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Abstract

Burn-induced neuromuscular dysfunction may contribute to long-term morbidity; therefore,

it is imperative to develop novel treatments. The present study investigated whether erythro-

poietin (EPO) administration attenuates burn-induced motor neuron apoptosis and neuroin-

flammatory response. To validate our hypothesis, a third-degree hind paw burn rat model

was developed by bringing the paw into contact with a metal surface at 75˚C for 10 s. A total

of 24 male Sprague–Dawley rats were randomly assigned to four groups: Group A, sham-

control; Group B, burn-induced; Group C, burn + single EPO dose (5000 IU/kg i.p. at D0);

and Group D, burn + daily EPO dosage (3000 IU/kg/day i.p. at D0–D6). Two treatment regi-

mens were used to evaluate single versus multiple doses treatment effects. Before sacrifice,

blood samples were collected for hematological parameter examination. The histological

analyses of microglia activation, iNOS, and COX-2 in the spinal cord ventral horn were per-

formed at week 1 post-burn. In addition, we examined autophagy changes by biomarkers of

LC3B and ATG5. The expression of BCL-2, BAX, cleaved caspase-3, phospho-AKT, and

mTOR was assessed simultaneously through Western blotting. EPO administration after

burn injury attenuated neuroinflammation through various mechanisms, including the reduc-

tion of microglia activity as well as iNOS and COX-2 expression in the spinal cord ventral

horn. In addition, the expression of phospho-AKT, mTOR and apoptotic indicators, such as

BAX, BCL-2, and cleaved caspase-3, was modulated. Furthermore, the activity of burn-

induced autophagy in the spinal cord ventral horn characterized by the expression of autop-

hagic biomarkers, LC3B and ATG5, was reduced after EPO administration. The present

results indicate that EPO inhibits the AKT-mTOR pathway to attenuate burn-induced motor
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neuron programmed cell death and microglia activation. EPO can modulate neuroinflamma-

tion and programmed cell death and may be a therapeutic candidate for neuroprotection.

Introduction

Despite recent improvements in burn injury outcomes, post-burn morbidity is high and

remains a challenge for clinicians. Patients who experience major burns are at a risk of various

adverse outcomes for many years after the initial injury, including altered metabolism in most

body tissues, nervous system-related morbidity, and musculoskeletal complications [1–4].

Aggressive treatment after burn injury, such as nutrient support and rehabilitation, provides

only partial recovery with residual defects [5–7]. Skeletal muscle wastage after burn injury may

also contribute to long-term morbidity; therefore, the understanding of underlying molecular

mechanisms is crucial for developing novel treatment solutions. Most related studies have

focused particularly on cellular and molecular mechanisms in muscle cells. The adverse out-

comes for patients with persistent muscle wastage after burn injury are similar to those follow-

ing any severe trauma, including imbalanced inflammatory responses and muscle cell

apoptosis [8–13]. Our previous study revealed that burn-induced neuromuscular dysfunction

is associated with motor neuron apoptosis in the spinal cord ventral horn and subsequently

causes denervation muscle atrophy [14]. Therefore, additional investigation on the underlying

mechanisms and possible targeted protective strategies is warranted.

Erythropoietin (EPO) is a type of erythropoiesis-stimulating agent that can be used for

erythropoiesis regulation [15]. Epoetin (recombinant human EPO) has been approved for the

treatment of anemia in patients with chronic kidney disease or those receiving chemotherapy

for more than two decades. In addition to hematopoietic effects, accumulated evidence has

suggested that EPO can be used as a tissue-protective agent and that it plays a role in increasing

oligodendeogenesis [16], preventing inflammation [17–19], and reducing apoptosis [20, 21].

EPO acts on its receptor (EPOR) to activate different kinases and intracellular signaling path-

ways in various nonhematopoietic tissues, such as in the kidney, endothelial cells, central ner-

vous system (CNS), heart, and reproductive tract [22–26]. EPO has been used to protect

against neurotoxicity [21], ischemia/reperfusion injury [27, 28], and neurologic diseases [29,

30]. n in vitro or vivo models, EPO has been effective in improving functional outcomes after

the experimental induction of traumatic brain injury [31–33] and spinal cord injury [34], lim-

iting neuronal damage-associated epilepsy [35, 36] and reducing chemotherapy-induced

peripheral neurotoxicity [37, 38]. Clinical trials on systemic EPO have also yielded encourag-

ing results [39, 40]. The possible mechanism underlying EPO-mediated neuroprotection is

mediated through antiapoptotic responses in neurons, endothelial responses by increasing

blood flow and oxygen delivery for increased vascular relaxation and angiogenesis, and anti-

inflammation activities [23]. Moreover, EPO is considered a systemic protective cytokine [41].

However, only a few studies have reported on the effectiveness of EPO treatment on muscle

wastage and motor neuron apoptosis [42, 43], and the possible underlying mechanisms remain

ambiguous. The present study used two different EPO regimens following burn injury to eval-

uate single versus multiple doses treatment effects in preventing programmed cell death. We

further analyzed the anti-neuroinflammation effects of EPO based on microglia activation and

inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in the spinal

cord ventral horn. The effects of EPO on the phospho-protein kinase B (p-AKT)-mechanistic

target of rapamycin (mTOR) signaling pathway were also evaluated in the burn injury model.
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Materials and methods

Experimental animals

Male Sprague–Dawley (SD) rats (n = 24) weighing 150–175 g were used in this study. The

study protocol was approved by the Institutional Animal Care and Use Committee of Kaoh-

siung Medical University (IACUC Approval Number: 106047). All rats were housed in plastic

cages with soft bedding under 12-h light–dark cycles with free access to food and water.

Experimental design

The rats were randomly divided into four groups containing six animals each, as following:

1. Group A (sham-control, n = 6) rats were subjected to sham burn without receiving drugs

and served as untreated controls for all experimental groups,

2. Group B (burn-induced, n = 6) rats were subjected to burn injury and served as the

untreated group,

3. Group C (burn + single EPO dose, n = 6) rats were subjected to burn injury, followed by a

single dose of EPO (5000 IU/kg i.p. at day 0 [D0]).

4. Group D (burn + daily EPO dosage, n = 6) rats were subjected to burn injury, followed by a

daily dose of EPO for 7 days (3000 IU/kg/day i.p. at D0–D6).

Fig 1 shows the basic design of the animal study. An SD rat model of full-thickness burn

injury, which induces motor neuron apoptosis in the spinal cord ventral horn, was established

Fig 1. Grouping and flow chart of the animal study procedure. Sham burn or burn injury was induced at day 0. Following the

procedure, wound care with 1% SSD was repeated twice a day. EPO was given for pharmacological investigation in Group C and

D with different regimens. After completion of the protocol, all rats were sacrificed on week 1 (W1). Spinal cord ventral horn and

gastrocnemius muscles were taken and processed by histopathological examination or Western blotting. Abbreviation: D, day; W,

week.

https://doi.org/10.1371/journal.pone.0190039.g001
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according to our previous study [14] Briefly, the rats were subcutaneously anesthetized with

Zoletil 50 (50 μg/g; Virbac Laboratory, Carros, France) at day 0. Burn injury was induced by

placing the plantar side of the right hind paw on a metal surface with a heated circulating

water bath at a temperature of 75 ± 0.5˚C, with a 100-g weight placed on the paw to maintain

constant contact for 10 s. For Group A, the temperature was changed to 25 ± 0.5˚C, and the

other steps were same as those for the other three groups. Following the procedure, standard

wound care of 1% sliver sulfadiazine cream (Silverdin, Deva, Sliver sulfadizine, 10mg/g) was

applied topically. Wound treatment and assessment were repeating twice a day till scarified.

All rats returned to their home cages for recovery with free access to chow and tap water. Car-

profen (5mg/kg, Rimadyl1) was administered for analgesia on the day of burn injury and the

next 2 days. On the 7th day (W1), all animals were euthanized by an overdose of Zoletil 50. No

animals died during the period.

EPO

Epoetin (recombinant human EPO, Recormon, Roche) was mixed with 1 mL of 0.9% sodium

chloride to achieve the final concentration. The freshly prepared solution was stored at a maxi-

mum temperature of 8˚C for 45–60 min until further use. EPO was administered intraperito-

neally after burn injury.

Blood samples

Blood samples were collected from the tail vein and analyzed for complete blood count on W1

after burn injury. The samples were analyzed using commercially available clinical assay kits

with an autoanalyzer (Bayer ADVIA 2120), the manufacturers’ instructions.

Western blotting

The rats were sacrificed on W1 by administering an overdose of Zoletil 50. The ventral horn

areas of the lumbar 3, 4, and 5 (L3–5) spinal cords and gastrocnemius muscles were separated,

frozen in liquid nitrogen, and stored at -80˚C. For B-cell lymphoma-2 (BCL-2), BCL-2-associ-

ated X protein (BAX), cleaved caspase-3, AKT, p-AKT, mTOR and EPOR assessments, the

L3–5 spinal cord ventral horn specimens were homogenized in T-PER Protein Extraction

Reagent (Thermo Scientific, Rockford, IL, USA) in the presence of a protease inhibitor and

were subsequently incubated. For cleaved caspase-3 assessment in muscle level, the gastrocne-

mius muscles were prepared as described previously. The samples were centrifuged at 13,000×
RPM at 4˚C for 30 min. Each protein concentration of the supernatants was measured using

bovine serum albumin as the standard. For Western blotting, equal amounts of the total pro-

tein content were separated through sodium dodecyl sulfate–polyacrylamide gel electrophore-

sis (15%) and transferred onto membranes. After being blocked for 1 h with 5% nonfat milk,

the membranes were incubated overnight at 4˚C with primary antibodies of BAX (1:1000, Pro-

teinTech Group, Chicago, IL, USA), BCL-2 (1:1000, Abcam, Cambridge, MA, USA), cleaved

caspase-3 (1:1000, Cell Signaling, Boston, MA, USA), AKT (1:1000, Cell Signaling), p-AKT

(1:1000, Cell Signaling), mTOR (1:1000, Cell Signaling), and EPOR (1:1000, Santa Cruz, Santa

Cruz, CA, USA). β-actin (1:20,000, Sigma-Aldrich, Saint Louis, MO, USA) was used as an

internal control. After washing with Tris-buffered saline with 0.1% Tween-20, secondary anti-

bodies, namely goat antirabbit-horseradish peroxidase (HRP) and goat antimouse-HRP, were

applied for 1 h at room temperature. The peroxidase activity was visualized using the ECL

Western Blotting Detection kit and Bio-Rad ChemiDoc XRS system. Band intensity was quan-

tified and plotted using Quantity One software, and the average band intensity was obtained

from three independent experiments.
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Immunohistochemical staining

The rats were euthanized, and subsequently the ventral horn areas of spinal cord segments

(L3–5) were collected on W1 and postfixed overnight in 4% paraformaldehyde in 0.1 M phos-

phate-buffered saline at 4˚C before being transferred into a 30% sucrose solution. To detect

microglia activation, the sample sections were double-labeled for phosphorylated p38 mito-

gen-activated protein kinase (MAPK) (pp38 MAPK, 1:200; Cell Signaling) and oxycocin-42

(OX-42, microglia marker, 1:200; Serotec). To detect the anti-inflammation reaction in neu-

rons, the sample sections were incubated with a mix of iNOS (1:200, Abcam), COX-2 (1:200,

Cell Signaling), and monoclonal NeuN (neuron cell marker, 1:1000; Millipore, Temecula, CA,

USA). To examine the role of autophagy, antimicrotubule-associated protein light chain-3

(LC3B) rabbit polyclonal antibody (1:200, Cell Signaling), autophagy protein 5 (ATG5, 1:200;

Thermo), and monoclonal NeuN (1:1000; Millipore) were used. An appropriate secondary

antibody conjugated with goat antirabbit Cy3 (red; Millipore) and goat antimouse Alexa Flour

488 (green, Invitrogen, Carlsbad, CA, USA) was added. Images were acquired using a fluores-

cence microscope (Leica DM 16000).

Statistical analysis

Experimental data are expressed as the mean ± standard error of the mean (SEM). SPSS (ver.

14.0, Chicago, IL, USA) was used for the statistical analysis. All data were calculated according

to the numerical data, as presented in the text, figures, and figure legends. The bar graphs and

errors bars represent the means and standard deviations, respectively. The Western blotting

measurements were evaluated using one-way analysis of variance and Tukey pairwise compar-

ison with p< 0.05 considered statistically significant.

Results

Single-dose EPO treatment dose not increase hematocrit and red blood cell

count

EPO can stimulate red blood cell (RBC) production. A single dose of EPO in Group C did not

significantly increase RBC mass compared with Group B. RBC mass increased significantly in

Group D compared with Group B. The effect of EPO on hematocrit (Hct) levels was the same

as that on RBC mass. Single-dose EPO administration in Group C did not yield significant

changes in Hct levels compared with those in Groups A and B. However, Hct levels were sig-

nificantly higher in Group D than in Group B. Burn injury increased the white blood cell

(WBC) count in Group B; however, EPO may prevent a rise in the WBC count. Groups C and

D had a significantly lower WBC count than Group B (Table 1).

Effects of EPO on neuroinflammation

Evidence has suggested that excessive neuroinflammation exacerbates neurodegeneration after

trauma or in some progressive diseases, such as Alzheimer and Parkinson diseases and glau-

coma [44–49]. Therefore, decreased neuroinflammation can ameliorate these disorders.

EPO modulates burn-induced microglia activation. To determine the effects of EPO on

microglia activation, p-p38 MAPK and OX-42 expression in the spinal cord ventral horn were

analyzed immunohistochemically. The results revealed that p-p38 MAPK was colocalized with

OX-42 (Fig 2A). Microglia was significantly activated after burn injury (Group B versus Group

A, p< 0.01). Expression of p-p38 MAPK and OX-42 was suppressed in the spinal cord ventral

horn of Groups C and D compared with Group B (Group C versus Group B, p< 0.05; Group

D versus Group B, p< 0.05; Fig 2B).
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EPO reduces the expression of iNOS and COX-2 in the spinal cord ventral horn. As

shown in Fig 3, we investigated the effects of EPO on iNOS and COX-2 expression in spinal

cord ventral horn (L3–5) through Immunohistochemical staining. Significant increases in

iNOS and COX-2 expression were observed after burn injury (Group B versus Group A,

Table 1. Effect of EPO on hematological parameters.

Group A Group B Group C Group D pB-A pC-B pD-B

Hct (%) 40.90±2.40 45.4±2.40 47.70±1.13 57.90±2.79 0.022� 0.252 0.037�

RBC (x106/μL) 7.67±0.23 8.03±0.31 8.15±1.04 9.99±0.69 0.475 0.852 0.041�

WBC (x103/μL) 8.34±0.24 11.49±1.18 7.03±0.59 7.20±2.72 0.037� 0.003�� 0.021�

PLT(x103/μL) 798.50±30.41 635.5±74.25 647.50±82.73 714.50±20.43 0.174 0.074 0.174

Data are presented as the mean ± SEM.

pB-A: burn-induced (Group B) versus sham-control (Group A) groups, pC-B: burn + single-dose EPO group (Group C) versus Group B, and pD-B: burn + daily EPO

dosage group (Group D) versus Group B. Hct: Hematocrit, RBC: Red blood cell, WBC: White blood cells, PLT: Platelets.

�p < 0.05.

��p < 0.01.

https://doi.org/10.1371/journal.pone.0190039.t001

Fig 2. Immunofluorescence staining results for detecting activated microglia expression in the spinal cord ventral

horn. (A) Increased expression of activated microglia was observed in Group B compared with Group A. EPO

administration resulted in lower microglia expression in Groups C and D compared with Group B (scale bars:

100 μm). (B) Quantitative analysis of activated microglia revealed a significant increase in the number of activated

microglia in Group B compared with Group A. EPO treatment attenuated microglia activation. Values are expressed as

a percentage of the mean ± SEM (n = 6). �: p< 0.05; ��: p< 0.01.

https://doi.org/10.1371/journal.pone.0190039.g002
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p< 0.01). However, after EPO treatment in Groups C and D, COX-2 and iNOS levels

decreased significantly (both versus Group B, p< 0.05).

EPO attenuates burn-induced motor neuron apoptosis

Our previous study demonstrated burn-induced motor neuron apoptosis through the double

immunofluorescence staining of caspases 3 and 9, terminal transferase dUTP nick end labeling

(TUNEL) assay, and NeuN staining [14]. In the present study, we investigated the expression

levels of BCL-2, BAX, and cleaved caspase-3 in the spinal cord ventral horn after EPO treat-

ment through Western blotting (Fig 4). BCL-2 and BAX, members of the BCL-2 protein fam-

ily, are anti-apoptotic and pro-apoptotic factors, respectively [50, 51]. Our results indicated

that burn injury reduced the BCL-2/BAX ratio (Group B versus Group A, p< 0.05), and EPO

treatment reversed this phenomenon significantly (Groups C and D versus Group B, both

p< 0.05). In addition, EPO reduced the expression of cleaved caspase-3 in Groups C and D

compared with Group B (both p< 0.05), indicating that EPO reduced cleaved capase-3

expression by upregulating BCL-2 expression and downregulating BAX expression.

EPO reduces burn injury-induced autophagy in the spinal cord ventral

horn

Autophagy plays a crucial role in the regulation of cell death pathways and neurodegeneration.

We used a burn injury-induced motor neuron apoptosis model to investigate whether the

Fig 3. Immunofluorescence staining images and quantitative analysis of COX-2 and iNOS in the spinal cord ventral horn.

The immunofluorescence staining of COX-2 (A) and iNOS (B) 7 days after burn injury. The quantitative analysis of COX-2 (C)

and iNOS (D) from spinal cord tissues in each experimental group has been assessed. COX-2 and iNOS expression decreased in

the EPO-treated groups (Groups C and D) compared with the untreated group (Group B). �: p< 0.05; ��: p< 0.01.

https://doi.org/10.1371/journal.pone.0190039.g003
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autophagy pathway is involved. The results demonstrated that burn injury can significantly

induce an increase in autophagy, and neurons were costained with autophagic biomarkers,

including ATG5 and LC3B, in the spinal cord ventral horn (p< 0.01 versus Group A, Fig 5).

In addition, our data suggest that the downregulation in autophagy after EPO treatment may

be a neuroprotective mechanism mediated through the inhibition of programmed cell death

(Group C versus Group B, p< 0.05; Group D versus Group B, p< 0.05).

EPO modulates the AKT-mTOR pathway to suppress programmed cell

death in the spinal cord ventral horn

The AKT-mTOR pathway is a critical pathway in the regulation of cell survival. AKT is

involved in the inhibition of neuronal death, and mTOR is a downsteam effector of AKT that

controls protein systhesis. Previous findings have suggested that AKT and mTOR might regu-

late programmed cell death [52, 53]. We therefore assessed their role in motor neuron death

after burn injury. In Group B, burn injury significantly increased the immunoreactivity of p-

AKT/AKT and mTOR (Fig 6A–6C; ��: p< 0.01 and �: p< 0.05).

We further examined the effects of EPO on mTOR activity and its upstream regulator sig-

naling kinase, p-AKT in the burn injury model (Fig 6A–6C). The results revealed that increa-

sement of p-AKT/AKT and mTOR expression following burn injury was abolished after EPO

treatment (p< 0.05), suggesting that pharmacologically high EPO concentrations modulate

the AKT-mTOR pathway to provide EPO-induced cytoprotection.

EPO exerts its cytoprotective effects by interacting with specific EPORs, which belong to the

single-transmembrane cytokine receptor family [54]. EPORs have been identified on various

cell types, including renal and endothelial cells, cardiomyocytes, neurons, astrocytes, and micro-

glia [55–58]. In the study, EPO administration increased EPOR expression (Fig 6A and 6D) and

Fig 4. EPO attenuates burn-induced motor neruon apoptosis. (A) Expression levels of BCL-2, BAX, and cleaved caspase-3 in

the spinal cord ventral horn, measured through Western blotting. (B) Significant reduction in BCL-2/BAX expression was

observed in Group B compared with Group A (100%). However, BCL-2/BAX expression was upregulated after EPO treatment.

(C) Cleaved caspase-3 expression increased in the burn-induced group compared with the sham-control group. Similar to the

notable reduction in cleaved caspase-3 expression following EPO treatment, a decrease in cleaved caspase-3 was observed. �:

p< 0.05.

https://doi.org/10.1371/journal.pone.0190039.g004
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AKT-mTOR signaling molecules might involve the downstream signaling with EPO treatment.

However, more evidences will be needed to elucidate the direct EPO-EPOR interaction for neu-

roprotection in the model.

Effect of EPO on burn-induced muscle cells apoptosis

Burn injury significantly increased the expression of cleaved caspase-3 in muscle cells

(p< 0.01), and Groups C and D exhibited decreased cleaved caspase-3 expression (p< 0.05;

Fig 7).

Discussion

The exact mechanisms through which EPO modulates muscle wastage and motor neuron apo-

ptosis in the spinal cord ventral horn after burn injury are not yet completely understood. Our

present work suggests EPO inhibits programmed cell death, including apoptosis and autop-

hagy. In addition, EPO exerts neuroprotective effects in the burn injury-induced motor neu-

ron damage model through several other mechanisms, such as the modulation of microglia

activation, iNOS/COX-2 synthesis, and the AKT-mTOR pathway. It also alleviated muscle cell

apoptosis post-burn.

The optimal EPO dose for in-vivo tissue protection is yet to be determined. Previous studies

have reported that a relatively high EPO dose is required to promote maximal anti-apoptotic

Fig 5. The Effects of EPO on autophagy markers in burn injury model by immunofluorescence analysis. (A, B) Double

immunofluorescence staining and merged images using LC3B, ATG5, and NeuN in the spinal cord ventral horn were shown.

The quantitative analysis of ATG5 (C) and LC3B activity (D) were measured. Burn injury significantly increased LC3B and

ATG5 immunoreactivity in Group B versus Group A. After EPO treatment, LC3B and ATG5 immunoreactivity decreased

markedly in Groups C and D vs Group B (��: p< 0.01; �: p< 0.05 versus Group B; Group A: 100%). Scale bars: 50 μm.

https://doi.org/10.1371/journal.pone.0190039.g005
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effects. A single high dose (3000 IU/kg) of EPO may provide neuroprotection, whereas lower

EPO doses are insufficient for alleviating cerebral white matter inflammation [55]. Multiple

doses of EPO may improve neuroimage findings and motor function in neonates with hyp-

oxic-ischemic encephalopathy [56, 57]. Studies have reported that EPO administration (5000

IU/kg) after injury attenuates early-phase tissue damage [58–60] and improves the long-term

Fig 6. Western blotting and relative expression levels of pAKT/AKT, mTOR, and EPOR. (A) Representative result

from Western blotting in the spinal cord ventral horn after burn injury and EPO administration. (B, C) The activity of

p-AKT/AKT and mTOR by Western blotting. It revealed a remarkable increase in p-AKT/AKT and mTOR expression

after burn injury. However, this burn-induced increased expression was blocked after EPO treatment. (D) The effect of

EPO on EPOR activation in spinal cord. It showed the expression of EPOR increased after EPO treatment (�p< 0.05;
��p< 0.01; Group A: 100%).

https://doi.org/10.1371/journal.pone.0190039.g006

Fig 7. EPO alleviated burn-induced muscle cells apoptosis by Western blotting. Burn injury significantly increased the

expression of cleaved caspase-3 in muscle cells vs Group A (p< 0.01), and Groups C and D exhibited decreased cleaved caspase-

3 expression (p< 0.05) vs Group B.

https://doi.org/10.1371/journal.pone.0190039.g007
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neurological outcomes in acute ischemic stroke [61]. A single dose (5000 IU/kg single-dose

regimen; Group C) or multiple doses regimen of EPO (3000 IU/kg 7-day regimen; Group D)

was adopted in present study to survey the efficacy and safety of adjunctive EPO. Our short-

term outcomes at 7 day post-burn suggest that treatments with two different doses of EPO

could attenuate programmed cell death.

To our knowledge, only one study compared two dose regimens (5000 IU/kg, single dose

versus daily doses for 3 days) of EPO were injected at 1 day after traumatic brain injury and

showed that 3-days regimen provided better functional recovery and preservation of hippo-

campal neuron than a single-dose regimen [62]. In our present work, the neuroprotective effi-

cacy in Group D of daily EPO injection was similar in Group C of single-dose EPO at day 7

post-burn. One possible reason is the protective effect in Group D could persist longer than in

Group C. The beneficial neurocognitive effects of repeated EPO treatment were demonstrated

and produced consistent and long-lasting improvement functional outcomes [63–65]. In addi-

tion, although EPO has a known dose response for neuroprotection, the possibility of the effect

is a non-linear dose-response relationship in higher repeat dose regimen. Previous retrospec-

tive study showed that extremely low birth weight infants received EPO (250 to 400 IU/kg×3/

week ×6 weeks) and their development index correlate with cumulative EPO exposure [63].

However, the median 6-week cumulative EPO dose was 3750 IU/kg. In traumatic brain injury

model, EPO with a range of 1000 to 7000 IU/kg was used and the medium dose of EPO (5000

IU/kg) showed a significant improvement in histological and functional outcomes compared

with the lower or higher EPO dose groups [66]. Owing to complex pharmacokinetic/pharma-

codynamics behavior of EPO [67] and limited capacity for EPO-tis receptor binding at higher

EPO concentrations. We speculate there is saturation of the receptors in the EPO binding and

resulting diminished efficacy in Group D with daily repeated high dose EPO exposure.

Systemic repeated EPO treatment may be associated with some side effects such as polycy-

themia resulting from its erythropoietic activity. In some cases, polycythemia could lead to

thrombotic complications and high blood pressure. We investigated the possible adverse

effects of systemic single or daily EPO treatment on hematological parameters. Leukocyte

count was decreased under EPO treatment in Group C and D (p<0.05 versus Group B). In

patients with chronic renal disease, decreased low-grade inflammation was reflected by

reduced WBC counts following EPO treatment [68]. However, polycythemia and elevated

hematocrit level were noted in Group D (p<0.05 versus Group B), which increases blood vis-

cosity and the probability of thromboembolic events. Systemic single dose EPO (5000 IU/kg)

injection may be effective as well as safe in the model.

Our previous study has demonstrated burn-induced motor neuron apoptosis up to 8 weeks

after injury by using TUNEL assay [14]. In the present study, we further examined the expres-

sion of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) proteins, which are a part of the

intrinsic apoptotic pathway, and cleaved caspase-3, which is considered a hallmark of apopto-

sis. The neuroprotective effects of EPO observed in Groups C and D were partly associated

with anti-apoptosis.

Cellular stress-induced autophagy is a fundamental catabolic process in cellular organelle

homeostasis; however, its underlying mechanism is yet to be determined. Autophagy can be

activated by starvation and a variety of stress to remove macromolecular damage. Inadequate

(both insufficient and excessive) autophagy expression has been associated with diseases. Pre-

vious studies have observed that the expression of autophagy signals increases significantly in

mouse liver and heart models after severe burn injury [69, 70]. Abnormal autophagy expres-

sion has been observed in critically ill rabbits after thermal injury [71]. In addition, skeletal

biology studies have demonstrated dysregulated autophagy play a role in osteoarthritis and an

acute increase in autophagy may be responsible for compensatory responses to cellular stress.
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However, the suppressed activation of autophagy during prolonged stress exceeds the capacity

of the mechanism and may lead to further degeneration [72, 73]. Therefore, autophagy regula-

tion is a potential therapeutic target. Our short-term results showed that burn injury induces

the expression of autophagic markers, LC3B and ATG5 in the spinal cord ventral horn, and

their expression is reduced with EPO treatment.

The process of inflammation onset following burn injury is also involved in pathogenesis.

The severity of the CNS insult correlates strongly with the robustness of microglia activation

and proinflammatory cytokine production. In acute or chronic neuroinflammation, microglia

act as important mediators. The over-activation of microglia exacerbates inflammatory effects

and mediates cell degeneration, leading to neuron death [74–76]. In our study, burn injury

increased microglia activation and may have partly contributed to neuronal damage. More-

over, the pharmacological down-regulation of microglia activation can be a potential therapeu-

tic regimen. In some neuromuscular diseases, neuroinflammation plays an important role in

pathogenesis. The inhibition of microglia activation leads to the down-regulation of proin-

flammatory markers and delayed neuron death [77–80]. A recent study reported that EPO

attenuates microglia activation through morphological changes, phagocytosis, and inflamma-

tory cytokine production [81]. Our data showed that EPO-treated groups exhibited a signifi-

cant improvement in microglia activation and neuronal death compared with burn injury

groups. On the basis of the present findings, we propose that the pleiotropic function of EPO

may be involved in protecting against neuroinflammation.

iNOS is a major downstream mediator of inflammation after major trauma, including burn

injury. A iNOS-knockout mice study showed that iNOS may contribute to the burn-induced

development of inflammatory response and apoptotic changes in skeletal muscles [13]. The

present results reveal that iNOS expression increases in the spinal cord ventral horn after burn

injury, and EPO treatment results in a decrease in iNOS levels. Furthermore, COX-2 is

induced on pathogenic stimulation and participates in the synthesis of prostaglandins, which

are associated with proinflammatory activities. Increased COX-2 expression has been sug-

gested to be involved in the neurodegenerative processes of several acute and chronic diseases.

According to the IHC findings of the present study, COX-2 expression increases after burn

injury, demonstrating its crucial role in aggravating inflammatory responses. EPO-treated

groups decreased COX-2 expression. In conclusion, our current data indicate that EPO treat-

ment exerts anti-inflammatory capacity. We propose that burn injury induces iNOS and

COX-2 expression, and EPO treatment can ameliorate the inflammation through two mecha-

nisms: by down-regulating iNOS synthesis and by controlling COX-2 production, which regu-

lates proinflammatory cytokine cascade activation.

The molecular pathways initiated by EPO for neuroprotection are still under active investi-

gation. In chronic constriction injury model, Schwann cells express EPOR and represent a

major target for exogenous EPO [82]. EPO activates the EPOR to induce cellular signaling and

block apoptosis [21, 83]. An increase EPOR phosphorylation by exogenous EPO administra-

tion maintains cell survival in ischemic hippocampi of rats [84]. However, some data suggest

that EPO may act on additional receptors or independently on receptor to trigger multiple

intracellular signal cascades [80]. In present study, we showed elevated expression of EPOR

after EPO injection, while more evidences will be needed to proof the direct role of EPOR in

neuroprotection. Furthermore, the phosphoinositide 3-kinase-AKT-mTOR pathway plays a

crucial role in regulating cellular growth, differentiation, adhesion, and inflammatory reac-

tions [85–87]. In a traumatic brain injury model, AKT and mTOR were activated after injury

[53] and inhibition of AKT and mTOR improved motor and cognitive deficits post-injury.

Similar in our results revealed that p-AKT/AKT and mTOR levels significantly increased in
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the spinal cord ventral horn after burn injury. By contrast, EPO treatment reduced AKT-

mTOR signaling in the burn injury model.

There are abundant data indicated that EPO have neuroprotective activities after traumatic

brain injury, stroke, and neurodegenerative diseases. Scanty experimental evidences and clini-

cal studies indicated its neuroprotective effects after thermal injury. Further researches will be

performed in the future to solve following questions. First, the optimal therapeutic dose and

the appropriate timing of EPO were not determined to reach maximal protective effect and

not to create drug saturation. Second, the role of EPOR in participating EPO’s neuroprotection

remains to be elucidated. Third, we survey short-term effect of EPO treatment on motor neu-

ron apoptosis after thermal injury. Our data suggest systemic single or daily EPO application

was sufficient to improve spinal cord ventral horn motor neuron inflammation and cell death

at 7 days follow-up. However, a significant increase of hematocrit was noted in systemic daily

treated group. Previous data suggested that locally EPO application is able to suppress cell

death without increasing side effects [88]. Further studies will be needed to compare the effi-

cacy and safety between systemic and local EPO treatment.

Conclusion

The present study reveals that EPO modulates inflammation by reducing iNOS and COX2 lev-

els, inhibiting microglia activation, and suppressing autophagy activation. In addition, we pro-

pose that the EPO-mediated alleviation of motor neuron apoptosis may involve the AKT-

mTOR pathway. EPO is a pleiotropic protein that can influence programmed cell death, glial

reactivity, and iNOS or COX2 levels simultaneously.
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