found for nutritional symbionts in ticks [39]. Likewise, Malpighian
tubules harbor endosymbionts that appear to contribute to the physiological function of leaf and bark
beetles [40]. For instance, Macroplea appendiculata and M. muticare reed beetles appear to construct
underwater cocoons by using the secretion of two bacteria endosymbionts that reside in cells of their
Malpighian tubule [41].



Insects 2020, 11, 530 12 of 15

Microbes have been reported to be established in both mid- and hind-gut epithelia of arthropods,
where the highly convoluted plasma membranes of the cells present a large area for extensive contact
with microbial surfaces [37]. Symbionts have in fact been reported in the mid-gut of Heteroptera species
belonging to several families, whether in crypts in the posterior region of the mid-gut, in the lumen
or on the epithelial walls of the mid-gut itself, or in specialized bacteriomes [42–44]. Rickettsia were
reported in the nuclei and cytoplasm of midgut epithelial cells of the plant bug Stenotzls birtotatus [45],
in the midgut cells and lumen of Bemisia tabaci [30], and in the lumen along the digestive tract of
Nesidiocoris tenuis [20]. These symbionts appear to enhance the fitness of their heteropteran hosts,
may be through nutritional function; the absence of symbionts resulted in retarded growth, increased
mortality, and/or sterility [42,46]. Furthermore, Feldhaar et al. [47] demonstrated that Blochmannia,
an intracellular midgut endosymbiont of Camponotus floridanus, provides these ants essential amino
acids, and that it may also play a role in nitrogen recycling via its functional urease. Interestingly,
removal of all three symbionts from M. pygmaeus resulted in higher sensitivity to freezing conditions [48].
It is not yet clear which of the symbionts causes this negative effect by its absence.

FISH results showed the presence of bacteriocyte-like cells within the digestive system of
M. pygmaeus. Each of the Rickettsia species was found to be hosted in a different bacteriocyte within
the digestive gut compartments. In rare instances, the two Rickettsia species were found to share
the same bacteriocyte. The intracellular arena hypothesis, which states that genetic exchange can
occur in communities of bacterial endosymbionts that infect the same cellular environment of a
shared host, is supported by documented findings from the dipteran Drosophila simulans and the
hymenopteran Nasonia vitripennis [49]. To our knowledge, however, this is the first report of two
Rickettsia species sharing the same bacteriocyte in insects. The association of different bacterial species
together in the same host cell may suggest that each symbiont induces unique effects, and that they
may act synergistically [50]. In the context of multiple infections with vertically transmitted symbionts,
the bacterial partners are limited to a restricted shared environment and the evolutionary fate of all
partners is tightly linked. If the transmission of each partner depends on the transmission of the
others, cooperative interactions and communication among symbionts can be expected [50]. However,
since the cohabitation of a single bacteriocyte by the two Rickettsia species was rare in the studied
system, it may indicate antagonistic interactions through competitive displacement [50,51]. Notably,
R. limoniae was more broadly distributed along the host digestive system than R. bellii and appeared
in a scattered pattern compared to the clustering of R. bellii. This may suggest a different interaction
with the host cellular environment and may be the result of different host control mechanisms over
its symbionts.

5. Conclusions

In conclusion, our results describe the presence of two congeneric Rickettsia species in M. pygmaeus
ovaries and alimentary canal. That unique distribution pattern suggests a possible nutritional
benefit conferred by these endosymbionts on their omnivorous host, via either complementary or
synergistic interaction.
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Table S1: amplicon sequence variants (ASVs) determined for M. pygmaeus population from partial 16S rRNA
amplicon sequencing. Table S2: Amplicon sequence variants (ASVs) determined for M. pygmaeus population from
partial 18S rRNA amplicon sequencing.
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