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ABSTRACT Chronic wasting disease (CWD) is an emerging and fatal contagious
prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed
deer, red deer reindeer, elk, and moose. CWD prions are widely distributed through-
out the bodies of CWD-infected animals and are found in the nervous system, lym-
phoid tissues, muscle, blood, urine, feces, and antler velvet. The mechanism of CWD
transmission in natural settings is unknown. Potential mechanisms of transmission
include horizontal, maternal, or environmental routes. Due to the presence of prions
in the blood of CWD-infected animals, the potential exists for invertebrates that
feed on mammalian blood to contribute to the transmission of CWD. The geo-
graphic range of the Rocky Mountain Wood tick, Dermancentor andersoni, overlaps
with CWD throughout the northwest United States and southwest Canada, raising
the possibility that D. andersoni parasitization of cervids may be involved in CWD
transmission. We investigated this possibility by examining the blood meal of D. an-
dersoni that fed upon prion-infected hamsters for the presence of prion infectivity
by animal bioassay. None of the hamsters inoculated with a D. andersoni blood meal
that had been ingested from prion-infected hamsters developed clinical signs of
prion disease or had evidence for a subclinical prion infection. Overall, the data do
not demonstrate a role for D. andersoni in the transmission of prion disease.

IMPORTANCE Chronic wasting disease (CWD) is an emerging prion disease that af-
fects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer rein-
deer, elk, and moose. The mechanism of CWD transmission in unknown. Due to the
presence of prions in the blood of CWD-infected animals, it is possible for inverte-
brates that feed on cervid blood to contribute to the transmission of CWD. We ex-
amined the blood meal of D. andersoni, a tick with a similar geographic range as
cervids, that fed upon prion-infected hamsters for the presence of prion infectivity
by animal bioassay. None of the D. andersoni blood meals that had been ingested
from prion-infected hamsters yielded evidence of prion infection. Overall, the data
do not support a role of D. andersoni in the transmission of prion disease.
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Chronic wasting disease (CWD) is a contagious prion disease that affects cervids,
including mule deer, white-tailed deer, black-tailed deer, elk, reindeer, red deer,

and moose (1–3). Like other prion diseases, CWD is an invariably fatal neurodegenera-
tive disorder with an incubation period that ranges from years to decades. CWD was
originally identified in captive deer in Colorado in 1967 and has spread geographically
throughout North America; it has now been identified in captive and/or wild popula-
tions of cervids in 26 states and 3 Canadian provinces (4; https://www.usgs.gov/centers/
nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center
_objects�0#qt-science_center_objects). More recently, CWD has been identified in
free-ranging reindeer, red deer, and moose in Norway and moose in Sweden and
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Finland (5, 6). The mechanism of spread of CWD is not known but may occur by animal
exposure to environmental sources of prions such as soil, blood, urine, feces, decaying
carcasses, or maternal transmission (7–14).

The specific role of blood in prion pathogenesis is not known. Prions can be
detected in blood during the course of disease and a blood transfusion from an
infected animal can transmit a prion disease to a naive animal. Sheep naturally infected
with scrapie, a prion disease that affects sheep and goats, or experimentally infected
with BSE can transmit prion disease to naive sheep (15–17). Prions can be directly
detected in mammalian blood using ultrasensitive methods of prion detection such as
protein misfolding cyclic amplification (PMCA) and real-time quaking induced conver-
sion (RT-QuIC). For instance, blood from deer infected with CWD contains RT-QuIC
seeding activity and blood from prion-infected hamsters contains RT-QuIC and PMCA
seeding activity (18–21). While infectivity or seeding activity can be detected in several
host strain combinations, the contribution of prionemia to the transmission, pathogen-
esis, and ecology of prion disease is unknown (22).

The Rocky Mountain Wood tick, Dermancentor andersoni, is a vector of several
bacterial pathogens (Rickettsia rickettsii, Coxiella burnetii, Francisella tularensis, and
Anaplasma marginale) and viral pathogens (Colorado tick fever virus and Powassan
virus) and can cause tick paralysis (23–28). The geographic range of D. andersoni
overlaps with CWD throughout the northwest United States and southwest Canada
(Fig. 1). In this region, D. andersoni parasitize a variety of cervids during their adult stage
and can concentrate blood from a bloodmeal up to 300%, raising the possibility that
they may concentrate prion infectivity and serve as vectors of CWD (29–31). Here, we
report the results of a set of experiments designed to test the hypothesis that D.
andersoni serves as a vector for the spread of a prion disease.

RESULTS
Extranasal inoculation of hamsters with HY TME. Ten hamsters were extranasally

inoculated with uninfected brain homogenate, and 10 hamsters were extranasally
inoculated with hyper-infected (HY-infected) brain homogenate. Five uninfected and
five HY-infected animals had D. andersoni nymphs applied to them on day 83 postin-
fection (p.i.). The nymphs were removed on day 88 p.i., and the animals were eutha-
nized on day 90 p.i.; these animals were designated as the “early group” (Fig. 2A). For

FIG 1 Geographic range of D. andersoni and distribution of CWD cases.
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the 10 remaining hamsters in the “late group” (5 infected, 5 uninfected), nymphs were
applied at day 126 p.i. and removed at day 131 p.i. (Fig. 2A). All of the HY-infected
animals in the late group developed clinical signs of hyperexcitability and ataxia at
143 � 3 days postinfection, and none of the mock-infected hamsters developed clinical
signs (Fig. 2A). All of the animals were euthanized at day 159 p.i. (Fig. 2A). The percent
incubation periods reported in Fig. 2 are based on a 143-day incubation period. Overall,
we collected midgut contents from engorged D. andersoni nymphs that fed on either
uninfected or HY-infected animals about midway through, or just prior to, the onset of
clinical signs to determine whether midgut contents from ticks contained prion infec-
tivity.

Animal bioassay of tick midgut contents and host hamster whole blood. Tick
midgut contents or whole blood from uninfected or HY-infected hamsters from either
the early or late time group (Fig. 2B) were intracerebrally (i.c.) inoculated into five
recipient hamsters to determine whether tick midgut contents or whole blood con-
tained detectable prion infectivity (Fig. 2A). Importantly, the tick midgut samples were
compared to the whole blood samples that were collected from the same animal. In
other words, the tick midgut contents that were i.c. inoculated into five hamsters fed
from the same animal that whole blood was collected from and i.c. inoculated into five
separate recipient hamsters (Fig. 2A; Table 1). As a positive control, five hamsters were
i.c. inoculated with a 1% (wt/vol) HY-infected brain homogenate, resulting in all of the
animals developing clinical signs of hyperexcitability and ataxia at 61 � 3 days p.i.
(Table 1). None of the hamsters inoculated with tick midgut contents or blood from
uninfected hamsters developed clinical signs of disease by 500 or 550 days p.i. (Table 1).

FIG 2 (A) Outline of experimental design. Groups of five hamsters were extranasally inoculated with either
uninfected (UN) or hyper-infected (HY-infected) brain homogenate. (B) In the early group, ticks were allowed to
feed on either the UN or HY-infected hamsters at 83 days p.i. for 5 days; they were then removed, and the midgut
contents were collected. At 90 days p.i., these animals were euthanized, and blood was collected. Similarly, in the
late group, ticks were allowed to feed on hamsters at 126 days p.i. for 5 days and then removed, and the midgut
contents were collected. Blood from hamsters in the late group was collected at terminal disease. The tick midgut
contents and blood from the early and late time points were intracerebrally inoculated into groups of five hamsters
to determine whether they contained prion infectivity.
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Two of the five hamsters i.c. inoculated with blood collected from HY-infected late-
group hamsters developed hyperexcitability and ataxia consistent with HY-infection
and one intercurrent death at day 167 that was clinically negative (Fig. 2A; Table 1). All
other hamsters i.c. inoculated with either tick midgut contents or blood from the early
or late HY-infected group remained asymptomatic for 500 or 550 days p.i. (Table 1).
Overall, under the conditions tested, tick midgut contents do not contain sufficient
prion infectivity to cause clinical disease when inoculated into hamsters.

Confirmation of clinical diagnosis of prion disease. Western blot and 96-well
immunoassay analyses were used to confirm the clinical diagnosis of disease by
determining the presence or absence of PrPSc in brain material from the hamsters listed
in Table 1. Brain homogenate from hamsters that did not develop clinical signs of prion
infection did not contain detectable PrPSc as determined by either Western blotting
(Fig. 3) or 96-well immunoassay (see Fig. S1 in the supplemental material). Brain
homogenate from animals that developed clinical signs of hyperexcitability and ataxia

TABLE 1 Incubation period and attack rate of hamsters intracerebrally inoculated with
blood or midgut homogenate from animals extranasally inoculated with either uninfected
or HY-infected brain homogenate

Inoculum A/Ia Incubation periodb

HY-infected brain homogenate, 1% (wt/vol) 5/5 61 � 3

Cardiac blood, early group
UN#1 0/5 �500
HY#1 0/5 �500
HY#2 0/5 �500
HY#3 0/5 �500

Cardiac blood, late group
UN#1 0/5 �500
HY#1 0/5 �500
HY#2 2/4c 238, 354
HY#3 0/5 �500

Tick midgut homogenate, early group
UN#2 0/5 �550
HY#4 0/5 �550
HY#5 0/5 �550
HY#6 0/5 �550

Tick midgut homogenate, late group
UN#2 0/5 �500
HY#4 0/5 �500
HY#5 0/5 �500
HY#6 0/5 �500

aA/I, affected/inoculated.
bExpressed in days p.i.
cThere was one intercurrent death at 167 days p.i.

FIG 3 Confirmation of clinical diagnosis of animals inoculated with either tick midgut contents or
hamster blood. Western blot analysis of PK-digested brain homogenate from either hyper-infected
(HY-infected) or uninfected (UN) positive and negative controls, respectively, or from hamsters inocu-
lated with either cardiac blood or tick midgut contents from UN or HY-infected hamsters at either early
or late times. The molecular weight marker is indicated on left of panel. This experiment was repeated
a minimum of three times with similar results.
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(Table 1) contained PrPSc with an unglycosylated polypeptide that migrated at 21 kDa,
a finding consistent with infection with HY TME (Fig. 3). To determine whether a
subclinical HY TME infection had occurred, we used PMCA to determine whether PrPSc

was present in brain from animals that were below the limit of detection of Western
blotting or 96-well immunoassay. Positive-control PMCA reactions were seeded with
10-fold serial dilutions of HY-infected brain and, after one round of PMCA, PrPSc

amplification was detected in every HY TME dilution down to 10�9 (Fig. 4A). Negative-
control PMCA reactions seeded with uninfected brain homogenate did not result in
detection of PrPSc (Fig. 4B). PMCA reactions seeded with brain homogenate from
hamsters i.c. inoculated with tick midgut homogenate from ticks that fed on either
uninfected or HY-infected animals or blood from these same animals at either the early
or late group (Table 1) that did not develop clinical disease did not result in amplifi-
cation of detectable PrPSc (Fig. 4C; Table S1) in contrast to animals that did develop
clinical disease resulted in amplification of PrPSc (Fig. 4A; Table S1). Overall, using both
conventional and ultrasensitive methods of PrPSc detection, we did not find evidence
of a subclinical prion infection from animals inoculated with midgut contents from ticks
that fed on HY-infected hamsters.

DISCUSSION

This study was carried out to determine whether D. andersoni can acquire prions
from an infected mammalian host and potentially serve as a vector for prion
transmission. The rationale for this study was based on the extensive overlap of the
ecological range of D. andersoni with cases of CWD among cervids in the northwest
United States and southwest Canada (Fig. 1). The ability of D. andersoni to serve as
a competent vector for prions could contribute to the expansion of the range of

FIG 4 PMCA analysis of brain material of hamsters inoculated with either tick midgut contents or blood failed to
detect PrPSc. (A to C) Western blot analysis of PMCA reactions seeded with 10-fold serial dilutions of HY-infected
positive-control brain (A), mock-infected negative-control brain (B), or brain material from hamsters infected with
either tick midgut (t.m.) contents or blood collected by cardiac puncture (c.b.) from uninfected (UN) or HY-infected
animals from the early and late group (C). This experiment was repeated a minimum of three times with similar
results.
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CWD. The ecological range of D. andersoni and many other hard-bodied ticks is
known to be expanding and, along with this expansion, there is an increased
incidence of various tick-borne diseases. The reason for the tick range expansion is
not known, but it may be due to changes in climate that could result in an increased
success of oviposition by engorged females, which has previously been shown
under controlled laboratory conditions (32).

D. andersoni have a three-stage life cycle that requires blood meals from a variety of
small mammals during larval and nymph stages and from large mammals such as deer
and elk during the adult stage. Syrian hamsters have been used as a model system to
assess the vector competence of D. andersoni and Dermacentor variabilis, a closely
related tick species, for a variety of bacterial and viral pathogens (33–35). In this study,
we used a well-established model of prion infection to determine the ability of D.
andersoni nymphs to acquire prions from infected animals. For the experiments de-
scribed here, D. andersoni nymphs were fed to repletion on both uninfected and
prion-infected Syrian hamsters. Blood collected from prion-infected hamsters in the late
group was capable of infecting naive hamsters (Table 1). During feeding, D. andersoni
concentrate blood meals ingested from mammalian hosts by secreting up to 80% of
water through the salivary gland and anus (30). Therefore, the concentration of prions
in midgut homogenates collected from engorged ticks could be increased up to 300%
compared to prion concentrations in undiluted whole blood of infected hamsters used
in the animal bioassay experiments (29). However, midgut homogenates derived from
D. andersoni nymphs that had fed to repletion on prion-infected hamsters did not
possess infectious prions as determined by animal bioassay.

The lack of detectable prion infectivity in the midgut contents of blood-fed D.
andersoni nymphs may be due to the fact that arthropods, including hard-bodied ticks,
do not have a PrPC homologue encoded in their genomes (36, 37), which may prevent
the amplification of PrPSc within the midgut lumen or midgut epithelial cells of
blood-fed nymphs (38). The lumen of the tick midgut is slightly acidic (pH 6.5 to 6.8),
harbors hemolysins that lyse erythrocytes, and is generally considered to be a favorable
environment for pathogenic microorganisms. Lysed erythrocytes and other compo-
nents of the blood meal are endocytosed and sequestered in highly acidic endo/
lysosomal vesicles within midgut epithelial cells, where they are degraded by cysteine
and aspartic acid peptidases (39). The lack of detectable prion infectivity in the midguts
of D. andersoni nymphs could be the result of their degradation by tick peptidases or
through altered conformation within the highly acidic endo/lysosomal vesicles in
midgut epithelial cells. An additional possibility is that other components of the blood
meal, such as toxic by-products arising from the hemolysis of erythrocytes inactivate
PrPSc. In addition, the tick midgut is a highly oxidative environment due to the
enzymatic production of reactive oxygen species (ROS) by dual oxidase enzymes (40,
41). A previous study provided evidence for ROS inactivation of infectious 263K prions
produced by neutrophils and by a weakly acidic aqueous solution of hypochlorous acid,
presumably due to oxidative modifications to sulfhydryl groups of cysteines (42).
Additional investigations will be required to determine the impact of these environ-
mental factors within the tick midgut on prions.

The failure to detect prion infectivity in tick midgut contents could be a
consequence of the limitations of animal bioassay. We chose to assay the contents
of the tick midgut for prions by i.c. inoculation as this is the most sensitive method
of inoculation to determine whether bona fide prion infectivity was present (43).
One interpretation of this data is that tick midgut contents do not contain prion
infectivity; however, one cannot exclude the possibility that prions are present in
tick midgut contents but were not detected due to the limitations of animal
bioassay. Detection of prion infectivity in whole blood has been inconsistently
observed in numerous host/strain combinations (16, 17, 44–46). Prion infectivity in
blood is mainly associated with buffy coat cells, and bioassay of whole blood may
be a less reliable means of transmitting prion infectivity since the buffy coat cells
are dispersed in the blood lowering the effective titer per volume (47). Although it
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is known that hamsters infected with HY TME have prionemia, it may be that HY
TME does not fully recapitulate the pathogenesis of CWD. (48). In addition, we did
not examine tick midgut contents for prion infectivity that fed on animals during
the clinical phase of disease and therefore cannot exclude the possibility that ticks
may harbor prion infectivity that feed on clinically affected animals. It is also
possible that sampling a small volume of blood per animal (�0.5%), and a limited
number of engorged nymphs collected from each animal (�10) in combination
with a limited number of animals per group (n � 5) may result in a false-negative
result.

Differences between what is known about operational versus functional prion
infectivity complicate interpretation of negative results. Prion infectivity is operationally
defined by a response in animals under defined conditions; however, it has long been
recognized that a bioassay may not measure all of the infectious (e.g., functional)
particles present in an inoculum (49). Seeded amplification assays such as PMCA and
RT-QuIC can reliably and specifically detect prion seeding activity that is several orders
of magnitude more sensitive than an animal bioassay (50–55). The relationship be-
tween prion infectivity in animals and in vitro seeding activity is only beginning to be
understood (56). Detection of prions in blood with PMCA and RT-QuIC from hosts in the
preclinical phase of disease before the reliable detection of infectivity in experimental
and naturally occurring prion disease is well documented (19–21, 57–62) and raises the
possibility that this in vitro seeding activity represents bona fide infectious prion
particles. Since factors that affect the efficiency of prion infection are not fully under-
stood (63, 64), future studies using these ultrasensitive methods of prion detection from
bloodmeals may provide valuable insight into the role of arthropods in the ecology of
prion disease.

MATERIALS AND METHODS
Ethics statement. All procedures involving hamsters were approved by the Creighton University

Institutional Animal Care and Use Committee and comply with the Guide for the Care and Use of
Laboratory Animals.

Animal bioassay. Male Syrian hamsters (10 to 11 weeks old) were extranasally inoculated with 100 �l
of 10% (wt/vol) brain homogenate from either uninfected or HY TME-infected hamsters as previously
described (65). Male 3- to 4-week-old Syrian hamsters were intracerebrally inoculated with 25 �l of either
homogenized tick midgut contents (the preparation is described below), undiluted whole blood, or brain
homogenate, as previously described (66). Animals were monitored 3 days per week for the onset of
neurological disease. The incubation period was calculated as the number of days between inoculation
and the onset of clinical signs of prion disease.

Tick feeding. Pathogen-free D. andersoni nymphs were acquired from the Oklahoma State Tick
Rearing facility and stored in a desiccator at �22°C with 80% relative humidity prior to feeding on Syrian
hamsters. Feeding capsules were made from 20-ml syringes and adhered to the shaved dorsal surface of
hamsters using cyanoacrylate glue. Fifteen D. andersoni nymphs were added to each feeding capsule and
allowed to feed on hamsters for up to 5 days, which had been empirically determined to be maximum
length of time for adherence of the feeding capsule to hamsters. Unfed ticks were discarded, and
midguts dissected from engorged ticks (6 to 14 ticks per hamster) collected from the same animal were
pooled in a 1.5-ml microcentrifuge tube, and homogenized with a pestle and vigorous pipetting to a final
volume of 125 �l of phosphate-buffered saline (PBS; pH 7.4).

Protein misfolding cyclic amplification. PMCA was performed as previously described, with
modifications (67). Briefly, samples (n � 3) in PMCA conversion buffer (supplemented with heparin, NaCl,
and digitonin) were placed in a Qsonica Q700MPX sonicator (Newtown, CT) with an average output of
230 W during each sonication cycle. A single round of PMCA consisted of 432 cycles of a 1-s sonication,
followed by an incubation of 9 min and 59 s at 37°C. The ratio of seed to uninfected brain homogenate
was 1:20. Aliquots of (n � 3) of HY TME were included as a positive control. Aliquots (n � 8) of uninfected
brain homogenate (Mock) were included in all rounds of PMCA as a negative control.

96-well immunoassay. The 96-well immunoassay was performed as described previously (68).
Briefly, each well of the MultiScreen filter plate (Millipore-Sigma, Burlington, MA) was activated with
200 �l of methanol and removed by pipette aspiration. The wells were washed with Tween/Tris-buffered
saline (TTBS) and centrifuged at 1,500 � g in a Centra GP8R tabletop centrifuge (Thermo IEC, Waltham,
MA). Brain homogenates were incubated with proteinase K (PK) at a final concentration of 50 �g/ml
(Roche Diagnostics Corporation, Indianapolis, IN), diluted into 200 �l of DPBS, added to the well, and
centrifuged at 1,500 � g. To block endogenous peroxidase activity, 200 �l of 0.3% hydrogen peroxide
(Millipore-Sigma) in methanol was added to each well. To denature the prion protein, 200 �l of 3 M
guanidine thiocyanate (Millipore-Sigma) was added to each well. Each well was incubated with 5%
(wt/vol) nonfat dry milk in TTBS (Bio-Rad Laboratories, Hercules, CA). Mouse monoclonal anti-PrP
antibody 3F4 (0.1 �g/ml; Millipore-Sigma) was used to detect hamster prion protein. The plate was
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developed with SuperSignal West Femto maximum-sensitivity substrate (Pierce, Rockford, IL), and
imaged using a Li-Cor Odyssey Fc imaging system (Li-Cor, Lincoln, NE), and PrP abundance was
quantified by using Li-Cor Image Studio Software v.1.0.36.

Western blot analysis. Detection of PrPSc by Western blotting was performed as previously
described (69). Briefly, PMCA reaction samples were incubated with PK at a final concentration of
50 �g/ml (Roche Diagnostics Corporation, Indianapolis, IN) at 37°C for 60 min with agitation. Digestion
was terminated by boiling samples at 100°C for 10 min in sample loading buffer (4% [wt/vol] SDS, 2%
[vol/vol] �-mercaptoethanol, 40% [vol/vol] glycerol, 0.004% [wt/vol] bromophenol blue, and 0.5 M Tris
buffer [pH 6.8]) immediately prior to size fractionation on 4 to 12% bis-Tris-acrylamide gels (NuPAGE;
Invitrogen, Carlsbad, CA), followed by transfer to a polyvinylidene difluoride membrane (Immobilon P;
Millipore-Sigma). Membranes were incubated with 5% (wt/vol) nonfat dry milk in TTBS (Bio-Rad) for
30 min. Mouse monoclonal anti-PrP antibody 3F4 (0.1 �g/ml; Millipore-Sigma) was used to detect
hamster prion protein. Western blots were developed with SuperSignal West Femto maximum-sensitivity
substrate and imaged using the Li-Cor Odyssey Fc imaging system, and PrP abundance was quantified
using Li-Cor Image Studio Software v.1.0.36.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.8 MB.
TABLE S1, DOCX file, 0.02 MB.
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