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Simple Summary: Cardiorespiratory fitness as a crucial prerequisite for sustained work ability
declines with aging, as does the functionality of the immune system, the latter process termed im-
munosenescence or immune age. We approximated a comprehensive immunosenescence biomarker
by just a few flow-cytometry-based parameters using blood samples. Applied to measurements with
597 participants from the Dortmund Vital Study, we could show that immune age, but not chrono-
logical age, together with obesity and physical inactivity, independently from sex, were significant
predictors for the probability of low cardiorespiratory fitness.

Abstract: Cardiorespiratory fitness (CRF) is essential for sustained work ability in good health, but
declines with aging, as does the functionality of the immune system, the latter process commonly
referred to as immunosenescence. This study aimed to compare the capacity of immunosenescence
biomarkers with chronological age for predicting low CRF in a cross-sectional sample recruited from
the regional working population. CRF was determined by submaximal bicycle ergometer testing in a
cross-sectional sample of 597 volunteers aged 20–70 years from the ’Dortmund Vital Study’ (DVS,
ClinicalTrials.gov Identifier: NCT05155397). Low CRF was scored if the ergometer test was not
completed due to medical reasons or if the power output projected to a heart rate of 130 bpm divided
by body mass was below sex-specific reference values of 1.25 W/kg for females and 1.5 W/kg for
males, respectively. In addition to established biomarkers of immunosenescence, we calibrated a
comprehensive metric of immune age to our data and compared its predictive capacity for low CRF
to chronological age, while adjusting our analysis for the influence of sex, obesity, and the level of
regular physical activity, by applying univariate and multiple logistic regression. While obesity, low
physical activity, chronological and immune age were all associated with increased probability for
low CRF in univariate analyses, multiple logistic regression revealed that obesity and physical activity
together with immune age, but not chronological age, were statistically significant predictors of low
CRF outcome. Sex was non-significant due to the applied sex-specific reference values. These results
demonstrate that biological age assessed by our immunological metric can outperform chronological
age as a predictor for CRF and indicate a potential role for immunosenescence in explaining the
inter-individual variability of the age-related decline in cardiorespiratory fitness.

Keywords: aging; immunosenescence; physical fitness; physical activity; obesity; sex

1. Introduction

Cardiorespiratory fitness (CRF) helps prevent cardiovascular disease and premature
mortality [1–4], and is crucial for sustained work ability in good health [5–9] in both physi-
cally [10,11] and cognitively demanding occupations [12]. CRF exhibits an interdependent
relationship with physical activity and the immune system [8,13–15], where physical ac-
tivity and exercise help to improve CRF, inhibiting inflammatory responses [16], thus
strengthening and maintaining the functioning of the immune system during aging [17,18].
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Aging individuals in western societies frequently exhibit a sedentary lifestyle, character-
ized by physical inactivity, especially after retirement from work. This may lead to obesity
and a low level of CRF, elevating health risks [19]. Concomitantly, the age-related CRF
decline [20] profoundly varies in different groups defined by individual characteristics
such as sex, body composition, obesity, and health status [21,22].

Hence, the assessment of CRF forms an integral part of the ongoing ’Dortmund Vital
Study’ (DVS, ClinicalTrials.gov Identifier: NCT05155397), a combined cross-sectional and
longitudinal interdisciplinary study using as study sample a cohort of 600 individuals
recruited from the regional working population. The DVS aims at investigating the complex
interplay of aging, working conditions, genetics, stress, metabolism, cardiovascular system,
immune system, and physical and mental performance over the course of the working life
of healthy adults. While companion papers describing the detailed study protocol [23] and
broad analyses of sociodemographic, biological, and environmental influences on lifespan
work ability [24] are available elsewhere, this report will focus on factors contributing to
the inter-individual variability in the age-related decline of CRF.

Recently, metrics of ‘biological age’ have gained attention or even outperformed
chronological age [25,26] as predictors for age-related mortality, health, and disease [27–29],
the success of vaccination in the elderly population [30], or declining brain function [31].
Likewise, the concept of ’immune age’ or ‘immunosenescence’ aims at quantifying, prefer-
ably by a one-dimensional marker, the decay in functions of the immune system with
individually varying progression in the elderly [32,33], which does not necessarily parallel
chronological age [34,35].

Several immunosenescence biomarkers have been proposed, such as memory/naïve
sub-populations of CD4+ and CD8+ T-cells, the CD4/CD8-ratio, or the number of CD28–

T-cells with application in predicting age-related morbidity and mortality [36–44]. More
recently, these biomarkers were complemented by attempts to define composite scores
aiming at a comprehensive assessment of the aging immune system [35,45,46].

The immune age metric IMM-AGE [35] was recently built from longitudinally follow-
ing the immune status of 135 healthy volunteers for up to nine years employing multi-omics
techniques to a high dimensional set of parameters, comprising blood cell phenotypes, func-
tional tests with stimulated cells, and gene-expression analyses. Thus, IMM-AGE has been
widely recognized as a cutting-edge biomarker comprehensively covering the processes
related to immunosenescence [25,34,47–53]. However, applications to epidemiological
and clinical settings are scarce, because a one-to-one implementation of the published
procedure would not only demand advanced and extensive analytics, but also require to
mimic the longitudinal sampling scheme, as illustrated by corresponding complaints in a
recent study concerning SARS-CoV-2 [54]. Even in the original study [35], IMM-AGE had
to be approximated by a compatible set of gene expression parameters for demonstrating
its applicability to cardiovascular health data from the Framingham cohort.

In order to apply such advanced immunosenescence biomarkers for investigating
the relation of cardiorespiratory fitness with the aging immune system in the DVS, we
present a simplified method to determine a novel metric for immune age using a limited
set of flow cytometry-based immune parameters. To do so, we scrutinized the immune
data published with the original IMM-AGE study [35] for compatibility with the immune
parameters measured in the DVS. For calibrating the comprehensive IMM-AGE metric to
our data, we used this set of compatible variables to determine an approximate score for
application as predictor within the DVS. In order to distinguish the novel marker from the
original metric, we termed the approximation IMMAX (IMMune Age indeX).

Aiming on factors contributing to the inter-individual variability in the age-related
decline of CRF, with a special focus on the role of immunosenescence, the present analysis
compares the capacity of IMMAX with chronological age for predicting low CRF in a cross-
sectional sample from the DVS when adjusting for sex, obesity and regular physical activity.
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2. Materials and Methods
2.1. DVS Sample

The DVS (ClinicalTrials.gov Identifier: NCT05155397) is conducted with approval from
the local Ethics Committee of the IfADo [23]. It is designed as a combined cross-sectional and
longitudinal study comprising a baseline and up to three follow-up examinations, separated
by five-year intervals with a projected completion of data collection by end of 2035. Here,
we analyzed cross-sectional data of the baseline examinations performed between 2016 and
2021, consisting of observations from 368 females and 229 males aged 20–70 years.

As detailed in the published study protocol [23], the sample was drawn from the
general healthy regional working population, and deemed representative concerning
age, genetics, and occupation, whereas females were slightly overrepresented [23]. By
structured pre-study telephone interviews, we collected information on health status.
Applying a wide scope for ‘healthy’, we also included individuals who were smokers,
normal alcohol users (no alcohol use disorder), overweight, or persons with non-severe
disease symptoms, allowing for medications with, e.g., anticoagulants, hormones, or
antihypertensive and cholesterol-lowering drugs. On the other hand, we excluded persons
with severe neurological, cardiovascular, or oncological diseases and psychiatric disorders
(cf. [23] for a comprehensive list) from participation.

From the measured body mass (in kg) and height (in m), body composition (obesity)
was assessed by the body-mass index (BMI = mass/height2) and scored as normal for
BMI < 25 kg/m2, as overweight for 25 kg/m2 ≤ BMI ≤ 30 kg/m2 and as obese for
BMI > 30 kg/m2, respectively [55].

Regular physical activity was assessed by the Lüdenscheid Physical Activity Ques-
tionnaire [56], an instrument with well-proven utility in recent studies [57–59]. This ques-
tionnaire consists of 13 items about physical activity during work and leisure time, which
are summarized into a four-level score with respect to preventing health risks associated
with inactivity (1: (too) low, 2: still acceptable, 3: satisfactory, 4: high).

Table 1 presents the DVS sample distribution of individual characteristics together
with covariates and outcomes as described below.

Table 1. Sample characteristics stratified by sex, and summarized by mean (SD) for continuous data
and by frequency (percentage) for categorical observations, respectively.

Characteristic Overall
n = 597

Females
n = 368

Males
n = 229

Age (years) 44 (14) 43 (14) 46 (14)
Body height (m) 1.73 (0.09) 1.68 (0.07) 1.82 (0.07)
Bodymass(kg) 77 (17) 70 (15) 88 (16)

#missing 3 2 1
BMI category

normal 323 (54%) 228 (62%) 95 (42%)
overweight 181 (30%) 90 (25%) 91 (40%)
obese 90 (15%) 48 (13%) 42 (18%)
#missing 3 2 1

Physical activity score
low 268 (47%) 181 (51%) 87 (39%)
still acceptable 174 (30%) 101 (29%) 73 (33%)
satisfactory 79 (14%) 42 (12%) 37 (17%)
high 53 (9%) 29 (8%) 24 (11%)
#missing 23 15 8

PWC130 (W/kg) 1.61 (0.47) 1.52 (0.42) 1.77 (0.50)
#missing 92 59 33

low CRF events 211 (37%) 122 (35%) 89 (40%)
#missing 25 20 5

Immunosenescence biomarker
IMMAX 0.43 (0.12) 0.40 (0.11) 0.47 (0.13)
log NK/T −1.81 (0.55) −1.91 (0.53) −1.64 (0.54)
log CD4/CD8 1.31 (0.59) 1.32 (0.55) 1.31 (0.64)
log CD8 mem/naive 0.06 (1.03) −0.11 (0.94) 0.35 (1.12)
log CD4 mem/naive 0.57 (0.68) 0.45 (0.64) 0.75 (0.69)
logit CD8 CD28- −1.26 (0.88) −1.36 (0.83) −1.11 (0.94)

BMI: body-mass index; PWC130: power output from the physical working capacity test on the bicycle ergometer
at 130 bpm standardized for body mass; CRF: cardiorespiratory fitness; #missing: number of missing observations;
IMMAX: approximation to IMM-AGE metric [35] by principal component regression, termed IMMune Age indeX;
NK: %natural killer cells; T: %T cells; CD4: %CD4-positive T cells; CD8: %CD8-positive T cells; mem: %memory
T cells; naïve: %naïve T cells; CD8 CD28-: %CD28-negative CD8-positive T cells; log: natural logarithm; logit:
transformation of a percentage (%p) by logit(%p) = log(%p/(100% − %p)).
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2.2. Cardiorespiratory Fitness Assessment

CRF was operationalized by the result of the physical working capacity test
PWC130 [60], a submaximal incremental testing procedure on a bicycle ergometer. Follow-
ing standard recommendations [60–62] and adhering to the requests of the institute’s Ethics
Committee [23], all cycle ergometer tests were performed under medical supervision. The
participants cycled with a cadence of 60 rpm (revolutions per minute) starting with 25 W
required power output, which was increased every 2 min by 25 W, until the participants’
heart rate as recorded by electrocardiography (ECG) exceeded 130 bpm. The PWC130
outcome was defined as the power output projected to a heart rate of 130 bpm divided by
body mass (in W/kg).

PWC130 outcome was missing for more than 15% of the observations (Table 1), with
only less than one third being attributable to technical issues with the equipment or to
the non-availability of medical supervision. The majority of missing observations was
associated with non-performing or stopping the test prematurely, i.e., before reaching the
projected heart rate of 130 bpm due to medical reasons, like abnormal ECG recordings,
hemodynamic changes, being exhausted, or medical contraindications [60,62]. As these
missing observations were indicative for low CRF and thus considered non-ignorable, CRF
was quantified by the dichotomization of the PWC130 outcome. Low CRF was scored if the
participant could not complete the test due to medical reasons, with such events recorded
in the study log, or if the PWC130 outcome was below a sex-specific reference value of
1.25 W/kg for females and 1.5 W/kg for males, respectively [63]; otherwise, high CRF was
scored. This approach reduced the number of missing observations considerably (Table 1).

2.3. Immune Parameters

Peripheral venous blood (80 mL) was collected from DVS participants in heparinized
monovettes (Sarstedt, Nümbrecht, Germany) and a set of relative blood cell frequencies
was determined by flow cytometry [64]. Briefly, we isolated peripheral blood mononuclear
cells (PBMC) by Ficoll density gradient centrifugation (PAN-Biotech, Aidenbach, Germany),
and cells were stored at −170 ◦C for up to 6 months until analysis. Four antibody panels
were built to gain information on the general lymphocyte and monocyte subpopulations
and to analyze the lymphocytes for NK/T cell ratio, CD4/CD8 T cell ratio, memory/naïve
sub-populations of CD4+ and CD8+ T cells, and CD28− T cells, which are all related to
aging and senescence. All antibodies were individually titrated to determine the optimal
dilution. All antibodies and dilutions are listed in the Supplemental Material by Table S1.
Gating strategy is presented in Figures S1 and S2. We stained PBMC immediately after
thawing and kept them on ice during the entire procedure. For each panel, we stained
0.2 × 106 cells with the indicated antibody cocktails for 20 min in the dark at 4 ◦C and
afterwards washed them with FACS buffer (PBS/2% FCS). Cells were resuspended in FACS
buffer and kept on ice until analysis at the same day on a BD LSRFortessa. Data were
analyzed using the FlowJo software (FlowJo LLC, Ashland, OR, USA).

Accounting for the compositional structure of related relative cell frequencies, e.g.,
memory and naïve CD8 T-cells, which inherently exhibit a negative correlation because their
sum is limited by 100%, we transformed such pairs to their log-ratio, while single percentage
cell frequencies (%p) were transformed to their logit(%p) = log(%p/(100% − %p)) [65].

2.4. Approximating IMM-AGE by IMMAX

We obtained 434 values of the IMM-AGE metric normalized to the range between
zero and one from the published supplemental data files [35], which were merged with
chronological age and raw cellular relative frequencies of 65 variables listed in Table S2,
whereas the data did not contain any information about the sex of the participants.

We screened our set of immune parameters from the DVS for compatibility with the
original study and compared the distribution of these candidate variables between the
two studies. We adjusted our analyses for chronological age by linear regression after
transforming the candidate variables to their log-ratio or logit as before, and subsequently
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evaluated the correlation coefficients and regression lines. The set of comparable immune
parameters, as identified according to this procedure, were then used as predictors of
IMM-AGE in a principal component regression model fitted by the package pls [66] using
the R version 4.2.1 (R Core Team, Vienna, Austria) [67]. The resulting predicted scores
were termed IMMAX (IMMune Age indeX), a one-dimensional metric to describe the
immune age. Before fitting the regression model, we transformed the dependent variable
to its logit, thus ensuring that IMMAX stayed between 0 and 1 just as IMM-AGE [68]. The
Supplemental Material includes a corresponding R script as Code S1.

2.5. Statistical Analysis of Cardiorespiratory Fitness

In the DVS sample we analyzed the capacity of sex, obesity, physical activity, age, and
various immunosenescence biomarkers (IMMAX plus its predictors from the principal
component regression model), for predicting the probability of low CRF by fitting univariate
and multiple logistic regression models using the R function glm [69]. Only the 547 records
with complete observations for the covariates and CRF, which comprised 199 low CRF
events, and were included in the analyses. The estimated coefficients were expressed
as odds ratios (OR) with 95%-confidence intervals (CI). For comparison purposes, the
continuous predictors (age and immunosenescence biomarkers) were z-standardized to
zero mean and unit variance prior to analyses; with in such a way standardized ORs
representing the effect of 1 SD increase in the predictor. Model fit was assessed by Pearson’s
correlation coefficient (R), the root mean squared prediction error (RMSE) and Akaike’s
information criterion AIC [70].

3. Results
3.1. IMM-AGE Approximation

To simplify the determination of a comprehensive immune age metric, we first scru-
tinized the list of raw cell frequency variables of the original IMM-AGE study [35] for
compatibility with our immune parameters from the DVS and identified 16 candidates for
further inspection (Table S2), with several variables showing considerable correlation with
IMM-AGE in the original data (Figure S3). Comparing the distribution of these variables
between the two studies revealed significant differences for many immune parameters
(Figure S4). However, the chronological age also differed significantly between the two
studies. The IMM-AGE study included two distinct age groups, young adults (20–36 years)
and older adults (63–97 years), whereas participants in the DVS ranged from 20–70 years
(Figure 1A). Hence, after excluding variables with a high proportion of missing values
(Figure S4), we adjusted our analyses for chronological age by applying linear regression
models. The comparison of age-dependent regression lines and correlation coefficients
between the two studies for the remaining 12 candidate predictors (Figure S5) suggested a
reduced set of compatible peripheral blood mononuclear cell sub-populations (NK-cells,
T cells, total and memory/naïve sub-populations of CD4 and CD8 T-cells, CD8 CD28– T-
cells). From these, we calculated five immunosenescence biomarkers on a log-ratio or logit
scale (Figure 1B), which were then used as predictors in the principal component regression
model. The estimated coefficients (Table S3) allowed for calculating a simplified score for
the immunological age, which we termed IMMAX (Immune Age Applied). IMMAX was
determined not only for the original sample [35], but also for the DVS [23,24].

For the sample from the original study [35], our IMMAX score approximated the pri-
mary IMM-AGE values with acceptable accuracy, as indicated by high Pearson’s correlation
R = 0.84 and moderate typical prediction error RMSE = 10% (Figure 1C). The regression lines
with chronological age agreed well for IMM-AGE and IMMAX from the original study and
were in line with the regression function of the approximation for the DVS (IMMAX.DVS),
which nicely filled the gap in the bimodal age distribution (Figure 1D). Figure 1E presents
the regression lines with age separately for females and males in the DVS, which were par-
allel, as indicated by a non-significant interaction term (page*sex = 0.97), increased by 0.43%
per year and were shifted downwards for females by 5.1%, corresponding to a horizontal
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shift of approximately 12 years (5.1%/0.43%/year). Similar results demonstrating that
females are immunologically younger compared to males with the same chronological age
had been reported for the Framingham cohort in the original study [35], thus pointing to
the validity of our approximation.
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Figure 1. Calibration of the IMM-AGE metric [35] to cell-frequency data from the Dortmund Vital
Study DVS [23]. (A) Box plots of the age distributions in the IMM-AGE sample and the DVS.
(B) Compatibility between IMM-AGE and DVS for five biomarkers of immune age (NK- to T-cell
ratio, CD4:CD8 ratio, memory-to-naive ratios for CD8 and CD4 T-cells, CD28- CD8 cells) in relation to
chronological age assessed by linear regression and Pearson correlation coefficients (R). The analyses
used the logarithms of ratios and the logits of percentages, respectively. (C) Goodness-of-fit in
comparison to dashed line of identity assessed by Pearson correlation coefficient and root-mean-
squared error (RMSE) of the approximation to the IMM-AGE metric in the original data [35] calculated
by principal component regression (IMMAX) with the five biomarkers from (B) as predictors. (D) Age-
depending linear regression lines for the IMM-AGE metric and its approximation (IMMAX) in the
original data from (C) compared to the approximations calculated for the DVS data (IMMAX.DVS).
(E) Linear regression and correlation with age of the approximated IMM-AGE metric in the DVS
(IMMAX.DVS) for females and males.

3.2. Associations with Cardiorespiratory Fitness
3.2.1. Univariate Analyses

In the DVS sample, obesity status, a low level of regular physical activity, chronological
age, and the immune age metric IMMAX, as well as the ratio of memory to naïve CD8
cells and CD8 CD28– cells, correlated positively with low CRF, as illustrated by Figure 2,
and assessed in the univariate analyses corrected for multiple testing presented by Table 2.
Notably, the ratios of NK- to T-cells, of CD4 to CD8 cells, and of memory to naïve CD4
cells, showed no associations with low CRF. Although males reached higher relative power
output compared to females in the PWC130 (Table 1), sex was not associated with low CRF,
which could be expected since the dichotomization was based on sex-specific reference
values [63].
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Figure 2. Bivariate associations of low cardiorespiratory fitness (CRF) with (A) categorical and
(B) continuous predictors for the subsample of 547 complete observations from the DVS with 199 low
CRF events.

Table 2. Bivariate associations assessed by odds ratios from univariate logistic regression models
predicting the probability of low CRF by sex, obesity (BMI category), level of regular physical
activity, and by chronological age and six immune age metrics. The continuous predictors had
been z-standardized to zero mean and unit variance prior to analysis, which was performed for the
subsample of 547 complete observations with 199 low CRF events.

Predictor OR a 95% CI a p-Value q-Value b

Sex 0.22 0.24
Females c — —
Males 1.25 0.88–1.78

BMI category <0.001 <0.001
Normal c — —
overweight 2.09 1.39–3.14
obese 7.38 4.34–12.9

Physical activity <0.001 0.001
Low c — —
still acceptable 0.66 0.44–0.99
satisfactory 0.37 0.20–0.66
high 0.34 0.16–0.67

Age (standardized) 1.25 1.05–1.50 0.012 0.020
Immune age metric (standardized)

IMMAX 1.37 1.15–1.64 <0.001 0.001
log CD8 mem/naive 1.36 1.14–1.64 <0.001 0.001
logit CD8 CD28- 1.28 1.07–1.52 0.006 0.013
log NK/T 1.15 0.96–1.37 0.12 0.17
log CD4 mem/naive 1.13 0.95–1.35 0.17 0.21
log CD4/CD8 1.10 0.92–1.31 0.29 0.29

a OR = Odds Ratio, CI = Confidence Interval for OR; b False discovery rate correction for multiple testing;
c Reference category.



Biology 2022, 11, 1576 8 of 14

3.2.2. Multivariate Analyses

Figure 3A presents the outcome of the multiple logistic regression analyses focusing
on the contrast between chronological age with the immune age metrics in terms of the
standardized odds ratios and the AIC for model comparison, while the detailed results
comprising all covariates are shown by Table S4. They revealed that obesity and level
of regular physical activity together with immune age, but not chronological age, were
statistically significant predictors of low CRF. Remarkably, the ratio of memory to naïve
CD8 cells was competitive to the comprehensive metric IMMAX concerning predictive
capacity, as indicated by a slightly higher standardized OR accompanied by a lowered AIC
(Figure 3A), which, however, showed an absolute difference below 2 (Table S4) indicating a
comparable fit for the two models [70].

Biology 2022, 11, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 3. Multiple logistic regression results comparing chronological age with different immune 

age metrics as predictors of low CRF by standardized odds ratios with 95%-CI (left panels, with 

vertical dashed reference lines indicating null effect) and by Akaike’s information criterion AIC with 

lower values indicating improved model fit (right panels), respectively. (A) Results using different 

immune age metrics as predictors in separate models in addition to chronological age, adjusting the 

analyses for sex, obesity, and physical activity. (B) Results using either chronological age or different 

immune age metrics as predictor in separate models, adjusting for obesity and physical activity, but 

excluding sex as covariate. 

Figure 3B presents the corresponding outcomes from fitting a slightly modified series 

of models separately including age and the six immune age metrics as predictors, but 

omitting the non-significant factor sex from the analyses. Detailed information for all co-

variates is provided in Table S5 and confirmed the previous results. In particular, chron-

ological age became a non-significant predictor when adjusting for covariates, while the 

immune age metric IMMAX as well as the ratio of memory to naïve CD8 cells and CD8 

CD28– cells persisted as significant predictors for low CRF, while the metrics involving 

CD4 or NK cells were non-significant, which agreed with the univariate analysis (Figure 

2). Note that omitting sex and age as non-significant predictors in the models involving 

immunosenescence biomarkers lowered the corresponding AIC values, compared to the 

analyses presented by Figure 3A, thus improved the model fit. 
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4.1. Calibrated Immune Age Metric IMMAX 

Figure 3. Multiple logistic regression results comparing chronological age with different immune age
metrics as predictors of low CRF by standardized odds ratios with 95%-CI (left panels, with vertical
dashed reference lines indicating null effect) and by Akaike’s information criterion AIC with lower
values indicating improved model fit (right panels), respectively. (A) Results using different immune
age metrics as predictors in separate models in addition to chronological age, adjusting the analyses
for sex, obesity, and physical activity. (B) Results using either chronological age or different immune
age metrics as predictor in separate models, adjusting for obesity and physical activity, but excluding
sex as covariate.
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Figure 3B presents the corresponding outcomes from fitting a slightly modified series
of models separately including age and the six immune age metrics as predictors, but omit-
ting the non-significant factor sex from the analyses. Detailed information for all covariates
is provided in Table S5 and confirmed the previous results. In particular, chronological
age became a non-significant predictor when adjusting for covariates, while the immune
age metric IMMAX as well as the ratio of memory to naïve CD8 cells and CD8 CD28– cells
persisted as significant predictors for low CRF, while the metrics involving CD4 or NK cells
were non-significant, which agreed with the univariate analysis (Figure 2). Note that omit-
ting sex and age as non-significant predictors in the models involving immunosenescence
biomarkers lowered the corresponding AIC values, compared to the analyses presented by
Figure 3A, thus improved the model fit.

4. Discussion
4.1. Calibrated Immune Age Metric IMMAX

For our study, we adopted the advanced immune age metric IMM-AGE [35] through
approximation by a set of peripheral blood mononuclear cell frequencies from flow cytom-
etry to determine the IMMAX metric, which showed a reasonable prediction error of 10%.
This approximation exhibited a relationship with chronological age for the DVS data that
was in line with corresponding relations from the original study. Additionally, it revealed a
5% reduction in immune age for females compared to males of identical chronological age,
which corresponded to a 12-years shift, thus confirming earlier findings of lower immune
age for females [35,43]. These outcomes point to the validity of our approximation, which
was then applied to predict low CRF in comparison to established immunosenescence
biomarkers and to chronological age.

4.2. Cardiorespiratory Fitness and Immune Age

Submaximal cycle ergometer tests, such as the PWC130, have been widely applied
to CRF assessment in observational research [71] because their results highly correlated
with the output of procedures requiring maximal exertion [72], but they are less strenuous
and more likely to be completed, especially in an elderly study population. Furthermore,
the submaximal test output can be considered as a physical performance measure [72],
and was recently shown to detect changes in CRF in longitudinal settings with reasonable
precision [73]. Thus, the submaximal PWC130 was the method of choice for assessing CRF
in the combined cross-sectional and longitudinal DVS.

The mean PWC130 outcomes in our study exceeded sex-specific reference values
applied in sports medicine [63] and approximately corresponded to the 75th percentiles
reported recently for a German cohort aged 45 to 64 years [71]. However, this does not
necessarily indicate above-average physical working capacity, because our sample did
also include younger persons, and in addition showed a considerable number of tests not
completed due to medical reasons or contraindications. Low CRF was therefore assessed
by dichotomization in order to avoid the bias potentially introduced by ignoring these
informative missing observations.

While sex showed no significant effect due to the applied sex-specific reference
values [63], our results are confirmative concerning the well-established detrimental influ-
ence of obesity and low level of regular physical activity on CRF [21,22]. As body mass
might be considered a (often meagre) proxy to muscle mass, one might argue about improv-
ing the accuracy of the study results by using information on body fat content or fat-free
mass instead of BMI and body mass for categorizing obesity and standardizing PWC130
output, respectively. However, it should be noted that the quantities applied in this study
constitute established markers of obesity and CRF, with wide application in observational
studies and existing reference values [19–21,55,63,71]. In addition, as the effects of obesity
on CRF in this study were quite stable in the various univariate and multivariate analyses,
this may indicate that, with the reservations mentioned above, using body mass for stan-
dardization of the PWC130 output and applying BMI for categorizing obesity allowed for
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an adequate consideration of obesity as covariate in our analyses focusing on the role of
immunosenescence in explaining the decline in CRF with age.

The age-related increase in the probability for low CRF, which was observed in univari-
ate analyses, vanished when adjusting for the covariates, indicating that a decline of CRF
with age observed at the population level might be linked to a mutual interplay between
physical inactivity, often associated with a sedentary lifestyle, with obesity and the immune
system [8,13–15,22].

On the other hand, the statistical significance of the approximated advanced immune
age metric IMMAX persisted in multivariate analyses. In particular, replacing chronological
age by immune age as a predictor for low CRF lowered the AIC, i.e., increased the predictive
capacity of the models (Figure 3). These findings are in line with previous reports on
markers of ‘biological age’ superseding chronological age as a predictor for morbidity and
mortality in aging populations [25,28,35]. Remarkably, concerning the predictive capacity
for low CRF, the ratio of memory to naïve CD8 cells performed on a level competitive to the
advanced metric IMMAX. This confirms the role of the age-related decrease of peripheral
naïve cells accompanied by the accumulation of memory T-cells, especially in the CD8
subpopulation, as established markers of immunosenescence [38,40,74,75]. This is also
supported by the high correlation between naïve CD8 cells and the IMM-AGE metric in the
original study (Figure S3). As the downregulation of costimulatory molecule CD28 with age
leading to progressive expansion of CD28− cells has been considered as a ‘compensation’
for the reduction of naïve CD8 cells [40] and a hallmark of senescence [37], this may explain
the somewhat lower, but significant associations found for CD8 CD28– cells. No significant
associations with cardiorespiratory fitness occurred for markers involving CD4 or NK cell
subpopulations, although associations with CD4 cells had been reported before [15], as
well as acute exercise effects on NK cell frequency and function [18,76].

Though we found that memory/naïve CD8 T cell ratio and the new IMMAX metric
have comparable predictive capacity, this does not necessarily imply a direct link between
the functions of CD8 T cells and cardiorespiratory fitness. More likely, the same factors
influencing memory T cells (infections and other immune challenges) will have a negative
impact, e.g., on general health status and age-related morbidity [44], which in turn may
influence the level of physical activity and cardiorespiratory fitness in an interdependent
manner [13–15]. While the likelihood of such immune challenges increases with chronologi-
cal age, our immune age metric is a more direct measure of these events, possibly explaining
why immune age is a better predictor than chronological age for cardiorespiratory fitness
in our study.

4.3. Outlook

The ongoing longitudinal examinations within the DVS cohort will allow for the
verification of our cross-sectional results considering that the intertwined relationships
between cardiorespiratory fitness, regular physical activity, and the immune system, will
advocate for longitudinal studies [8,13,27]. In addition, with this study providing a simple
assay system to determine IMMAX as a comprehensive metric for immunological health,
this opens up the possibility to assess the immune age in future studies and enables studying
correlations of immune age with other physiological and psychological outcomes [23,24].

5. Conclusions

In conclusion, our results indicate a potential role for the immune age in explaining
the inter-individual variability of the age-related decline in cardiorespiratory fitness. This
may have implications for work ability and prevention concerns in occupational health
and safety practice, e.g., for CRF assessment in physical employment standards [6]. Here,
our approach might be instructive on how to approximate or even replace advanced
immunosenescence biomarkers by less expensive methods involving cell subset frequencies,
e.g., of naïve and memory CD8 cells.
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