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A B S T R A C T   

Metabolic modeling and machine learning (ML) are crucial components of the evolving next-generation tools in 
systems and synthetic biology, aiming to unravel the intricate relationship between genotype, phenotype, and 
the environment. Nonetheless, the comprehensive exploration of integrating these two frameworks, and fully 
harnessing the potential of fluxomic data, remains an unexplored territory. In this study, we present, rigorously 
evaluate, and compare ML-based techniques for data integration. The hybrid model revealed that the over-
expression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production. 
Specifically, we investigated the influence of succinate dehydrogenase (SDH) on ethanol biosynthesis in 
Saccharomyces cerevisiae through shake flask experiments. The findings indicate a noticeable increase in ethanol 
yield, ranging from 6 % to 10 %, in SDH subunit gene knockout strains compared to the wild-type strain. 
Moreover, in pursuit of a high-yielding strain for ethanol production, dual-gene deletion experiments were 
conducted targeting glycerol-3-phosphate dehydrogenase (GPD) and SDH. The results unequivocally demon-
strate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1, Δsdh5Δgpd1, 
Δsdh6Δgpd1, Δsdh4Δgpd2, Δsdh5Δgpd2, and Δsdh6Δgpd2, with improvements of 21.6 %, 27.9 %, and 22.7 %, 
respectively. Overall, the results highlighted that integrating mechanistic flux features substantially improves the 
prediction of gene knockout strains not accounted for in metabolic reconstructions. In addition, the finding in 
this study delivers valuable tools for comprehending and manipulating intricate phenotypes, thereby enhancing 
prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.   

1. Introduction 

Biological systems, encompassing proteins, pathways, and cells in 
their entirety, have experienced growing utilization across diverse 
biotechnological applications [1,2]. However, the progress in con-
structing tailored microbial cell factories has been hindered by the 
intricate nature of biological systems, which consist of a multitude of 
components and entail numerous unknown interactions among them. 
The DBTL cycle, which consists of four fundamental stages: design, 
build, test, and learn, represents a widely adopted methodology in 
synthetic biology research [3–6]. The learning stage plays a crucial role 
in extracting valuable biological insights from test data and leveraging 
them to inform subsequent designs. Given the substantial amount of 
data generated by modern biopharmaceutical plants, the automation of 
the learning stage becomes essential to ensure the efficient 

implementation of synthetic biology techniques. The advancement of 
various tools geared towards expediting the DBTL cycle has undoubtedly 
become crucial in automating the design, construction, and testing 
phases [3,7]. However, it is worth noting that the transition from the 
learning stage to the design phase has been relatively slow, with notable 
advancements observed only in a few specific and narrow applications 
[8,9]. Moreover, the integration of mechanistic and data-driven strate-
gies remains limited, hindering the iterative and more efficient pro-
gression of this cycle. Consequently, these challenges and focal points 
present significant areas of interest within the realm of synthetic biology 
research. 

Data-driven models and constraint-based mechanistic models 
represent two effective computational approaches utilized for analyzing 
biological data and constructing biological system models [10]. Spe-
cifically, machine learning (ML), a field that applies statistical and 
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computer science methods to enable automated learning, prediction, 
and inference from experimental data by computer systems, has 
emerged as a widely applied technique in large-scale biological datasets 
recently. ML facilitates the identification of crucial features and the 
prediction of new data, thereby enhancing the accuracy and efficiency of 
data analysis [3,7]. However, data-driven methods often overlook prior 
biological knowledge during pattern analysis, which imposes limitations 
on the credibility and interpretability of the resulting models [11]. To 
this end, constraint-based modeling can be employed to simulate 
steady-state metabolism at the cellular level. In particular, the utiliza-
tion of in vitro-generated metabolite fluxes has been incorporated to 
inform specific ML models, providing predictive advantages in specific 
instances [12–16]. For example, Yang et al. closely correlated biological 
signals with measured phenotypes using ML methodologies. To establish 
causal relationships, they integrated genome-scale metabolic models 
(GSMMs) into ML, thereby providing metabolic mechanistic insights 
[16]. However, there is still a lack of a comprehensive practical 
approach that effectively integrates data-driven models with experi-
mental omics technologies. Such integration would facilitate the incor-
poration of mechanistic biological knowledge into the learning process 
[11]. 

As a proof of concept, this study presents a specific and practical 
learning framework that combines strain-specific metabolic models with 
ML algorithms to predict phenotypic traits of interest. The framework is 
applied to the design of engineered Saccharomyces cerevisiae 
(S. cerevisiae) aimed at achieving high-yield bioethanol production. In 
recent years, the global market share of bioethanol in the automotive 
fuel sector has witnessed a steady increase, with further growth antici-
pated in the future [17]. Additionally, the development of biofuels 
serves as a crucial contributor to energy diversification and a reduction 
in dependence on fossil fuels [18]. Recognizing the substantial com-
mercial value of bioethanol, prior reviews have outlined commonly 
employed strategies to enhance production [19,20]. 

In this study, the challenges arising from limited data and the 
interpretation of learning results were addressed by integrating ML 
methods with a flux balance analysis (FBA) approach based on GSMM. 
To this end, we begin by augmenting the phenotypic dataset of ethanol 
production using a previously developed online detection model that 
leverages Raman spectroscopy. Subsequently, FBA was employed to 
simulate strain-specific metabolism. Reaction fluxes were extracted as 
additional features, forming a fluxomic dataset. Leveraging the obtained 
fluxomic dataset, we constructed prediction models for ethanol yield 
employing twelve diverse ML methods. A noteworthy enhancement in 
computational strain design for augmenting bioethanol production is 
observed compared to the utilization of the GSMM alone. Upon vali-
dating the superior performance of the proposed hybrid model, which 
combines mechanistic and data-driven approaches, we identify and 
validate targets that have not been reported previously. Furthermore, 
we endeavor to construct high-yield engineered strains to further 
amplify bioethanol production. 

2. Materials and methods 

2.1. Strains and cultivation 

The strain S. cerevisiae BY4741, E. coli DH5α, and some plasmids for 
CRISPR/Cas9 technology were obtained from the laboratory of East 
China University of Science and Technology. The details of experimental 
strains utilized in this study are listed in Table S1. Additionally, the 
plasmids, sgRNA primers for CRISPR/Cas9-mediated gene knockout, 
donor DNA sequences, and primer lists for verification are included in 
Tables S2–S4. For cultivation, single colonies were selected from plates 
treated with antibiotics or activated and were inoculated into 250 mL 
flasks containing 25 mL of YPD medium. The flasks were incubated 
overnight at 28 ◦C and 220 rpm until reaching an OD600 of 2, which 
served as the desired optical density for flask fermentation. In this study, 

fermentation was carried out using a YSC synthetic medium or YPD 
medium. A 2 % inoculum volume of the culture was added to 500 mL 
flasks at 30 ◦C and 220 rpm for 14 h. 

2.2. Genome-scale metabolic model 

The GSMM encompasses all the documented biochemical reactions 
and transmembrane transporters that occur within an organism. Math-
ematically, the reaction network is represented as a stoichiometric 
matrix S, capturing the precise ratios of reactants and products involved 
in each biochemical conversion [20]. Under the assumption of meta-
bolic steady-state, reaction rates (fluxes) are governed by mass and en-
ergy balance principles and can be described by a vector v, which 
represents the fluxes across the metabolic network. These fluxes are 
subjected to constraints defined by lower and upper limits, vlb and vub, 
respectively. By adjusting these constraints, it becomes feasible to 
simulate different genetic or environmental factors, thereby creating 
context-specific metabolic models that align with experimental data 
[11]. 

subjectto WT V = f (1)  

S v= 0 (2)  

vlb ≤ v ≤ vub (3)  

Where the binary vector W represents the biomass pseudo-response as a 
distinct target, while f denotes the maximum achievable growth rate by 
the network, considering the imposed constraints. In this study, the 
GSMM of yeast 8.0.0 was utilized [21]. The simulation and analysis were 
primarily conducted using the COBRA Toolbox 3.0 [22] implemented in 
MATLAB, along with the Gurobi solver (Gurobi Optimization, LLC). 
Gene deletions were simulated using the singleGeneDeletion function 
within the COBRA Toolbox. The constraints incorporated the actual 
values of ethanol, glucose, glycerol, and biomass observed during 
fermentation for FBA. To determine the alterations in glucose, ethanol, 
glycerol, and biomass following a 14 h fermentation period, we relied on 
a Raman spectroscopy model developed through ML methods [23]. 
Briefly, the study generated predictions for glucose, ethanol, and 
biomass at 3-min intervals using a pre-established online monitoring 
model [23]. The profile data were converted into specific rate data and 
employed as constraints for the GSMM. In addition, the oxygen uptake 
rate was set to 1 mmol/gDCW/h based on the previous report [24], and 
the biomass reaction served as the objective function for the FBA 
simulations. 

2.3. Establishment and application of hybrid models 

2.3.1. Data preprocessing 
To establish the correlation between metabolic flux data and actual 

ethanol yield, preprocessing steps were undertaken, encompassing 
feature selection and data dimensionality reduction. In particular, 
transport reactions and exchange reactions were initially eliminated. 
Likewise, pseudo reactions and diffusion reactions were excluded from 
consideration. This exclusion allowed for a focused examination of the 
essential metabolic pathways of interest. For feature selection, variance 
analysis, and univariate selection methods were employed primarily in 
this study (Fig. S1). Variance analysis was instrumental in identifying 
metabolic reactions that exhibited minimal fluctuations. These re-
actions, with a variance of 0, were deemed suitable for removal from the 
dataset. Throughout the univariate selection process, the correlation 
between reactions and the actual ethanol biosynthesis rate in the sam-
ples was evaluated, leading to the exclusion of reactions exhibiting low 
correlation. Following the preprocessing step, the number of features in 
the metabolic flux data was effectively reduced from 3496 in the GSMM 
to a more streamlined set of 331 selected features. This refined feature 
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set, accompanied by 883 data samples, served as the training data for the 
machine learning algorithm. 

2.3.2. ML model selection, training and testing 
In this study, ML algorithms from the open-source Python library 

Scikit-learn (https://scikit-learn.org) were employed to establish a 
regression model that correlated the flux data from the GSMM with the 
actual ethanol production in S. cerevisiae. Samples were randomly 
divided into training, validation, and testing subsets, with 70 %, 15 %, 
and 15 % of the main dataset being allocated, respectively. The training 
data served as the basis for model fitting, capturing inherent patterns 
within (619 samples). As numerous methods incorporated hyper-
parameters affecting the learning process, a grid search was executed on 
a validation subset to ascertain optimal hyperparameter configurations. 
To ensure robustness, all methods underwent three rounds of 5-fold 
cross-validation, employing 80 % of the data in each round. Following 
hyperparameter determination, models were retrained using the com-
plete training dataset, encompassing validation samples (751 samples). 
Model performance assessment involved utilizing the trained models to 
predict outcomes in the independent testing datasets (132 samples). 
Notably, these samples were neither associated with nor included in the 
training or hyperparameter selection phases of the study. 

2.3.3. Performance metrics, and model interpretation 
The predictive performances of the hybrid model were assessed by 

evaluating the determination coefficients (R2) value and root mean 
square error (RMSE). The manifestations of the model on the testing 
datasets were characterized by specific metrics, and their calculation 
formulae are outlined as follows. The predictive performance of the 
model is indicated by the R2 value, where a closer approach to 1 signifies 
higher performance. Furthermore, a smaller RMSE implies a narrower 
discrepancy between predicted and actual values, reflecting superior 
model performance. The comparison of prediction performance across 
different models and the selection of the optimal model are facilitated 
through the assessment of R2 and RMSE metrics. 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(5) 

Selected models, chosen based on their predictive performance, 
serve as effective tools for data analysis. The interpretability of ML 
models was further enhanced by the application of the SHAP frame-
work—a game-theoretic approach designed to elucidate the output of 
ML models [25]. In addition, some ML models, such as linear regression 
models, offer high interpretability by generating feature weight co-
efficients, indicating the direction of their positive or negative impact. 
For models that do not inherently produce such coefficients, SHAP can 
be employed to compute specific values for each feature, acting as 
equivalent positive and negative weight coefficients. Notably, SHAP 
values consider inter-feature influences, aiding in the evaluation of the 
reliability of feature weight coefficients, particularly in linear regression 
models. These models assign weight coefficients to features, where 
higher values signify a more significant impact on predicting the target 
variable. The polarity of these coefficients concerning the prediction 
target enables the determination of the association between data char-
acteristics and the prediction target. Specifically, negative weight co-
efficients associated with metabolic reactions suggest that increased 
metabolic flux leads to decreased ethanol production. Conversely, pos-
itive weight coefficients indicate that heightened metabolic flux is 
linked to increased ethanol production. 

2.4. Genetic manipulation 

The detailed methods for plasmid and strain construction can be 
referred to published reports [26,27]. In brief, the deletion strains were 
constructed through CRISPR/Cas9-mediated genome editing [28]. For 
subsequent gene editing, pCAS9-NAT was introduced into S. cerevisiae 
BY4741. The gRNA plasmid and donor DNA fragments were 
co-transformed into yeast cells to facilitate gene deletion. Yeast trans-
formation was executed employing the Frozen EZ Yeast Transformation 
II Kit (Zymo Research, USA), and subsequent selection of transformants 
was carried out on YPD-NAT (nourseothricin resistance) and HygB 
plates. To eliminate the gRNA plasmids bearing the HygB marker, the 
edited transformants were streaked onto YPD-NAT plates and cultured 
at 30 ◦C for 2 days, with this process repeated in triplicate. 

2.5. Analytical methods 

The quantification of target analytes in the fermentation broth was 
carried out according to prior studies [23]. The dry cell weight (DCW) 
was determined by calculating the optical density at 600 nm (OD600). 
The ethanol concentration was analyzed using an Agilent 1490 gas 
chromatograph (Agilent Technologies, USA). In addition, an Agilent 
1290 high-performance liquid chromatograph (Agilent Technologies, 
USA) was employed to detect glucose and glycerol. 

2.6. Data processing and statistical analysis 

The experiments were performed in triplicate. Statistical significance 
between two independent sample groups was assessed using Student’s t- 
test, and correlation analysis was conducted using Pearson’s correlation. 

3. Results 

3.1. Construction of the hybrid model 

A ML-based prediction model for ethanol yield was established using 
flux data from the Scikit-learn platform. The performance of various ML 
models in predicting ethanol yield is summarized in Table 1. It is 
noteworthy that linear models, including LinearRegression, Ridge, 
Lasso, ElasticNet, BayesianRidge, and ARDRegression, exhibit R2 values 
closer to 1 and lower RMSE values when compared to other nonlinear 
models. In this study, the linear models demonstrated a better predictive 
performance when forecasting ethanol production. The magnitude and 
direction of the characteristic weight coefficient associated with meta-
bolic reactions directly convey the influence of the characteristic on 
ethanol production. Taking into account the interdependence among 

Table 1 
Performance of different machine learning models on ethanol production. 
KNN, k-Nearest Neighbor; SVR, Support Vector Machine; RR, ridge regres-
sion; GBR, Gradient Boosting Regressor; RF, Random Forest Regressor; DTR, 
Decision Tree Regressor; LassoR, Lasso Regressor; MLPR, Multilayer Per-
ceptron Regressor; LR, Linear Regression; EN, Elastic Net; BR, Bayesian 
Ridge; ARDR, Automatic Relevance Determination Regression.  

Model R2 RMSE 

KNN 0.3279 9.8 
SVR 0.3329 9.8 
RR 0.9999 0.057 
GBR 0.9741 1.9 
RFR 0.9693 2.1 
DTR 0.9365 3.0 
LassoR 0.9995 0.27 
MLPR 0.8421 4.8 
LR 0.9999 0.092 
EN 0.9992 0.35 
BR 0.9999 0.043 
ARDR 0.9999 0.025  
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features, the SHAP method was employed in this study to quantify the 
influence of each metabolic reaction feature on the predicted ethanol 
production. The SHAP values associated with various metabolic reaction 
features and their correlation with model feature weight coefficients are 
presented in Fig. 1. The results revealed a positive correlation between 
SHAP values and metabolic reaction weight coefficients, with a ρ value 
exceeding 0.8. This indicated that metabolic reactions possessing larger 
weight coefficients corresponded to larger SHAP values, reinforcing the 
idea that weight coefficients effectively reflect the impact of metabolic 
reactions on ethanol production. These findings underscored the reli-
ability of linear models in exploring the association between metabolic 
reactions and ethanol production. To mitigate potential errors associ-
ated with individual model training, this study utilized the average 
weight coefficients derived from RidgeCV, LassoCV, ElasticNetCV, 
BayesianRidge, and ARDRegression for subsequent analysis of metabolic 
reaction weights. In particular, metabolic reactions with positive 
weights experience enhanced ethanol production rates and yield higher 
ethanol outputs when metabolic fluxes increase. 

In contrast, reducing the metabolic fluxes of metabolic reactions with 
negative weights proves beneficial for elevating ethanol production 
rates and achieving greater ethanol yields. During the design phase of 
the DBTL cycle, the integration of inhibitory agents that target nega-
tively weighted metabolic reactions can be incorporated into yeast 
fermentation. Genetic manipulations such as gene knockout or down-
regulation provide control over the enzymes or genes responsible for 
these reactions at the molecular level. Moreover, to augment the rates of 
positively weighted metabolic reactions, the introduction of activators 
or increased precursor concentrations for specific metabolic reactions 
can be employed during yeast fermentation, or gene overexpression for 
particular metabolic reactions can be implemented at the molecular 
level. 

3.2. Evaluation of the hybrid model 

To scale the weight coefficients of metabolic reactions within the 
range of [− 1, 1], the MaxAbsScaler function in machine learning (ML) 

algorithms is employed. The resulting transformed coefficients are 
referred to as weight scores. The distribution of metabolic reactions with 
varying scores across the entire metabolic network is depicted in Fig. 2. 
Notably, the metabolic reactions highlighted by red arrows in the figure, 
especially those associated with genes within the demarcated red dashed 
box, are commonly employed to augment ethanol production via gene 
overexpression. For instance, target genes such as glutamate synthase 
(GLT), glutamine synthetase (GLN), glutamate dehydrogenase (GDH), 
alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), and 
NADP+-dependent glycerol-3-phosphate dehydrogenase (GAPN) were 
commonly overexpressed when involving high-yield ethanol strains [29, 
30]. In addition, metabolic reactions denoted by blue arrows or re-
actions marked with blue circles were designed for gene knockout or 
silencing in metabolic engineering for ethanol production (Fig. 2). For 
instance, ubiquinol-cytochrome c reductase (QCR), cytochrome c oxi-
dase (COX) [31], glycerol-3-phosphate dehydrogenase (GPD), aldehyde 
dehydrogenase 4 (ALD4), alcohol dehydrogenase 2 (ADH2), and glyc-
erol efflux protein (FPS1) [29,32]. These findings aligned well with the 
distribution of metabolic network scores presented in Fig. 2, thereby 
validating the reliability of ML-based methods in the exploration of 
metabolic reaction interpretability. 

In addition, a summary of target genes frequently associated with 
metabolic engineering for ethanol production in S. cerevisiae, along with 
their respective effects on ethanol production as observed in GSMM 
simulations, is presented in Table 2. However, it is noteworthy that 
within GSMM simulations, the full prediction of target genes for these 
established and effective metabolic reactions poses a considerable 
challenge. For instance, when considering GSMM simulations, the 
overexpression of genes such as GLT, GLN, GDH, and GAPN does not 
yield increased ethanol production. Likewise, the knockout of genes 
such as ALD4 and ADH2 does not lead to enhanced ethanol production 
in GSMM simulations. In this study, the models, which integrated 
mechanistic and data-driven approaches, successfully addressed the 
identified limitations. Such hybrid models offered notable advantages in 
biosystem analysis and facilitated the targeted selection of genes for 
metabolic engineering. 

Fig. 1. SHAP value distribution of metabolic reactions and their correlation with model feature weight coefficients. (a) SHAP value distribution of partial metabolic 
reactions; (b) The average absolute value of the SHAP value of a metabolic reaction. (c) Correlation between metabolic reaction SHAP value and its 
weight coefficient. 
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Fig. 2. Distribution of scores for metabolic responses involved in model training. Red represents metabolic reactions or pathways with positive scores, while blue 
represents metabolic reactions or pathways with negative scores. 
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3.3. Application of the hybrid model 

While gene knockout of negatively weighted metabolic reactions 
holds the potential for enhancing ethanol production, it is essential to 
acknowledge that the weight coefficients of these reactions, as described 
by ML models, exhibit probabilistic characteristics in their correlation 
with ethanol production. This relationship lacks determinism and 
cannot be solely explained from a metabolic mechanism perspective. 
Therefore, the weighted scores of metabolic reactions were integrated 
with the metabolic mechanisms outlined in GSMM to identify novel and 
effective gene knockout targets in this study. To enable a systematic and 
objective selection process, an exhaustive examination of the impact of 
diverse intracellular metabolic pathways on ethanol metabolism in 
S. cerevisiae was conducted. As depicted in Fig. 3, weighted scores for 
metabolic reactions spanning diverse pathways were obtained. The 
findings highlighted significant pathways that negatively impacted 
ethanol production, encompassing oxidative phosphorylation, the 
tricarboxylic acid (TCA) cycle, pyruvate metabolism, fatty acid and 
glycerolipid metabolism, and several amino acid metabolism pathways. 
Conversely, notable pathways that positively impact ethanol production 
encompass carbon metabolism, the pentose phosphate pathway, acet-
aldehyde, and dicarboxylic acid metabolism, along with specific amino 
acid metabolism pathways. Pathways involving multiple reactions were 
primarily associated with amino acid biosynthesis or metabolism. 
Notably, most amino acid metabolism pathways negatively affected 
ethanol production due to their close association with cell growth. The 
biosynthesis of these amino acids necessitated the conversion of coen-
zyme NAD+ to NADH, resulting in a reduction in ethanol production. 
However, specific amino acid metabolism pathways exhibited a favor-
able impact on ethanol production, as they are essential for cell growth 
or ethanol tolerance [33,34]. For instance, the overexpression of genes 
associated with the tryptophan biosynthesis pathway enhanced ethanol 
tolerance, while the overexpression of genes involved in ATP and 
NADH-consuming reactions within the glutamate biosynthesis pathway 
contributes to increased ethanol production. Moreover, the biosynthesis 
of phenylalanine, tyrosine, and tryptophan, along with the metabolism 

Table 2 
The predicted performance of common gene targets in ethanol metabolization in 
GEM simulation and hybrid model, respectively. GLT, Glutamate synthase; GLN, 
Glutamine synthetase; GDH, Glutamate dehydrogenase; ADH, Alcohol dehy-
drogenase; PDC, Pyruvate decarboxylase; GAPN, Glyceraldehyde-3-phosphate 
dehydrogenase; QCR, Ubiquinol-cytochrome c reductase; COX, Cytochrome-c 
Oxidase; GPD, Glycerol-3-phosphate dehydrogenase; ALD4, Acetaldehyde de-
hydrogenase 4; ADH2, Alcohol dehydrogenase 2; FPS1, Glycerol export protein.   

Genes Prediction in 
GSMM 
simulation 

Prediction by 
hybrid model 

Reference 

Targeted genes for 
overexpression 

GLT – + Literature 
validation 

GLN – + Literature 
validation 

GDH – + Literature 
validation 

ADH + + Literature 
validation 

PDC + + Literature 
validation 

GAPN – + Literature 
validation 

Targeted genes for 
knockout 

QCR + + Literature 
validation 

COX + + Literature 
validation 

GPD – + Literature 
validation 

ALD4 – + Literature 
validation 

ADH2 – + Literature 
validation 

FPS1 – + Literature 
validation 

‘+’ indicates that the model can predict accurately, ‘-’ indicates that the model 
cannot accurately predict. 

Fig. 3. Distribution of heat map for different metabolic pathways.  
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of alanine, aspartate, and glutamate, demonstrated a positive correla-
tion with ethanol production. In this study, our specific focus was on 
pathways exhibiting negative scores to identify potential gene knockout 
targets associated with ethanol production. Through the evaluation of 
the weighted scores of metabolic pathways, the oxidative phosphory-
lation pathway stood out as a promising target for gene knockout 
identification, characterized by the highest negative weighted score 
(Fig. 3). 

It is worth noting that the identification of the oxidative phosphor-
ylation pathway is based on the correlation between metabolic reactions 
and their effects on ethanol production, although establishing a defini-
tive causal relationship presents challenges. Therefore, to further 
elucidate the metabolic mechanism, simulation analyses utilizing GSMM 
were employed to identify novel gene knockout targets. Fig. S2 presents 
several reactions with comparably high weight scores within the 
oxidative phosphorylation pathway. Previous studies have demon-
strated that the gene encoding iron-cytochrome c reductase QCR 
(catalyzing the conversion between ferrocytochrome c and ubiquinone- 
6) and the cytochrome c oxidase COX gene (catalyzing the conversion of 
ferrocytochrome c to ferricytochrome c) exhibited increased ethanol 
production in their respective gene deletion mutants [31]. Deletion of 
COX9 or QCR9 led to a significant 37 % and 27 % increase in ethanol 
production, respectively, compared to the parental strain, despite minor 
growth defects. On the other hand, the deletion of QCR6 resulted in a 
noteworthy 24 % increase in ethanol production without compromising 
growth. Interestingly, the potential influence of succinate dehydroge-
nase (SDH), a gene situated between oxidative phosphorylation and the 
TCA cycle, on ethanol production remains largely unexplored. Succinate 
dehydrogenase (SDH) holds a crucial position in the TCA cycle and 
oxidative phosphorylation pathways, as indicated by its involvement in 
metabolic reactions with notably high weight scores. Notably, 
GEM-based simulations of single-gene knockouts demonstrated that 
deleting SDH had minimal impact on growth, rendering it an attractive 
target for knockout modifications. 

3.4. Validation of the hybrid model 

3.4.1. Construction of the SDH subunit gene deletion strain 
SDH is composed of multiple subunits that function in synergy. 

However, the effects of gene deletions targeting specific SDH subunits on 
ethanol production and growth have been sparsely documented. To 
examine the impact of SDH subunit genes and assembly factor genes on 
ethanol production, CRISPR/Cas9 technology was employed to indi-
vidually knock out the sdh1-8 genes. The results demonstrated that, 
except for the Δsdh3 strain, all other sdh deletion strains exhibited 
elevated ethanol production in both YPD and YSC media, leading to 
improvements ranging from 6 % to 10 % (Fig. 4). The engineered strains 
exhibited distinct growth patterns when cultured in YPD and YSC media. 
In YSC media, the strains, except for Δsdh3, exhibited unhindered 
growth and even demonstrated slight enhancements when compared to 
the BY4741 strain. However, all modified strains demonstrated 
decreased growth in the YPD medium. Notably, Δsdh5 and Δsdh6 strains 
exhibited the most significant increase in ethanol production under both 
media conditions. These observations suggested that their influence on 
ethanol production is not dependent on the composition of the growth 
medium. The experimental findings further supported the validity of the 
gene knockout targets identified through the hybrid model analysis. 

3.4.2. Construction of a high-yielding ethanol-producing strain 
Glycerol, a significant byproduct in ethanol production, is tightly 

regulated by the GPD gene in the glycerol biosynthesis pathway. 
Numerous studies have consistently indicated that deletion of the GPD 
gene could result in enhanced ethanol production. Furthermore, the 
GPD gene plays a pivotal role in maintaining intracellular redox balance. 
Therefore, CRISPR/Cas9 technology was employed to generate double- 
gene deletion mutants targeting GPD and SDH in this study. the biomass, 
ethanol concentration, and relative ethanol production of the engi-
neered strains compared to the parental strain BY4741 were illustrated 
in Fig. 5. The results revealed a significant enhancement in ethanol 
production for the engineered strains Δsdh4Δgpd1, Δsdh5Δgpd1, 
Δsdh6Δgpd1, Δsdh4Δgpd2, Δsdh5Δgpd2, and Δsdh6Δgpd2 when compared 
to BY4741. However, strains, namely Δgpd2Δsdh3, Δgpd1Δsdh1, and 
Δgpd1Δsdh2, experienced a noticeable reduction in ethanol production 

Fig. 4. The ethanol concentration (a) and biomass (b) of different strains on YSC and YPD medium; Biomass and ethanol concentration changing rate of the modified 
strain on YSC and YPD medium (c). 
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relative to BY4741. These strains manifested lower OD values compared 
to BY4741, indicating a dual impact arising from respiratory defects due 
to the absence of the glycerol biosynthesis pathway and deficiencies in 
SDH. This situation led to compromised growth and ethanol production 
capabilities. Among them, Δgpd1Δsdh1 displayed the most significant 
effects, with a 30 % decrease in growth and a 50 % reduction in ethanol 
production compared to BY4741. Importantly, Δgpd2Δsdh5, 
Δgpd2Δsdh6, and Δgpd1Δsdh4 exhibited the most pronounced increase in 
ethanol production, with respective increments of 21.6 %, 27.9 %, and 
22.7 % compared to BY4741. Notably, Δgpd2Δsdh6 demonstrated the 
most substantial improvement in ethanol production, reaching 6.06 g/L 
under shaken flask conditions. In summary, significant advancements in 
ethanol production were achieved through data analysis of the hybrid 
model and the metabolic engineering of strains. 

4. Discussion 

In this study, we introduce a hybrid model-driven platform that in-
tegrates ML algorithms with GSMMs. The primary objective of this 
platform is to refine the design of biological systems, specifically tar-
geting the augmentation of fluxes within the ethanol biosynthesis 
pathway through the utilization of data derived from S. cerevisiae 
fermentation. The effectiveness and reliability of the hybrid framework 
were thoroughly evaluated through the application of various ML ap-
proaches. The integration of GSMMs and data-driven techniques estab-
lishes a valuable foundation for future benchmarking efforts. In 
addition, the hybrid model could surpass the insights derived solely 
from metabolic reconstruction, commonly used for generating flux 
maps, in terms of both prediction accuracy and biological 
comprehension. 

The integration of ML models with GSMM has garnered increasing 
interest among researchers in the life sciences. For example, Kim 
employed ML methods to predict dynamic alterations in metabolic 
pathways and combined these predictions with GSMMs to unravel the 
regulatory mechanisms governing these pathways [13]. However, con-
ducting wet experiments for designing biological systems can be costly, 
time-consuming, and error-prone [11]. To this end, we collected 

continuous data on the metabolic processes of ethanol, glucose, glycerol, 
and cell concentration at various time points during the fermentation 
cycle of S. cerevisiae using a soft sensor established with Raman spec-
troscopy [23]. Subsequently, a GSMM was employed to simulate the 
fermentation process, leveraging the collected process data as con-
straints in FBA. By establishing a correlation between the metabolic flux 
data and actual ethanol production, the hybrid model facilitated the 
prediction of ethanol yield. In conclusion, the integration of flux data 
from GSMM with biological data enhanced the analytical capabilities of 
ML models, leading to a deeper understanding of the intricate rela-
tionship between metabolic fluxes and ethanol production in 
S. cerevisiae. This integration enabled a comprehensive analysis that 
shed light on the underlying mechanisms governing ethanol biosyn-
thesis. Notably, the study primarily aims to elucidate the impact of ge-
netic modifications on ethanol production. However, it is recognized 
that the attained titer falls short of the theoretical yields potentially 
achievable by S. cerevisiae. Subsequent investigations could include 
fed-batch experiments designed to evaluate the industrial potential and 
robustness of the engineered strains, and optimize process conditions for 
maximizing ethanol production. 

To investigate the effects of SDH gene deletion on intracellular 
metabolic flux distribution and mechanisms, we conducted single-gene 
knockouts of SDH using the yeast 8.0.0 model. The average metabolic 
flux distributions surrounding the oxidative phosphorylation pathway 
were calculated for both the wild-type strain (BY4741) and the SDH 
deletion strain (ΔSDH). The calculations yielded the average flux values 
for specific metabolic pathways, providing insights into the effects of 
SDH deletion. Fig. 6 illustrates the influence of SDH deletion on some 
metabolic pathways by GSMM simulations. The findings demonstrated a 
notable reduction in metabolic fluxes within the TCA cycle, oxidative 
phosphorylation, and the pyruvate, aspartate, and glutamate meta-
bolism pathways in the ΔSDH strain compared to the wild-type strain. 
Given the previous discussion on the impact of negatively weighted 
pathways on ethanol productivity, the deletion of SDH might partially 
hinder the activity of these metabolic pathways, leading to an 
enhancement in ethanol production. In contrast, the glycolytic pathway 
exhibits enhanced metabolic activity. As indicated by the positively 

Fig. 5. The growth of the GPD and SDH double-gene knockout strains (a); The ethanol yield of the GPD and SDH double-gene knockout strains (b); and biomass and 
ethanol concentration changing rate of the GPD and SDH double-gene knockout strains (c). 
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weighted reactions in the metabolic network distributions, the 
enhancement of the pentose phosphate pathway and glycolysis might 
hold a crucial role in promoting favorable ethanol metabolism. In 
addition, previous studies have proved that the deletion of the SDH2 
subunit gene of succinate dehydrogenase resulted in a decrease in 
organic acids, such as citric acid, while concurrently increasing acetone 
accumulation in the glycolytic pathway [35,36]. These metabolic 
changes have been found to positively influence ethanol production. 

Furthermore, deletion of the sdh gene could affect the oxidative 
phosphorylation pathway, which was consistent with previous reports 
[37–39]. Deletion mutants of the sdh gene in S. cerevisiae exhibit respi-
ratory system defects that limit oxygen consumption, thereby promoting 
increased ethanol production [40,41]. Interestingly, unexpected out-
comes were observed in the metabolic pathways involving pyruvate, 
aspartate, and glutamate. Despite the overall decrease in metabolic ac-
tivity within these pathways, the metabolic flux of crucial reactions 
governed by glutamate synthase and glutamine synthetase in the 
glutamate biosynthesis pathway increases, whereas the metabolic flux of 
reactions regulated by glutamate dehydrogenase decreases. Previous 
studies have demonstrated that manipulating the expression of key 
genes in these pathways, such as GDH1/GDH3 for glutamate dehydro-
genase, GLT1 for glutamate biosynthesis, and GLN1 for glutamine syn-
thetase, can enhance redox balance, reduce glycerol byproduct 
formation, and promote ethanol production [42,43]. 

Metabolic fluxes possess a fundamental mechanistic interpretation 
owing to its robust association with underlying biochemistry. Notably, 
13C-Metabolic Flux Analysis (13C-MFA) provides a more accurate un-
derstanding of intracellular flux distributions when comparing with 
GSMM [44]. Likewise, 13C-MFA often assumes that the system is in a 
quasi-steady state during the labeling experiment. This assumption may 
not hold in rapidly changing or dynamic metabolic systems. In addition, 
13C-labeling experiments can be expensive and time-consuming, espe-
cially when considering the production of labeled substrates, sample 
preparation, and the analysis of isotopic labeling patterns. In contrast, 
we initially utilized the previously constructed online monitoring model 
to acquire crucial physiological metabolic parameters during the pro-
cess. By iteratively differentiating the long-term dynamic process 
(transitioning from hours or days to minutes), we assumed that cellular 
metabolism was at a steady state within short time intervals. This 
approach allows for the continuous inclusion of the dynamic distribu-
tion of intracellular metabolic fluxes in the monitoring of biological 
processes. Therefore, the integration of data-driven metabolic network 
models not only enhanced predictive capabilities but also yielded 
valuable mechanistic insights into metabolite interactions under specific 
conditions, significantly contributing to phenotypic outcomes. This 

integration confers distinct advantages by facilitating the development 
and utilization of more biologically interpretable ML models, particu-
larly in scenarios where understanding the effects of cellular or meta-
bolic engineering manipulations is paramount [10]. Hence, our findings 
strongly support the expansion of this robust hybrid model, driven by 
data and knowledge, to encompass bioengineering and other related 
objectives on phenotypic outcomes, such as the secretion of metabolites 
for drug development purposes. 
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