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Abstract: Modern omics techniques reveal molecular structures and cellular networks of tissues and
cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized
all disciplines in cellular and molecular biology. These methods have also been employed in
current investigations on the structure and function of insulin secreting beta cells under normal and
pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic
and transcriptomic analyses have pointed to significant alterations in protein expression and function
in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids
levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to
the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived
INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in
beta cells. This review focuses on confocal microscopy-based detection of these profound alterations
in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells
under such nutritional load conditions.

Keywords: beta cells; diabetes; confocal microscopy; lipidomics; membrane fluidity maps; cell
micropolarity maps

1. Introduction

The composition of phospholipids in biological membranes determines their cell barrier
and cellular communication functions as well as subcellular organelles structure and functions.
These properties are determined by the nature of the various phospholipid species and the availability
of free fatty acids (FFA) from cellular metabolism and the diet. Yet, the composition of phospholipids
in membranes of different subcellular compartments in any given cell may differ greatly. For instance,
MacDonald et al. [1] found significant changes in the distribution of phosphatidylserine (PS),
phosphoinositol (PI), phosphatidylethanolamine (PE), phosphatidylcholine (PC), sphingomyelin
(SM) amongst insulin granules, mitochondria and the whole insulin secreting beta cell (INS-1-832/13
cell line). Moreover, the abundance of different saturated (SFA), mono- (MUFA) and polyunsaturated
fatty acids (PUFA) in these phospholipids also varied among the different compartments. Similarly
interesting is the observation that glucose stimulation of beta cells induced reversible changes in
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the composition of fatty acid moieties of phospholipids in insulin granules. Such modifications and
remodeled specific signatures of phospholipids in the membranes of insulin granules may alter their
biophysical properties. This in turn may modify granules interactions with soluble proteins (e.g., SNAP
receptors, SNAREs), with target membrane proteins within the granules (e.g., Vesicle associated
membrane protein, VAMP) or with plasma membrane docking proteins (e.g., syntaxins) and affect
insulin secretion. Indeed, Pearson et al. [2] observed changes in the turnover of arachidonic-containing
phospholipids and diacylglycerols in glucose-stimulated beta cells. These findings have led to the theory
that higher abundance of shorter length fatty acids and of unsaturated fatty acids in phospholipids
may enhance the fusion and docking of insulin granules membrane bilayers to the plasma membrane
upon glucose stimulation due to reversible changes in membrane fluidly and curvature. Moreover,
glucolipotoxic conditions may also increase the oxidative burden and lead to endogenous oxidation
of free and phospholipid-bound PUFA, as well as transforming cis configuration of double bonds to
the trans configuration in their hydrocarbon backbone. This may lead to modified cellular functions,
including insulin granule trafficking [3,4].

The basis for these theories was laid by earlier lipidomic investigations of beta cells, such as by Fex
and Lernmark [5] or Cortizo et al. [6] who followed phospholipid turnover in resting and stimulated
beta cells. Best et al. reviewed in 1984 [7] pioneering studies on the role of arachidonic acid metabolites
in the regulation of beta cell function and insulin secretion. Metz suggested in 1986 [8] a key role for
arachidonic acid metabolites in potentiating stimulus-secretion coupling in beta cells. Intensive research
over the last 35 years have established significant roles of various enzymatic metabolites of arachidonic
acid (e.g., prostaglandins, eicosanoids) and non-enzymatic products (e.g., 4-hydroxyalkenals) in the
regulation of insulin secretion [9–16].

In addition to the inherent composition of phospholipids and their turnover in subcellular
organelles in beta cells, it is equally important to emphasize the critical role of increased availability
of dietary (essential and non-essential) FFA and their incorporation into phospholipids. This is of
paramount consequence upon exposure of beta cells to high levels of SFA (e.g., palmitic acid) that
ensues alone, or in combination with high glucose levels, an array of (gluco)lipotoxic effects that often
contribute to the decline in the mass and function of beta cells in islets of Langerhans [17–20]

Our recent studies on the effect of high glucose and high palmitic acid levels on the phospholipid
lipidome of rat insulinoma-derived INS-1E beta cells revealed profound changes in the abundance and
distribution of various fatty acids in phospholipids. These studies reveal organelle-specific channeling
of polyunsaturated fatty acids (PUFA), arachidonic acid in particular, to nonenzymatic peroxidation
and the generation of 4hydroxyalkenals, which affect the cells in several ways [11,13]. Furthermore,
advanced confocal microscopy imaging of the plasma membrane of the cells under such conditions
detected minimal alterations in their biophysical properties. In contrast, membranes of insulin granules
underwent significant remodeling that changed their fluidity. These methods also depicted neogenesis
of lipid droplets in live cells upon exposure to excessive levels of palmitic acid [21–23]. This study
aims at integrating these findings with standard lipidomics analyses to follow lipid turnover single
beta cells and in their subcellular organelles and compartments.

2. Phospholipid Turnover in Cells

The fatty acid composition in membrane phospholipids is constantly remodeled by the influence
of free fatty acid availability, enzymatic activity of phospholipases, stressful condition (e.g., nutritional
deficiencies or overload conditions) or metabolic diseases. The remodeling is a dynamic and fast process
that changes the equilibrium between fatty acid hydrolysis from phospholipids by phospholipase
A2 (PLA2), on one hand, and their acylation to the phospholipid backbone by lysophospholipid acyl
transferase (LPAT), on the other [24]. Once PUFA are hydrolyzed from the phospholipid backbone
they serve as substrates for enzymatic conversions to plethora of metabolites. Hitherto, hundreds
metabolites of arachidonic acid and other PUFA have been identified, many of which constitute distinct
groups of ligands to known receptors and transcription factors [12,25–28]. Different mammalian cells
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express enzymatic pathways that convert arachidonic acid and other PUFA to discrete cell-specific
repertoire of bioactive metabolites in a cell-specific manner. These metabolites subsequently regulate
various cellular functions in autocrine and/or paracrine fashions. It has been shown that endogenous
PUFA metabolites, such as 20-hydroperoxyeicosatetraenoic acid (20-HETE), prostaglandin E1, E3, J2
and I2, or endocannabinoids regulate beta cell functions [14,16,29–39]. Some of these mediators are
also generated in beta cells by direct enzymatic transformation of exogenously available unsaturated
fatty acids; it has been shown that certain metabolites improved insulin secretion and ameliorate
obesity- and cytokine-induced beta cell damage [16,40,41]. Equally important are the findings that
assigned key regulatory roles for activated fatty acid receptors, such as GPR41, in modulating insulin
secretion upon binding of fatty acid ligands [42–48]. In addition, it has been shown that intracellular
n-3 PUFA transformation by elongases (e.g., docosahexaenoic acid formation) may protect against
glucolipotoxicity-induced apoptosis in rodent and human islets [49]. Nonetheless, Johnston et al. [50]
have recently pointed to an association between long-term increase in circulating non-esterified fatty
acids and lower beta cell function.

The enzymatic conversions of PUFA occur in cells along with non-enzymatic transformations.
The potency of these non-enzymatic pathways is determined foremost by the levels of oxygen free
radicals, which initiate the peroxidation of PUFA and lead to the generation of a group of chemically
and biologically reactive aldehydes, of which 4-hydroxyalkenals are prominent. There are two
contrasting effects of 4-hydroxyalkenals in cells: numerous studies have shown that these reactive
electrophiles form adducts with macromolecules, alter their function and contribute to the etiology
and progression of pathological processes [51]. However, when present at physiological and non-toxic
levels they interact with receptors and ligand-activated transcription factors in a specific manner and
modulate cell functions in autocrine or paracrine manners. Indeed, Poganik el al. [52] have recently
compiled evidence to propose that native reactive electrophiles (e.g., 4-hydroxyalkenals) are signaling
molecules. Moreover, some of these intracellular interactions were found to evoke hormetic responses
that induced or augmented cellular defense mechanisms that ultimately enhance the elimination of the
same electrophiles [12,23,51,53–57].

These studies were mostly based upon whole cell lipidomic analyses that usually do not
detect subcellular membrane-specific phospholipid turnover. Apparently, disparate remodeling of
phospholipids in subcellular compartments or organelles may affect cellular functions in various ways.
Monitoring and understanding such variable subcellular remodeling may reveal for instance: (i) whether
plasma membranes of cells are inherently protected against major remodeling of phospholipids and
thus preserve their barrier and communication capabilities with the surrounding environment; (ii) to
what extent the remodeling of mitochondria membranes may affect their permeability, membrane
potential and oxidative phosphorylation capacity; (iii) how the remodeling of phospholipids in the ER
modulates protein sorting and chaperoning or alters their capacity to generate mono-layered lipid
droplets within this compartment; (iv) could lysosomal function be influenced upon phospholipid
remodeling or (v) to what level neurotransmitter or hormone secretion from vesicles or granules in
neurons and endocrine cells, respectively, is disrupted of enhanced due to alterations in their tethering,
docking and fusion with the plasma membrane and subsequent internalization. Tedious fractionation,
separation and isolation techniques of subcellular organelle fractions were practiced in the past to
answer such questions. Often, the amount and cross-contamination of the isolated fractions resulted in
erroneous analyses. We showed that what was considered a standard and efficient purification method
of the plasma membrane fraction of skeletal muscle cells carried in fact a substantial cross-contamination
of intracellular microsomal membrane that could greatly obscure the experimental results [58].

3. Lipidomic Analyses of Beta Cells

We have employed non-targeted lipidomics analysis to study the impact of high glucose and
high palmitic acid levels on the turnover of fatty acids in phospholipids of INS-1E cells. These studies
discovered significant changes in the content of SFA, MUFA and PUFA [13]. Figure 1 shows the
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changes in their abundance after exposure of the cells to 11 and 25 mM glucose in comparison to
cells that were maintained at 5 mM glucose. The abundance of PUFA was significantly decreased,
MUFA increased and SFA levels remained constant under the high glucose incubations. Noteworthy,
the total fatty acid content remained unaltered under these experimental conditions. This study also
showed that that the released PUFA (i.e., arachidonic and linoleic acids) were avidly peroxidized to
4-hydroxynonenal (4-HNE). The latter in turn activated peroxisome proliferator-activated receptor-δ
(PPARδ) that further augmented glucose-stimulated insulin secretion (GSIS). Thus, increasing glucose
concentrations have not been previously considered to have specific stressful effects on membranes;
in fact, 5 or 11 mM glucose were indifferently reported for beta cell culture conditions without affecting
cell viability. In our study we showed for the first time that cellular membranes were not just spectators
but were the source for lipid precursors of signaling molecules such as PUFA.
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Figure 1. Glucose-induced remodeling of phospholipid in INS-1E cells. INS-1E cells were incubated in
serum-free medium supplemented with the indicated glucose concentration for 16 h, and processed for
lipidomics analysis as described [13]. The abundance of Saturated- (SFA), Monounsaturated- (MUFA)
and polyunsaturated fatty acids (PUFA) is given as percent of total fatty acid content. Mean± SEM, n = 4.
* p < 0.05 significantly different from the corresponding abundance at the 5 mM glucose incubation
(adapted from [13]).

Concomitant exposure of the cells to increasing levels of palmitic acid and glucose further modified
the abundance of fatty acids in phospholipids. Figure 2 shows the expected increase of the abundance
of SFA (i.e., palmitic acid) that was accompanied with nearly 50% depletion in the amount of PUFA
in phospholipids. Increasing glucose levels in the incubation intensified these palmitic acid-induced
phospholipid remodeling effects. This study also showed that at these ranges the peroxidation of
the released arachidonic and linoleic acids to 4-HNE also activated PPARδ and evoked augmented
GSIS [11]. It is important to note that the upper limit of non-toxic concentrations of palmitic acid that
did not compromise cell viability upon prolonged incubations were 300, 150, and 100 µM at 5, 11 and
25 mM glucose, respectively.

As mentioned above, these whole cell lipidomic analyses could not detect changes in fatty acid
composition in membranes of subcellular compartments in the cells. This limitation also applies
to other whole-cell analyses, such as shotgun lipidomics [59]. This method detects and reports the
cellular content of most commonly known lipids in cells such as, free fatty acids and their metabolites
(e.g., eicosanoids), glycerophospholipids (e.g., PC, PE, PS, PG, PI, PA), glycerolipids (e.g., TAG, DAG,
MAG), diphosphatidylglycerol lipids (cardiolipins), sphingolipids (e.g., sphingomyelin, sphingosines,
ceramides, cerebrosides, gangliosides) or sterol lipids (e.g., steroids, sterols) [60]. Several studies
used this technique in diabetes research and found alterations in myocardial cardiolipin content
and composition at the early stages of the disease [61]. Others correlated alterations in the plasma
lipidome of diabetic patients or in tissues of diabetic mice (ob/ob) to the progression of impaired glucose
tolerance [62,63]. Nevertheless, such shotgun lipidomic analyses have not yet revealed alterations in
subcellular compartments of pancreatic beta cells under normal or stressful stimuli.
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Figure 2. Impact of palmitic acid on fatty acid abundance in phospholipids of INS-1E cells. INS-1E
cells were incubated in serum-free medium supplemented with the indicated glucose concentration
for 32 h. Palmitic acid (500 µM) was added during the last 16 h of incubation. The cells were then
harvested and processed for lipidomics analysis as described [11]. The abundance of SFA, MUFA and
PUFA is given as percent of total fatty acid content. Mean ± SEM, n = 4. * p < 0.05 significantly different
from the corresponding values at the 5 mM glucose incubation (adapted from [11]).

Other mass spectrometry methods have also been used to study beta cells. Recent temporal
analysis of palmitic acid-treated INS-1 beta cells was based on isobaric labeling-based mass spectrometry
and bioinformatics [64]. It highlighted altered cholesterol and fatty acid metabolism as early toxic
events associated with ER stress. This quantitative strategy provided insight into general molecular
events (lipid metabolism) and pathway adaptation in the cells. Other groups employed non-targeted
mass-spectrometric lipidomics to study beta cells [65]. For instance, electrospray ionization mass
spectrometric analysis that was employed to analyze phospholipids in INS-1 beta cells [66] discovered
changes in total PUFA and MUFA contents, which were quite similar to the results of the lipidomics
analysis we have performed, as described above. Interestingly, treatment of the cells with palmitic
acid in this study had little effect on the content of both classes of fatty acids in the cells. Recent
advances in mass spectrometric methods, such as the matrix-assisted laser desorption/ionization
(MALDI) imaging mass spectroscopy (IMS), have been used to obtain molecular profiling of mouse
pancreatic tissues [67]. Immunofluorescent images that were acquired from serial pancreatic sections
were co-registered with the MS images of the sections and enabled molecular identification of specific
phospholipid and glycolipid isoforms. The region selective molecular specificity afforded by this
method revealed profound differences between endocrine and exocrine cells. Yet, the capacity of the
method to detect clearly changes in the distribution of lipids within insulin granules or other subcellular
organelles remains limited. Others have employed nanospray desorption electrospray ionization
mass spectrometry imaging (nano-DESI-MSI) to identify different lipid classes in individual islets of
Langerhans and the surrounding exocrine cells in sections of mouse pancreatic tissues [68]. The study
found some disparate distribution of certain lipid species (including PUFA rich phospholipids, such as
PC 34:2, PC 36:2, PC 36:4, PC 38:4) between the two types of cells. Using this method for the analysis
of pancreatic tissues from normal and diabetic animals may enable estimation of the content of the
phospholipids and other lipids. Both the MALDI-IMS and nano-DESI-MSI techniques analyze islets
in pancreatic tissue sections without discriminating amongst the different types of endocrine cells
(alpha, beta and delta cells) and without providing clear intracellular maps of the distribution of the
different lipid species in subcellular organelles. Recent advances in enhancing the power of resolution
of such single-cell analysis by different mass spectrometric platforms may contribute to comprehensive
analysis of lipid turnover in beta cells [69].
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4. Confocal Imaging-Based Fluidity and Micropolarity Maps of Single Beta Cells

Our interests in ascertaining the impact of phospholipid remodeling in the beta cell lipidome
under nutritional overload conditions led to two independent confocal imaging strategies of INS-1E
beta cells. The first employed spectral analysis of the fluorescent probe Laurdan to provide fluidity
maps of single cell membranes [22]. The second exploited the micropolarity-sensitive emission profile
of the dye Nile red to give intracellular maps of neutral and polar lipids in subcellular organelles [21].

In the first case the advantages of fluorescence temporal imaging-based detection methods were
exploited to obtain high resolution imaging of subcellular organelles in beta cells. For this purpose,
we expressed in INS-1E cells IAPP-mCherry protein that is targeted to insulin granules [70] (probe
courtesy of Dr. Patrick E. MacDonald, University of Alberta, Edmonton, Canada). mCherry-expressing
cells were incubated at 5, 11 and 25 mM and loaded with the fluorescent dye Laurdan, which integrates
into lipid phases in membranes. Its excited-state relaxation is highly sensitive to the presence and
mobility of water molecules within the membrane bilayer, while being insensitive to the head-group
type in phospholipids [71,72]. By using two-photon infrared excitation techniques and dual-wavelength
ratio measurements, we detected Laurdan emission spectrum of coexisting lipid domains in the cells
and obtained information on membrane fluidity by following the shift from ordered (gel) phases
(yellow-orange emission) to disordered (liquid-crystalline) phases (violet-purple emission). Membrane
fluidity in the confocal images was then reported in terms of ratio of emission intensities for each pixel
by using Generalized Polarization (GP) value. This is defined as GP = (IG − IR)/(IG + IR); IG, emission
in the range of 400–460 nm; IR, emission at the range of 470–530 nm. The GP value ranges from −1
(fluid, liquid disordered state) to 1 (gel-like, solid ordered state). Figure 3 shows such Laurdan spectral
analysis of mCherry expressing INS-1E cells that were incubated at 5, 11 and 25 mm glucose for 32 h
without or with 500 µM palmitic acid during the last 16 h of incubation.

The fluidity maps of plasma membranes revealed that the GP values remained unaltered (GP = 0.38)
in cells that were incubated with increasing glucose concentrations. This indicates that the release of
PUFA from phospholipids in the cell sunder high glucose conditions (reported in [13]) did not involve
significant remodeling of the plasma membrane. Thus, the barrier and communication properties of
the plasma membrane, as well as the capacity to interact with secretory insulin granules upon glucose
stimulation were preserved. Of interest are the lower GP values (0.26) of the insulin granules (mCherry
positive organelles) that are indicative of a more fluid state than that of the plasma membranes, at all
glucose concentrations. This seems to result from a higher abundance of PUFA and the corresponding
liquid disordered phase. The latter results from the non-linear geometrical configuration of double
bonds in cis positions [73]. The GP value increased slightly following the incubation with 11 and 25 mM
glucose due to the hydrolysis of PUFA from phospholipids, as we observed in the abovementioned
lipidomics analysis. The incubation with 500 µM palmitic acid had significant effects on the GP value
in plasma membranes and insulin granules, which steadily increased in both compartments in a
glucose-dependent manner. These dramatic changes in membrane fluidity of insulin granules reflect
well the capacity of the incorporated saturated palmitic acid to induce transition to a solid-ordered
gel-like phase of phospholipids in membrane bilayers. Furthermore, depletion of PUFA from insulin
granules’ phospholipids may also contribute to the higher levels of the observed GP values. Indeed,
this scenario correlates well with the results on the lipidomics analysis in similarly-treated cells that
showed marked loss of PUFA from phospholipids (Figure 2). The impact of this phenomenon on the
recruitment of insulin granules for secretion upon glucose stimulation is complex. We have recently
shown [73] that non-toxic palmitic acid levels augmented GSIS, enabling the organism to facilitate
insulin-mediated glucose and fatty acid disposal and thereby reduce the risk of developing peripheral
diabetes complications. However, once reaching the toxic range of palmitic acid concentrations, which
is reciprocally related to increasing glucose concentrations, the insulin secretory capacity is impaired,
partly due to the rigidification of the insulin granule membranes. This study shows that Laurdan-based
fluidity maps of cells complements with whole cell lipidomic analysis and provides insight to localized
remodeling of phospholipids (i.e., plasma membranes and insulin granules).
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In the second case the solvatochromic and lipophilic properties of the fluorescent probe Nile Red
were exploited to obtain high-resolution micropolarity maps of individual INS-1E cells [21]. The probe
exhibits an emission shift from yellow to red when the degree of polarity of the lipid environment
increases [74]. This property enables the detection of the degree of polarity of lipids in cells by
evaluating the quantitative ratio of red and yellow emissions. In this study INS-1E cells were incubated
with 1 µM of Nile Red for 30 min in the dark and then placed on the inverted confocal microscope
equipped with a live chamber and 32 channel spectral images were obtained using a 60X objective
under 488 nm excitation for the probe. Internal photon multiplier tubes collected images in 16-bit,
unsigned images at 0.25 ms dwell time. This procedure, which enables the assessment of differences of
the polarity of the various compartments in the cell, allows to refine the investigation of the subcellular
distribution of neutral and polar lipids [75,76]. Figure 4 depicts the principles of phasor analysis
that was employed to analyze images of Nile red-treated cells. The method is explained in details
in our recent study [21] and elsewhere [77,78]. The cells that were incubated with 300 µM palmitic
acid handled the increased influx of palmitic acid by incorporating it into triglycerides that were then
sequestered in newly formed lipid droplets.
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In the magnification (Figure 4) it is shown that the lipid droplets are composed of a core of non-
polar (NP) lipids (blue spots; triglycerides) and a surrounding monolayer of polar (P) lipids (green 
coating), which is typical of lipid droplets [79]. This analysis also revealed that P lipids are localized 
in the plasma membrane. Interestingly, hyperpolar (HP) lipids are associated with nuclear 
membranes, or unevenly compartmentalized in internal membranes throughout the cytoplasm. We 
propose that these compartments may also serve a major target for phospholipid turnover in 
nutritionally-challenged beta cells and could therefore be the source for the PUFA required for non-
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Figure 3. Generalized Polarization (GP) values of the plasma membranes (PM) and insulin granules
(IG, mCherry positive organelles) in glucose treated INS-1E cells. (A), Representative high-resolution
fluorescence images of Laurdan emission for fluidity investigation along with mCherry emission
images in INS-1E cells exposed to 11 mM glucose for 32 h and 500 µM palmitic acid (PA) during the last
16 h of incubation. mCherry labeled insulin granules, which have spherical shapes of about 0.5–1 µm
diameter. Scale bar is 10 µm. (B) Summary of GP values of plasma membrane and insulin granules
in cells exposed to different glucose levels without (left) and with palmitic acid (right). Copied with
permission from [22].

In the magnification (Figure 4) it is shown that the lipid droplets are composed of a core of
non-polar (NP) lipids (blue spots; triglycerides) and a surrounding monolayer of polar (P) lipids (green
coating), which is typical of lipid droplets [79]. This analysis also revealed that P lipids are localized in
the plasma membrane. Interestingly, hyperpolar (HP) lipids are associated with nuclear membranes,
or unevenly compartmentalized in internal membranes throughout the cytoplasm. We propose that
these compartments may also serve a major target for phospholipid turnover in nutritionally-challenged
beta cells and could therefore be the source for the PUFA required for non-enzymatic peroxidation and
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generation of 4-HNE. This method, which is very useful for lipid droplet research, can also be applied
to Nile red spectral analysis of phospholipid remodeling in subcellular compartments. This may
be used for instance for simultaneous fluorescent labeling of insulin granules and other organelles.
While mCherry labeling may pose limitation due to overlapping emission spectrum with Nile red,
other probes, such as phogrin-fluorescents proteins [80] or neuropeptide Y-pHluorin [81] may be useful
for labelling the granules.
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Figure 4. Workflow of the method based on the phasor driven segmentation of Nile Red spectral images.
INS-1E cells were maintained at 11 mM glucose received 300 µM palmitic acid for 16 h. (A), Nile Red
spectral images of live INS-1E cells. Each pixel of the spectral image is associated with the Nile Red
emission spectrum. (B), Phasor plot generation: the cloud appears as broad and elliptical, because
the co-existence of the three classes of lipids (NP, neutral lipids; P, polar lipids and HP, highly polar
lipids), which are simultaneously present in the cells. By selecting on the phasor plane the domains
corresponding to the three classes (white lines), it becomes possible to remap them to the original
fluorescence image. (C), Segmentation of the three lipid classes: NP are reported in Blue, P in Green,
HP in red. In the magnification, lipid droplets are visualized as spherical particles. P lipids are also
localized in the plasma membrane, of which phospholipids is the main component. (D), Extraction
of the angle θP formed by the center of mass of the cloud in the phasor plot with the g-axis provides
information about the average polarity. From the segmented channels, the fractional contribution of
the different lipid classes, in terms of the relative fraction of pixels belonging to a particular class was
retrieved. Copied with permission from [21].

5. Conclusions

Current lipidomic analyses of beta cells show that hyperglycemic- and hyperlipidemic-like
conditions induce fast remodeling of phospholipids. These modifications may reflect substantial
structural and functional changes in the cells. These methods have not yet progressed to allow for
subcellular lipidomic analysis in fixed or lived cells. Confocal imaging that provide high resolution
maps of subcellular membrane fluidity and lipid micropolarity maps of live cells may complement the
lipidomic analyses by depicting membrane remodeling upon various stressful stimuli. Our recent
results in lipidomics and lipid imaging in beta cells highlight this potential. This has also been
demonstrated in a study that employed mass-spectrometry based oxidative lipidomics and lipid
imaging in traumatic brain injury models [82]. Finally, recent reports on beta cells heterogeneity [83]
attest to the limitations of the whole cell lipidomic analysis and the clear advantages of individual
cell analysis by confocal imaging used in this study, which may distinguish among different beta cell
populations in islets of Langerhans.
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