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Abstract
Post-error slowing is one of the most widely employed measures to study cognitive and behavioral consequences of error
commission. Several methods have been proposed to quantify the post-error slowing effect, and we discuss two main methods:
The traditional method of comparing response times in correct post-error trials to response times of correct trials that follow
another correct trial, and a more recent proposal of comparing response times in correct post-error trials to the corresponding
correct pre-error trials. Based on thorough re-analyses of two datasets, we argue that the latter method provides an inflated
estimate by also capturing the (partially) independent effect of pre-error speeding. We propose two solutions for improving the
assessment of human error processing, both of which highlight the importance of distinguishing between initial pre-error
speeding and later post-error slowing.
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Introduction

Research on human performance has a natural tendency to
address situations in which actions go awry. Failures to enact
an intended action have attracted attention from empirical re-
searchers because they are of considerable interest for applied
and basic research alike. On an applied note, understanding
the conditions that give rise to errors helps to avoid adverse
events in organizational settings (Reason, 1990). On a basic
note, zooming in on error commission opens a window on the
mechanisms that monitor performance and ensure efficient
action control. The following analyses focus on this latter type
of research.

Basic research on error processing has leveraged a range of
behavioral and physiological markers to capture error detec-
tion and subsequent adaptations to cognition and action
(Dignath et al., 2019; Falkenstein et al., 2000; Fiehler et al.,
2005; Gehring et al., 2012; Steinhauser et al., 2017). Among
these measures, post-error slowing – i.e., the observation of
prolonged response times following a commission error in
choice reaction tasks – comes with a particularly long history
in the field. The measure of post-error slowing rose to prom-
inence in the 1960s and 1970s (Laming, 1968, 1979; Rabbitt,
1966; Rabbitt & Rodgers, 1977) and it has continued to attract

the attention of empirical researchers ever since (Crump &
Logan, 2013; Danielmeier & Ullsperger, 2011; Notebaert
et al., 2009; for recent observations of post-error speeding in
certain conditions, see Damaso et al., 2020; Williams et al.,
2016).

On a theoretical note, post-error slowing derives from sev-
eral independent mechanisms that fall into two broad classes:
adaptive and maladaptive ones (Notebaert et al., 2009;
Wessel, 2018). Adaptive mechanisms include changes in in-
formation sampling to adopt a more cautious mode of
responding, i.e., shifting towards slower but more accurate
responses. If an error was triggered by distracting information
in the environment, these mechanisms can further include fo-
cusing on task-relevant aspects of the current situation.
Maladaptive mechanisms, by contrast, relate to attentional
distraction and possible emotional consequences of error com-
mission, thus yielding a negative impact on future perfor-
mance. A key factor that determines the relative contribution
of different adaptive and maladaptive mechanisms to post-
error slowing is the timing of the current task. Maladaptive
contributions are especially prominent early after error com-
mission, whereas adaptive contributions gradually take over
as time elapses (Jentzsch & Dudschig, 2009; Steinhauser
et al., 2017).

But what exactly is post-error slowing in mathematical
terms? The traditional method to compute this measure is

Δpostjomnibus ¼ RTEþ1−RTCþ1 ð1Þ
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with RT denoting average response times, E+1 indicating cor-
rect trials that follow directly after an erroneous trial, and C+1
indicating correct trials that are preceded by another correct
trial. We refer to this estimate as Δpost∣ omnibus because the

baseline RTCþ1 against which RTEþ1 is evaluated comprises
all correct trials following another correct trial, irrespective of
when these baseline trials occur in the course of the
experiment.

A relatively recent alternative proposes to adopt a different
computation instead (Dutilh, van Ravenzwaaij, et al., 2012).
This alternative focuses on pairs of trials immediately preced-
ing and following an individual error:

ΔpostjE−1 ¼ RTEþ1−RTE−1 ð2Þ1

with E+1 again indicating correct trials following an error and
E-1 indicating correct trials that immediately precede that
same error.1 A major motivation behind this method was the
claim that it might correct for fluctuations of the participant’s
response time level and potentially associated differences in
error frequency across the experiment (Dutilh, van
Ravenzwaaij, et al., 2012; see also Hoffmann & Beste,
2015; Schroder et al., 2020). That is, in some situations, par-
ticipants might commit more errors in early stages of the ex-
periment than during later stages, e.g., because they take some
time to get used to the task at hand. In other situations, they
might commit more errors in the middle of the experiment,
e.g., due to mind-wandering. In yet another scenario, they
might commit especially many errors at the end of the exper-
iment, e.g., due to fatigue. Similarly, the response time level of
each individual participant can be expected to vary over time.
If in a given situation, the likelihood of committing errors
coincides with especially fast or slow responses, this correla-
tion would bias the traditional measure of Δpost ∣ omnibus

whereas the Δpost ∣ E − 1 method would be less affected by
such variation. The Δpost ∣ E − 1 method has therefore been
dubbed “robust post-error slowing” upon its inception.

The aim of the Δpost∣ E − 1 method to address overall fluc-
tuations of the individual response time level is commendable
because these variations can be sizeable at times. The pattern
of this variation has further been suggested to follow similar
regularities that can be observed in other complex, chaotic
physical and biological systems (Gilden, 1997; Gilden et al.,
1995). However, we will argue in the following that the
Δpost ∣ E − 1 method is affected by a different confound that
may exert an even stronger and especially a more consistent
effect on the estimation of post-error slowing. This confound

stems from the converse possibility of observing pre-error
speeding, i.e., the possibility of systematically faster responses
preceding an error.

Pre-error speeding

Pre-error speeding has received considerably less attention
than post-error slowing, with an exemplary Google Scholar
search returning 2.750 hits for the term “post-error slowing”
as compared to only 59 hits for the term "pre-error speeding"
(as of December 8, 2020). In fact, the existence of pre-error
speeding had been debated quite intensely in the early days of
psychological research on error processing, with some re-
searchers defending the phenomenon and others holding more
skeptical positions (Laming, 1979, p. 205):

“(Rabbitt and Rodgers (1977) cite Laming (1968) to the
effect that “The three responses immediately preceeding
[sic] each error in continuous tasks have been found to
be unusually fast”. This is incorrect. To the best of my
knowledge the only evidence concerning RT on the tri-
als before an error is that cited above from Rabbitt
(1966).)”

These early discussions might foster the impression that
pre-error speeding might not occur as frequently across set-
tings and/or tasks as post-error slowing. Yet, several tasks
used to study post-error slowing have been reported to feature
pre-error speeding just as well if they included corresponding
data in their analyses (Allain et al., 2009; Brewer & Smith,
1989; Dudschig & Jentzsch, 2009; Gehring & Fencsik, 2001;
Jackson & Balota, 2012; Jentzsch & Leuthold, 2006; Murphy
et al., 2016). Most studies on error processing do not report on
this facet of the data, however, because assessing pre-error
speeding requires a dedicated assessment of several responses
surrounding an erroneous response. We will refer to these
responses as peri-error responses for the remainder of this
article. Even though assessing several peri-error responses is
less compact than the common binary comparison of post-
error trials and a corresponding baseline, we believe that such
an approach provides useful insights.

To provide a snapshot of peri-error responses in different
setups, we re-analyzed two different datasets by focusing on
those error trials that were preceded by at least five correct
trials and that were followed by at least five correct trials. This
range should exceed the proposed span of three trials for pre-
error speeding so that the first and last trial of this sequence
should yield an unbiased estimate of the current response time
level (Rabbitt, 1966). Specifically, we re-analyzed the data of
Keuleers et al. (2010) who had employed a word-nonword
classification task, and the data of Hedge et al. (2019) who
had used a flanker task to assess cognitive control (among

1 The original description of the method computed the mean of the pairwise
differences as compared to the difference of both paired means, as pointed out
by a reviewer of an earlier version of this article (Dutilh, van Ravenzwaaij,
et al., 2012). Both variants necessarily yield the same results and we use the
present formula for ease of comparison to the other methods that we discuss in
this article.
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other tasks that we did not include in the analyses for brevity).
These datasets were chosen because they include considerably
high trial numbers per participant and thus provide robust
estimates of corresponding peri-error response times (the
former dataset had also been analyzed by Dutilh,
Vandekerckhove, et al., 2012, for this reason). At the same
time, the two tasks represent rather different experimental de-
signs so that observing similar patterns in both datasets would
suggest that potential findings are sufficiently generalizable.
Figure 1 gives an overview of the corresponding data patterns
(see the following link for a description of the underlying raw
data and corresponding analysis files: https://osf.io/rd4tp/).

Both datasets came with pronounced post-error slowing.
The two methods estimated the post-error slowing effect as
Δpost∣ omnibus = 25.5 ms, 95%CI = [20.6; 30.3], dz = 1.40, and
Δpost∣ E − 1 = 37.2ms, 95%CI = [32.0; 42.4], dz = 1.92, for the
word-nonword classification data (Keuleers et al., 2010), as
well as Δpost∣ omnibus = 24.6 ms, 95% CI = [18.9; 30.4], dz =
1.39, and Δpost∣ E − 1 = 29.3 ms, 95% CI = [23.2; 35.3], dz =
1.56, for the flanker data (Hedge et al., 2019). Furthermore,
comparing the response time immediately preceding the error
with the response time three responses earlier yielded robust

pre-error speeding in both cases: ΔprejE−4 ¼ RTE−4−RTE−1 =
4.4 ms, 95% CI = [1.6; 7.2], dz = 0.50 (Keuleers et al., 2010);
Δpre ∣ E − 4 = 9.8 ms, 95% CI = [6.4; 13.2], dz = 0.78 (Hedge
et al., 2019). These observations document that pre-error
speeding can be expected to occur quite systematically in
typical laboratory tasks that are widely used to study error
processing. Furthermore, pre-error speeding can vary between
different conditions of an experiment as suggested by an in-
depth analysis of the flanker data (Hedge et al., 2019), which
can be broken down to errors that occurred in congruent trials
(target and flankers indicating the same response), incongru-
ent trials (target and flankers indicating different responses),

and neutral trials (flankers did not indicate any response).
Figure 2 shows that errors in congruent trials were associated
with particularly pronounced pre-error speeding in this case.

At first sight, these observations might be taken to support
the Δpost ∣ E − 1 method of computing post-error slowing be-
cause the trial preceding the error might be seen as the best
estimate for the current response time level. This conclusion is
not warranted, however, when considering that a momentary
decrease in response times would be expected to be compen-
sated by increasing response times sooner or later, irrespective
of whether the decrease is followed by an error or by a correct
response (see Brewer & Smith, 1989, for a related argument).

To evaluate the likelihood of observing increasing response
times following a sequence of correct responses with contin-
ued speeding or slowing, we coded the flanker data (Hedge
et al., 2019) according to howmany preceding responses were
faster or slower than their immediate predecessor. For se-
quences of up to four consecutive decreases or increases of
response time, we further computed the probability of observ-
ing an increasing response time for the upcoming response as
well as the expected magnitude of this increase in millisec-
onds (sequences of five or more trials of consecutive speeding
or slowing were rare – only 0.2% of all coded sequences – and
were therefore not included in the analyses). Figure 3 shows
that already sequences of two successive speed-ups came with
a probability of about 70% to observe a slower response on the
next occasion.

These observations suggest that momentary speeding be-
fore an error does not reflect a proper estimate of the current
response time level. Because post-error slowing aims at mea-
suring error-induced changes on behavior – as operationalized
via response times in typical choice reaction tasks – using a
biased baseline will undermine the gist of any index of post-
error slowing. Furthermore, even though pre-error speeding
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Fig. 1 Response times (RTs) for peri-error responses in a word-nonword
classification task (left) and a flanker task (right). Pre-error speeding was
evident across participants in both datasets. The dashed line indicates the
mean RT of all correct responses that were preceded by another correct
response. Error bars show 95% confidence intervals for paired

differences for each response relative to the immediately preceding re-
sponse (CIPD; Pfister & Janczyk, 2013) so that there is a significant
pairwise difference in a paired-samples t-test if the 95% CIPD for any
one mean does not include the preceding mean
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contributes to the emergence of an error in the first place
(Dudschig & Jentzsch, 2009), it likely resembles an indepen-
dent aspect of error commission. In fact, bivariate correlations
of pre-error speeding and post-error slowing using the omni-
bus method amounted to r = – 0.01 for the word-nonword
classification data and r = – 0.32 for the flanker data, corre-
sponding to less than 10% shared variance in the present anal-
yses. The trial immediately preceding an error might thus
represent a relatively poor baseline for estimating the process-
ing changes following error detection so that the measure of
Δpost∣ E − 1 can be expected to provide an overly progressive
estimate of post-error slowing. It should also be noted that for

both exemplary datasets, RTCþ1 – i.e., the average response
time of correct responses that follow another correct response
– aligns closely with the response times observed only few

trials before an error, e.g., RTE−4, and it also aligns closely
with the response times observed only few trials following an

error, e.g., RTEþ4 (see Fig. 1). As shown in Table 1, the
magnitude of Δpost∣ E − 1 can thus be broken down into the
sum of pre-error speeding and post-error slowing as evaluated

by a simple omnibus method, i.e., Δprejomnibus ¼ RTE−1−
RTCþ1 and Δpost∣ omnibus (note that this relation holds when-

ever RTE−1≤RTC ≤RTEþ1 though it can be interpreted mean-

ingfully only if RTCþ1 aligns with the response time level at
the time of error commission). Here, the effect of pre-error
speeding as measured in milliseconds amounted to 18.7%
and 45.9% of the following post-error slowing for the word-
nonword classification data and the flanker data, respectively.

The close match of RTCþ1 and the response times about
four trials before and after an error further indicates that nei-
ther dataset came with a notable bias due to correlations of
error likelihood and response time level on the group level. At
least for these datasets, it therefore does not seem as if the
hypothesized confounds that motivated the Δpost ∣ E − 1
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Fig. 2 Response times (RTs) of peri-error responses in a flanker task
(Hedge et al., 2019). Data are split into different trial types at the time
of error commission (i.e., at time-point E on the x-axis). The upper panel
provides a focus on the four trials preceding an error to make pre-error
speeding more easily accessible. Target and flankers called for the same
response in congruent trials, they called for different responses in incon-
gruent trials, and the flankers did not call for any response in neutral trials.
Error bars show 95% confidence intervals for paired differences relative
to the immediately preceding response (CIPD; Pfister & Janczyk, 2013)
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Fig. 3 The probability of observing increasing response times (RTs)
across trials and the expected mean increase as a function of the RT
history in the flanker data (Hedge et al., 2019). Negative numbers on
the x-axis reflect sequences of continued speeding across up to four

consecutive trials, whereas positive numbers reflect sequences of contin-
ued slowing. All sequences included correct trials only. Error bars show
95% confidence intervals for the individual mean (CIM)

438 Behav Res (2022) 54:435–443



method actually had any systematic impact for the present
data (< 1 ms for both datasets). Accordingly, a direct compar-
ison showed pre-error speeding to affect the data more strong-
ly than response time fluctuations as measured by the com-

parison of RTCþ1 and RTE−4 þ RTEþ4

� �
=2, and this was true

for the word-nonword classification data, 95% CI = [1.4 ms;
9.1 ms], dz = 0.44, as well as for the flanker data, 95% CI =
[3.9 ms; 14.7 ms], dz = 0.46.

Solutions

The present analyses highlight that pre-error speeding poses a
serious threat to the validity of theΔpost∣ E − 1 method. That is,
using the trial immediately preceding an error as a baseline to
compute post-error slowing likely incurs an over-estimation
of the effect, and this systematic confound can be observed for
different experimental paradigms. This over-estimation fur-
ther seems to occur quite systematically across individuals
as suggested by the effect sizes observed in the present anal-
ysis. This attests a limited utility of the method: By aiming to
avoid potential confounds that, if they existed, would poten-
tially bias Δpost ∣ omnibus to an unknown extent into an un-
known direction, it accepts a confound that predictably in-
flates the estimate.

Researchers are thus well advised not to rely on theΔpost∣

E − 1 method. Instead, it seems fruitful to distinguish systemat-
ically between pre-error speeding and post-error slowing in
any analysis of human error processing. Construing both ef-
fects as (partially) tapping into independent psychological
processes will promote more refined theorizing on perfor-
mance monitoring (for a different opinion, see Schroder
et al., 2020) both for healthy participants as well as for clinical
populations (see, e.g., Agam et al., 2014; Polli et al., 2006;
Shiels et al., 2012). Construing both effects as partially inde-
pendent further allows for a more direct comparison to
slowing effects in relation to unforeseen events, for which
there will typically be no pre-oddball speeding (Notebaert
et al., 2009; Saunders & Jentzsch, 2012). These oddball events
also include observed errors (De Bruijn et al., 2012; Schuch &
Tipper, 2007; Weller et al., 2018) as well as unexpected

outcomes of one’s own action (Pfister et al., 2020;
Steinhauser & Kiesel, 2011).

Despite this criticism of the exact computational method,
we believe that the possibility of observing confounds by sys-
tematic intraindividual correlations of error likelihood and re-
sponse time level has to be taken into account, however
(Dutilh, van Ravenzwaaij, et al., 2012). A sequential, data-
driven assessment seems to be the most promising solution
in this regard.

In a first step, plotting a range of peri-error response

times against RTCþ1, i.e., the average response time of
correct responses that are preceded by another correct re-
sponse, allows evaluating whether a given dataset comes
with substantial intra-individual correlations of error like-
lihood and response time level. If group effects are of
interest, this assessment can focus on the group level,
whereas individual assessments would be required for
inter-individual difference approaches. If this first step

indicates a sufficiently close match of RTCþ1 and the
overall level of peri-error response times – as estimated,

e.g., by RTE−4 þ RTEþ4

� �
=2 – then using the traditional

omnibus method will return satisfactory results for pre-
error speeding and post-error slowing alike.

An example for visually assessing whether or not error
frequency varies systematically with response time level
is shown in Fig. 1. Ideally, this method is also applied to
each individual participant to address whether biases of
opposing direction cancel out on the group level. A more
principled way to ensure that the traditional method
returns unbiased results is a comparison of a local esti-
mate of the response time level, such as

RTE−4 þ RTEþ4

� �
=2, with the overall estimate of RTCþ1.

Because this comparison will often aim at supporting the
null hypothesis of no difference, it seems useful to con-
sider statistical approaches that explicitly allow for these
conclusions, such as Bayes Factors or equivalence testing
(e.g., Lakens et al., 2018; Rouder et al., 2009).

If the first step indicates a poor match of RTCþ1 and
the overall level of peri-error response times, then a less
biased estimation would rely on peri-error response times
that can be assumed not to be affected by either slowing
or speeding relative to the error. For the present datasets,

Table 1 Estimates for pre-error speeding and post-error slowing inmilliseconds according to the omnibusmethod and theΔpost ∣ E − 1 method (rounded
to the first decimal)

Dataset Measure

Δpre∣omnibus Δpost∣omnibus Δpre∣omnibus+Δpost∣omnibus Δpost∣E−1

Keuleers et al. (2010) 4.6 24.6 29.3 29.3

Hedge et al. (2019) 11.7 25.5 37.2 37.2
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any calculation based on a larger span than E ± 2 repli-
cates the results of the omnibus method as shown in
Table 2.2 Because pre-error speeding has been proposed
to affect up to three responses before an error (Rabbitt,
1966), using the fourth trial before an error might be a

reasonable default (RTE−4 ). Whether it is also advisable to
include a symmetrical second trial to the baseline (e.g.,

RTEþ4 ) as we had done in the above analyses depends
on the availability of sufficiently many trials with extend-
ed sequences of correct responses before and after an
error. For the present datasets, using symmetrical base-
lines of E ± 2 to E ± 4 yielded a trial loss of up to 33%
but comparable effect sizes in milliseconds as well as
somewhat larger effect sizes in terms of Cohen’s dz than
using single baselines of E − 2 to E − 4 (see the Appendix
for details). Should a dataset allow this stricter selection,
it thus seems promising to use a symmetrical baseline
because reduced variance of the baseline estimates seems
to outweigh the corresponding trial loss:

ΔpostjE�4 ¼ RTEþ1−
RTE−4 þ RTEþ4

2
ð3Þ

ΔprejE�4 ¼ RTE−4 þ RTEþ4

2
−RTE−1 ð4Þ

Other variants of this approach might be more potent for
specific datasets, however. It would thus be advisable to gauge
for each dataset whether it is possible to use a narrower win-
dow to increase the number of trials that can be used for
analysis, or whether it might even be advisable to focus on
relatively distant pre-error and post-error response times when

observing an extended sequence of pre-error speeding or a
slow decay of post-error slowing. Using only a single baseline

trial such as only RTE−4 or only RTEþ4 can always be a fall-
back option to consider as well.

In any case, an obvious drawback of using an extended
sequence of peri-error responses is that this approach re-
quires a high number of correct trials surrounding most
errors, especially as compared to the traditional method.
Such data will be available in many experimental tasks,
though researchers would ideally take this fact into con-
sideration when planning the trial numbers to include in a
study. This also includes the possibility that some errors
will tend to occur in chunks which cannot be analyzed
meaningfully with the methods at hand (e.g., Brewer &
Smith, 1989; Cheyne et al., 2011; Hajcak & Simons,
2008). To give a brief example for the flanker data,
87.2% of the errors occurred as solitary events, 10.2%
occurred in pairs, and 1.9% came in chunks of three.
Larger chunk sizes were virtually absent (size 4: 0.5%,
size 5: 0.2, size 6: 0.1%; chunks of more than 6 amounted
to less than 0.1%). A dataset that comes with a high pro-
portion of chunked errors might warrant analyses that are
more tailored to the data at hand so that no off-the-shelf
protocol can be provided for these cases.

While these considerations offer the chance of tailoring the
analytical approach to individual datasets, they also comewith
the challenge of introducing researcher degrees of freedom.
We therefore recommend defining a considerate plan on how
to decide for a baseline (i.e., omnibus, single or symmetrical
peri-error responses) based on specific criteria from the data at
hand (i.e., number of cell observations, extent of pre-error
speeding) before data collection.

Conclusion

Human errors can be accompanied by systematic speeding
before an error, they can be accompanied by systematic
slowing in its aftermath, or they can be accompanied by
both effects. Capturing pre-error speeding and post-error
slowing as two distinct effects, possibly tapping into dis-
tinct psychological mechanisms, is likely to maximize the-
oretical insights from empirical data. Best-practice
methods on how to compute these measures depend on
the data at hand. If the likelihood of committing an error
is statistically independent of fluctuations of an individ-
ual’s response time level across an experiment, then the
traditional method of computing both measures against
the overall average of correct response times following
another correct response will yield satisfactory results.
Alternative methods relating to peri-error response times
several responses before or after the error are required if

Table 2 Estimates for pre-error speeding and post-error slowing (in
milliseconds) for different spans of peri-error response times. Please see
Table 1 for comparisons to the omnibus method

Dataset Time [t] Measure

Δ[t]∣E±2 Δ[t]∣E±3 Δ[t]∣E±4

Keuleers et al. (2010) pre 7.0 5.8 6.0

post 20.8 22.2 22.4

Hedge et al. (2019) pre 11.6 11.9 10.7

post 23.2 24.0 25.2

2 The measures shown in Table 2 were computed for different trial selections
with a variable number of correct trials surrounding an error depending on the
current baseline. We additionally determined that each set of peri-error trials
should be preceded by a correct trial to keep the baseline free from post-error
effects. The baseline of E ± 4 for instance is based on a trial selection with five
correct trials preceding an error and four correct trials after an error. The results
also replicated for a constant selection of trials with five correct responses
preceding and following each error, though it seems advisable to use the
shortest span possible in practice to maximize statistical power.
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the likelihood of committing an error is correlated with
fluctuations of an individual’s response time level.

Appendix

Any variant of computing pre-error speeding and post-error
slowing based on peri-error responses will always draw on
fewer trials than the traditional method. The exact number of
trials depends on how quickly two error trials follow each
other. Figure 4 gives an impression of the distribution of
inter-error distances (measured in trials) for both datasets that
were analyzed in the current study. Small inter-error distances
cannot be analyzed with methods that require a certain number
of correct peri-error trials. Table 3 summarizes the effect of
different trial (i.e., baseline) selections on pre-error speeding
and post-error slowing.
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