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Abstract

Background

Methylmercury (MeHg) remains a public health issue since developing organisms are partic-

ularly vulnerable to this environmental contaminant. This study investigated the effect of

maternal MeHg exposure on the modulation of proteomic profile of parotid (PA), submandib-

ular (SM), and sublingual (SL) glands of offspring rats.

Materials and methods

Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lac-

tation periods. The proteomic profiles of the major salivary glands of the offspring rats were

analyzed through mass spectrometry.

Results

The offspring rats exposed to MeHg showed significant alterations in the proteomic profiles

of the PA, SM, and SL glands. Altered proteins were associated with cytoskeleton compo-

nents, tissue morphogenesis, and response to stimulus and stress.

Conclusion

This original study showed that maternal MeHg exposure significantly modulates the

expression of proteins and induces alterations in the proteomic profiles of developing sali-

vary glands.
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Introduction

Developing organisms are particularly vulnerable to environmental toxins [1–4]. Methylmer-

cury (MeHg) is a highly bioaccumulative toxic compound that remains a public health issue

due to its natural and anthropogenic environmental distributions[4,5], such as soil erosion

and biomass burning [6,7]. Primary (fossil fuel combustion, minerals, and waste) and second-

ary anthropogenic activities (Hg-based products and artisanal gold mining) are the main con-

tributors to the global biogeochemical cycling of Hg and cause high levels of reemissions [1,8].

Several studies have shown that MeHg induces multiple systemic damages [9], mainly neurologi-

cal impairments [4,7,10]. Our research group recently evidenced structural changes in the salivary

glands of offspring rats after gestational and lactational MeHg exposure [11]. It is widely known that

changes in the homeostasis of salivary glands can damage other oral tissues due to deficits in salivary

production, composition, and molecular mechanisms involved in oral physiology [12–14].

It has been shown that the total Hg levels in the salivary glands of intoxicated offspring rats

were associated with toxicopathologic findings evidenced by glandular morphometric changes

and damages in both epithelial and myoepithelial architecture [11], which may decrease both

the quality and quantity of saliva [15,16]. This fluid has been widely used in clinical and toxico-

logical analyses of human metabolism [17,18] due to its easy and non-invasive collection and

better cost efficiency for large-scale trials than the blood serum. However, the use of saliva as a

diagnostic matrix for the analysis of MeHg environmental exposure is still unclear [19].

It seems relevant to explore the association between potential tissue or functional modifica-

tions and mechanisms of molecular modulation [20]; thus, this present study aimed to investi-

gate the effect of maternal MeHg exposure on the modulation of proteins biomarkers in the

parotid (PA), submandibular (SM), and sublingual (SL) glands of offspring rats.

Materials and methods

This study was previously approved by the Ethics committee on animal experimentation by of

Federal University of Pará (UFPA), under protocol number 8613011217/CEUA-UFPA and is

available to check at http://ceua.ufpa.br/#, by “protocol status” tool. All the experiments fol-

lowed a guide for the use of laboratory animals [21] and the Animal Research: Reporting of In

Vivo Experiments (ARRIVE) guidelines [22] (S1 Table).

The datasets presented in this study can be found in online repositories. The names of the

repository/repositories and accession number(s) can be found below: Peptide Atlas, accession

no: PASS01692.

Animals and experimental design

Pregnant Wistar rats (Rattus norvegicus), with 90-days-old and weighed 150 to 200g, were kept

at UFPA vivarium under a 14:10h light and dark cycle (lights on 7:00 AM) and a climate-con-

trolled room (25±2˚C). The animals were kept in individual cages with food and water ad libi-
tum in association with the experimental protocol.

A sample size calculation for the number of progenitor animals was performed, assuming a

normal distribution of the variables tested. A power of 80% and a bilateral alpha level of 5%

were considered with mean and standard deviation data of a previous study and detailed in

Nascimento et al. [11]. The flow chart of the study design is summarized in Fig 1.

Protocol of MeHg intoxication

The pregnant female rats were equally and randomly distributed into two groups according to

the experimental protocol: 1) Control group (n = 5): received vehicle only; 2) MeHg group
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(n = 5): received MeHg (40 μg/kg B.W./day) [23]. The animals were weekly weighed for dose

adjustment (for review of weight data, see Nascimento et al. [11]).

The dissolution of methylmercury chloride (CH3HgCl; Sigma-Aldrich, Milwaukee, Wis-

consin, USA) and the administration by cookie treats (Teddy Grahams, Nabisco, CAN) were

performed as previously described [11]. Briefly, the contaminated cookies were offered once a

day, only to progenitor animals and were immediately eaten, as confirmed by a visual inspec-

tion. The administration occurred during the gestational (20–21 days) and lactation periods

(20–21 days).

After 24 hours of the last MeHg administration (at the end of the lactation period), the pro-

genitor female rats were euthanized by cervical dislocation under anesthesia, with a mixture of

ketamine chloride and xylazine chloride (90 mg/kg and 9 mg/kg, respectively, i. p.). Then the

surgery for the collection of larger salivary glands was performed. After the assessment, the Hg

levels evidence the successful intoxication protocol, as observed and described by Nascimento

et al. [11].

Parallelly, the offspring rats were divided by genders and maintained in collective cages (4

animals each) with food and water ad libitum, and kept in a climate-controlled room with a

light/dark cycle appropriate until 40-days-old, once the salivary glands are entirely developed

and thus possible to perform the analyses proposed [24].

Fig 1. Flow chart of the study design. The animals were exposed to MeHg (40 μg/kg B.W./day) or only vehicle by maternal intoxication, from the 01

intrauterine day (IU) until 21 postnatal days (PND). After tissue maturation, at 40PND, the offspring rats were euthanized for salivary glands resection.

Then, the Parotid, Submandibular (SM) Sublingual (SL) glands were processed for proteomic analyses by Mass Spectrometry analysis followed by

bioinformatics analyses.

https://doi.org/10.1371/journal.pone.0258969.g001
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At the 40-days-old, these pups were anaesthetized (with a mixture of ketamine and xylazine,

as described above) for resection of the parotid, submandibular lingual glands for the subse-

quent proteomic analysis. The samples were immediately frozen in liquid nitrogen and stored

at −80˚C until evaluations. The researchers were blinded regarding the analyses of the groups.

Proteomic profile

Preparation of salivary gland samples. All the steps of the proteomics approach follow-

ing the protocols previously described [25,26]. Briefly, the analyses were performed by sample

homogenization, protein extraction, reduction, alkylation, digestion, desalination, and purifi-

cation. First, samples of larger salivary glands (parotid, submandibular and lingual glands) of

the animals (n = 6 per group) were pooled 2 in 2, and the analyses were performed in biologi-

cal triplicate. The sample size of 6 animals per group (3 pools from 2 animals each) has been

widely used in proteomic studies involving quantitative analysis of different animal tissues

[25,27–29]. By having three pools from each group, we have biological triplicates. In addition,

each pool is run in the mass spectrometer three times (technical triplicates). Thus, we had nine

mass spectrometer runs for each group, which is enough for proper statistical analysis using

the Protein Lynx Global Server (PLGS) software embedded in the equipment.

For the homogenization, a buffer solution was added in the samples to extract soluble pro-

teins with lysis buffer (7 M urea, 2 M thiourea, and 40 mM DTT diluted in AMBIC; BioRad,

USA) under constant stirring at 4˚ C. Then, the samples were centrifuged (at 20,817 g / 4˚ C

for 30 min), and the supernatant was collected for total protein quantification by Bradford’s

method [30]. After that, AMBIC (50 mM) was added in 100 μg of protein up to 50 μL. In the

next stage, each sample received 10 μL of AMBIC, and 25 μL of 0,2% RapiGEST ™ (Waters Co.,

Manchester, UK) and they were incubated (at 37˚C for 30 min). At the end of this process, 5

mM DTT was added and incubated again (37˚ C for 40 min). After this, 10 mM IAA (BioRad,

USA) was added and incubated for 30 min at room temperature and dark conditions.

For the digestion step, 10 μL of trypsin (Thermo Fischer, USA) was added to the samples

(at 37˚ C for 14 h) followed by the addition of 10 μL of 5% trifluoroacetic acid (Sigma-Aldrich,

USA) and incubated (at 37˚ C for 90 min). In the next step, supernatants were collected and

purified using C18 spin columns (Pierce, USA). At the end of the procedure, the samples were

resuspended in 12 mL of ADH (1 pmol mL1) associated with 108 mL of 3% acetonitrile

(Sigma-Aldrich, USA) and 0.1% formic acid (Thermo Fischer, USA) to be submitted to Mass

Spectrometry analysis.

Mass spectrometry analysis. The reading and identification of the peptides were con-

ducted by a nanoAcquity UPLCXevo QTof MS system (Waters, Manchester, UK), using the

Protein Lynx Global Server (PLGS), as previously detailed [31]. The proteins verification was

determined by downloading the Uniprot database. Then, the bioinformatics analyses were per-

formed using Cytoscape (3.6.1 version, Java1) with the ClueGO plugin for the determination

of biological process groups, based on Gene Ontology (GO) annotations [32]. Additionally,

the ClusterMarker plugin was for the protein-interaction network.

Over-representation analysis (ORA). Initially, a table was built including ID code, name

of the proteins and their respective Log2Ratio values. For proteins with absolute changes, -1

values were assigned for proteins detected only in control and 1 for proteins detected only in

the MeHg group. For the ORA analysis, was used the R studio program [33] with the EGSEA

plugin [34]. In this process, the UNIPROT database was accessed to identify proteins and the

biological processes they participate in, made available by Bader Lab. After this verification, we

used the Cytoscape software [35] with Enrichment Lab plugin pipeline for grouping the sets of

proteins previously consulted. After that, the main biological processes were selected for
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graphical analysis. In this analysis, we used the Enrichment Map Cytoscape Plugin [35], where

the list of protein sets with statistically significant changes was used as input. Then, networks

and clusters were built to visualize the interconnections between the protein sets. The relation-

ship between the different protein sets was constructed based on the similarity coefficient

between them (Jaccard similarity coefficient = number of proteins in common between pro-

tein sets A and B/total number of proteins in A + B). In order to identify the clusters and their

respective functions, the AutoAnnotate Cytoscape App [36] was used, which names each clus-

ter. After that, the clusters were classified into larger categories of biological processes. Then, a

PPI analysis (https://www.networkanalyst.ca/) [37] was carried to results in the representative

image, according to the number of interactions of the proteins with the other proteins found

altered. A minimum of 10 interactions was applied. The R studio program generated the

image with the GOplot plugin.

Statistical analyses. All identified proteins were tabulated using electronic spreadsheets

(Microsoft Excel1, Windows 10 version) and representation of performing the GO analyses.

For comparative analysis, the PLGS software with the Monte-Carlo algorithm was applied and

to obtain the difference of protein expression between the groups, p< 0.05 for down-regulated

proteins and p> 0.95 for up-regulated proteins were considered.

Results

Salivary glands proteins profiling of offspring after pre- and postnatal

exposure to methylmercury

The MeHg transfer from the mothers that consumed 40 μg/kg B.W./day MeHg (an exposure

of environmental meaning) modulated the proteomic profile of salivary glands of offspring.

This exposure model revealed a total of 201, 603, and 228 altered proteins in Parotid, Subman-

dibular, and Sublingual glands, respectively. In the parotid gland, 37 proteins were uniquely

regulated in the control group, and 41 were uniquely in the MeHg group (Table 1). The sub-

mandibular gland proteome revealed 177 uniquely expressed in the control group and 63

uniquely in the exposed group (Table 2). Also, when analyzing the Sublingual proteome, were

observed 164 proteins expressed only in the MeHg group, and there were no exclusive

expressed proteins in the control group, as observed the Table 3. The proteins roster complete

is described in Supplementary Tables (S1–S3 Tables).

The pre- and postnatal exposure to environmental methylmercury also changed the salivary

glands of offspring rats. According to Gene Ontology, 25 categories of biological processes

were affected in the Parotid Gland: the translational elongation (17.12%) and the structural

constituent of cytoskeleton (9.1%) were the most affected groups (Fig 2). The proteome net-

works analysis revealed the interaction of proteins related mainly to the cytoskeleton, such as

Glyceraldehyde-3-phosphate dehydrogenase (P04797), Actin, alpha skeletal muscle (P68136),

and Profilin-1 (P62963), Tubulin beta-2A chain (P85108) (Fig 3).

In addition, the proteins related to the metabolic process (19.9%) and developmental pro-

cess (14.01%) showed significant changes in the submandibular gland (Fig 4) The proteomics

network revealed the interaction between proteins that are related to protein metabolism and

changes in the cellular redox system, such as: Protein disulfide-isomerase A4 (P38659), Endo-

plasmic reticulum resident protein 29 (P52555), Endoplasmin (Q66HD0), Endoplasmic retic-

ulum chaperone BiP (P06761), Peptidyl-prolyl cis-trans isomerase B (P24368), Hypoxia up-

regulated protein 1 (Q63617), and Peroxiredoxin-4 (Q9Z0V5) (Fig 5).

While in the sublingual, the main altered biological processes were about intracellular pro-

tein transport (13.58%) and peptide metabolic process (10.49%), as detailed in Fig 6. The

proteomic network showed the interaction between proteins mainly related to the

PLOS ONE Maternal MeHg exposure changes the proteomic profile of the offspring’s salivary glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0258969 November 8, 2021 5 / 20

https://www.networkanalyst.ca/
https://doi.org/10.1371/journal.pone.0258969


Table 1. Unique proteins in parotid gland of offspring rats after pre- and postnatal exposure to methylmercury vs control group.

Accession IDa Description PLGS Score Control MeHg

P38983 40S ribosomal protein SA 189.76 + -

Q63041 Alpha-1-macroglobulin 34.36 + -

P24090 Alpha-2-HS-glycoprotein 62.56 - +

Q02874 Core histone macro-H2A.1 70.81 + -

P70623 Fatty acid-binding protein_ adipocyte 544.58 - +

P04906 Glutathione S-transferase P 81.61 + -

G3V7G8 Glycine—tRNA ligase 30.37 + -

Q6IMY8 Heterogeneous nuclear ribonucleoprotein U 149.07 + -

O35274 Neurabin-2 35.6 - +

P13084 Nucleophosmin 201.7 + -

P24368 Peptidyl-prolyl cis-trans isomerase B 201.43 + -

Q6AYD3 Proliferation-associated protein 2G4 66.87 + -

P35284 Ras-related protein Rab-12 132.37 - +

P61107 Ras-related protein Rab-14 132.37 - +

P51156 Ras-related protein Rab-26 132.37 - +

Q53B90 Ras-related protein Rab-43 132.37 - +

P07340 Sodium/potassium-transporting ATPase subunit beta-1 179.01 + -

P16086 Spectrin alpha chain_ non-erythrocytic 1 32.29 + -

D3ZSP7 Tetratricopeptide repeat domain 3 17.24 - +

P63029 Translationally-controlled tumor protein 133.74 + -

+58 proteins exclusive of control or MeHg group

a Accession ID according to the Uniport.org database.

Signs of + or indicate the presence or absence of the protein in one of the groups.

https://doi.org/10.1371/journal.pone.0258969.t001

Table 2. Unique proteins in Submandibular gland of offspring rats after pre- and postnatal exposure to methylmercury (MeHg) vs. control group.

Accession IDa Description PLGS Score Control MeHg

P29314 40S ribosomal protein S9 357.01 + -

P62832 60S ribosomal protein L23 326.57 + -

B5DF11 AN1-type zinc finger protein 5 121.59 + -

P07150 Annexin A1 45.02 - +

Q9WU82 Catenin beta-1 60.64 + -

P36375 Glandular kallikrein-10 288.36 + -

P36373 Glandular kallikrein-7_ submandibular/renal 316.88 + -

P30713 Glutathione S-transferase theta-2 431.7 - +

O55148 Growth arrest-specific protein 7 73.71 + -

P25030 Keratin_ type I cytoskeletal 20 87.88 + -

D3Z9H7 Nuclear factor of activated T-cells_ cytoplasmic 4 95.45 - +

Q9JID1 Programmed cell death protein 4 116.22 - +

Q9WVC0 Septin-7 97.44 + -

Q920J4 Thioredoxin-like protein 1 162.08 - +

Q63355 Unconventional myosin-Ic 110.53 + -

Q8VDA5 Z-DNA-binding protein 1 72.25 - +

+224 proteins exclusive of control or MeHg group

a Accession ID according to the Uniport.org database.

Signs of + or indicate the presence or absence of the protein in one of the groups.

https://doi.org/10.1371/journal.pone.0258969.t002
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Table 3. Unique proteins in sublingual gland of offspring rats after pre- and postnatal exposure to methylmercury (MeHg) vs control group.

Accession IDa Description PLGS Score Control MeHg

P04764 Alpha-enolase 671.14 - +

P04906 Glutathione S-transferase P 118.93 - +

Q63942 GTP-binding protein Rab-3D 102.33 - +

P0DMW0 Heat shock 70 kDa protein 1A 12.25 - +

P0DMW1 Heat shock 70 kDa protein 1B 12.25 - +

Q5XHZ0 Heat shock protein 75 kDa_ mitochondrial 96.56 - +

P82995 Heat shock protein HSP 90-alpha 113.77 - +

P34058 Heat shock protein HSP 90-beta 109.19 - +

Q63617 Hypoxia up-regulated protein 1 31.22 - +

P30904 Macrophage migration inhibitory factor 1074.24 - +

Q63716 Peroxiredoxin-1 184.22 - +

P48721 Stress-70 protein_ mitochondrial 42.7 - +

+153 proteins exclusive of the MeHg group

a Accession ID according to the Uniport.org database.

Signs of + or indicate the presence or absence of the protein in one of the groups.

https://doi.org/10.1371/journal.pone.0258969.t003

Fig 2. Functional distribution of proteins identified with differential expression proteins on the parotid gland of offspring rats after pre- and postnatal

exposure to methylmercury vs. control group. The categories of proteins based on Gene Ontology annotation of biological process and the proteins access

numbers were provided by UNIPROT. Terms significant (Kappa Score = 0.4) and distribution according to the percentage of the number of genes and was

evaluated by ClueGO1 plugin of Cytoscape1 software 3.7.1.

https://doi.org/10.1371/journal.pone.0258969.g002
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mitochondrial activity (Fig 7), such as Peroxiredoxin-5, mitochondrial (Q9R063), ATP

synthase subunit alpha, mitochondrial (P15999), Sodium/potassium-transporting ATPase sub-

unit alpha-2 (P06686), Aconitate hydratase, mitochondrial (Q9ER34), and Peptidyl-prolyl cis-

trans isomerase A (P10111).

Early exposure to methylmercury modulates significantly the salivary

glands proteomic profile of offspring rats

In quantitative analyses between the groups, changed expression proteins were down-regu-

lated or up-regulated, consisting of 51 proteins with different status of regulation on parotid,

314 on submandibular, and 54 on sublingual glands (S4–S6 Tables). The over-representation

Fig 3. Subnetwork created in the ClusterMark app to identify protein-protein interactions (PPI) in parotid glands

of the offspring exposed to MeHg. The proteins are identified according to the accession ID of the UNIPROT

database. The node colors represent proteins with different statuses of regulation (light green: upregulated; pink:

downregulated), proteins exclusive to the exposed group (green) and exclusive to control group (red). The gray nodes

indicate proteins that were not identified in the samples, but that interacted through the analysis of the databases.

Identification of the proteins found in the samples according to the accession ID: Q920J4 (Thiore-doxin-like protein

1), P24368 (Peptidyl-prolyl cis-trans isomerase B), P62963 (Profilin-1), P25235 (Doli-chyl-diphosphooligosaccharide

—protein glycosyltransferase subunit 2), P05065 (Fructose-bisphosphate aldolase A), P04797 (Glyceraldehyde-

3-phosphate dehydrogenase), P68136 (Actin, alpha skeletal muscle), P84245 (Histone H3.3), P85108 (Tubulin beta-2A

chain), Q5XFX0 (Transalivary glandselin-2).

https://doi.org/10.1371/journal.pone.0258969.g003
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analysis (ORA) resulted in 76 proteins, allowing us to observe the interactions that each pro-

tein presented in each exposed group between proteins up or down-regulated, and the proteins

with exclusive regulation in each group, as shown in Fig 8.

Discussion

This original study showed molecular changes in the salivary glands of offspring rats caused by

maternal MeHg exposure. Developing salivary glands seem a target for MeHg toxicity since

significant changes in the modulation of proteins associated with cytoskeleton components,

tissue morphogenesis, and stimulus/stress response was observed. This study aimed to identify

alterations at the protein level and correlate them with previously reported morphological

changes [11].

Humans are mainly exposed to MeHg through the consumption of contaminated fish and

seafood [4,38,39]. Even if mothers are not affected, MeHg can be transferred to fetuses during

pregnancy and lactation and induce long-term adverse effects on developing organs. Alter-

ations in neonates and children induced by maternal MeHg exposure have been observed in

chronically exposed populations such as Amazonian rivers [10]. Therefore, this exposure

model aimed to mimic the daily intake of MeHg contaminated food by pregnant women. The

determination of a safe level of MeHg exposure is complex, especially for vulnerable groups

such as fetuses and infants. Although the World Health Organization (WHO) indicates 1.6 μg/

kg/BW MeHg as the tolerable weekly intake (PTWI) [40], chronically exposed populations are

usually found with higher MeHg levels [14–16]. Recent biomonitoring has revealed hair Hg

Fig 4. Functional distribution of proteins identified with differential expression proteins on Submandibular gland of offspring rats after pre- and

postnatal exposure to methylmercury vs. control group. The categories of proteins based on Gene Ontology annotation of biological process and the proteins

access number were provided by UNIPROT. Terms significant (Kappa Score = 0.4) and distribution according to the percentage of the number of genes and

was evaluated by ClueGo1 plugin of Cytoscape1 software 3.7.1.

https://doi.org/10.1371/journal.pone.0258969.g004
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levels as high as 75 ppm [41–43], which may represent a MeHg weekly intake of 52.5 μg/kg as

suggested by Crespo-Lopez [1]. Thus, the MeHg dose used in this study (40 μg/kg/BW) resem-

bles the exposure detected in chronically exposed humans and is widely used in validated

research with rats [11,23,44–46]

Organic Hg is mainly absorbed by the gastrointestinal tract, enters into the blood circula-

tion, and is rapidly distributed to other tissues [6,39]. Due to its high lipophilicity, MeHg can

immediately cross biological barriers; thus, MeHg consumed by pregnant women easily

crosses the placenta [6,47]. The central nervous system is traditionally reported as the main

target for MeHg and its neurotoxin mechanisms have been investigated by several studies [1];

however, MeHg can also damage other systems, such as immunological, renal, and cardiovas-

cular [1,10]. Recent findings of our research group indicated that MeHg induced alterations in

oral cell lines [48], alveolar bone [49], and salivary glands [11,44–46]. Since developing salivary

glands significantly accumulate Hg [11], saliva can be potentially used as a matrix for biomoni-

toring environmental human exposure to MeHg [13]. This study results determined the pro-

teins involved in the modulation of the salivary glands of offspring rats after pre-and postnatal

MeHg exposure and thus contribute to validate the saliva as an additional diagnostic tool.

Increasing evidence has shown that significant environmental MeHg levels can change bio-

logical functions in humans and animals; however, adverse molecular implications are not yet

fully understood [20]. Therefore, this data described the association between Hg accumulation

in offspring rats and the modulation of the salivary gland proteomic profiles. A total of 1032

proteins were found altered in the three salivary gland pairs (S1–S6 Tables). When compared

Fig 5. Subnetwork created in the ClusterMark app to identify protein-protein interactions (PPI) in

submandibular glands of the off-spring exposed to MeHg. The proteins are identified according to the accession ID

of the UNIPROT database. The colors of the nodes represent proteins with differences in expression (pink:

downregulated) and proteins exclusive to the control group (red). The gray nodes indicate proteins that were not

identified in the samples but interacted through the database analysis. Identification of the proteins found in the

samples according to the accession ID: Q63617 (Hypoxia up-regulated protein 1), P52555 (Endoplasmic reticulum

resident protein 29), P06761 (Endoplasmic reticulum chaperone BiP), P38659 (Protein disulfide-isomerase A4),

Q66HD0 (Endoplasmin), Q9Z0V5 (Peroxiredoxin-4), P24368 (Peptidyl-prolyl cis-trans isomerase B).

https://doi.org/10.1371/journal.pone.0258969.g005
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to a study with adult animals [45], the offspring rats evaluated in this study interestingly pre-

sented a greater number of altered proteins, which suggests that early exposure to MeHg is

more harmful. Moreover, the abovementioned intoxication model may have strengthened the

findings of this study.

Our research group has previously, observed that the PA glands were more susceptible to

Hg accumulation than SM and SL glands when evaluated under the same MeHg exposure pro-

tocol [11]; however, PA glands were the second most affected in terms of proteins number,

which, suggests that the cells present in these glands play a role on defense mechanisms against

MeHg. This study indicated that Hg levels mainly induced alterations in the biological process

associated with translational elongation (Fig 1), such as the 40S ribosomal protein (P38983)

not expressed in the MeHg group that may lead to tissue morphogenesis [50]. The structural

constituent of the cytoskeleton was also changed and can be explained by previous immuno-

histochemistry findings [11]. In addition, the proteomics network analysis showed some pro-

tein-protein interactions that participate in cytoskeleton cellular processes, such as the up-

regulation of glyceraldehyde-3-phosphate dehydrogenase (P04797) and actin alpha skeletal

Fig 6. Functional distribution of proteins identified with differential expression proteins on Sublingual gland of offspring rats after pre- and postnatal

exposure to methylmercury vs. control group. The categories of proteins based on Gene Ontology annotation of biological process and the proteins access

number were provided by UNIPROT. Terms significant (Kappa Score = 0.4) and distribution according to the percentage of number of genes and was

evaluated by ClueGo1 plugin of Cytoscape1 software 3.7.1.

https://doi.org/10.1371/journal.pone.0258969.g006
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muscle (P68136), which indicates the modulation of PA cytoskeleton as a response to MeHg

stimuli. By contrast, the downregulation of proteins associated with actin filaments and micro-

tubules formation [51,52] such as profilin-1 (P62963) and tubulin beta-2A chain (P85108)

indicates an impairment in the maintenance of cytoskeleton components that jeopardizes the

cell morphology.

Regarding the proteomic changes of SM glands, a total of 603 altered proteins among 27

biological processes were observed. Both metabolic (20%) and developmental (14%) processes

were the most affected by MeHg, while kallikreins (glandular kallikrein-10, P36375; glandular

kallikrein-7_submandibular/renal, P36373) and annexin (P07150) were the most altered pro-

tein groups. The kallikreins directly maintain oral health by acting as vasodilatation mediators

in damaged oral mucosa, which favor both defense and cicatricial processes [53]; in addition,

they indirectly protect and repair dental enamel against dental caries due to proteolytic activa-

tion of proteins, such as the proline-rich protein [54]. The association of kallikreins with

Fig 7. Subnetwork created in the ClusterMark app to identify protein-protein interactions (PPI) in sublingual

glands of the offspring exposed to MeHg. The proteins are identified according to the accession ID of the UNIPROT

database. The colors of the nodes represent proteins with differences in expression (light green: upregulated) and

proteins exclusive to the exposed group (green). The gray nodes indicate proteins that were not identified in the

samples but that interacted through the analysis of the databases. Identification of the proteins found in the samples

according to the accession ID: Q9R063 (Peroxiredoxin-5, mitochondrial), P07340 (Sodium/potassium-transporting

ATPase subunit beta-1), P15999 (ATP synthase subunit alpha, mitochondrial), P06686 (Sodi-um/potassium-

transporting ATPase subunit alpha-2), Q9ER34 (Aconitate hydratase, mitochondrial), P62959 (Histidine triad

nucleotide-binding protein 1), P50398 (Rab GDP dissociation inhibitor alpha), P07323 (Gamma-enolase), P10111

(Peptidyl-prolyl cis-trans isomerase A), P16638 (ATP-citrate synthase), P61206 (ADP-ribosylation factor 3), P06685

(Sodium/potassium-transporting ATPase subunit alpha-1), P05065 (Fructose-bisphosphate aldolase A), P07335

(Creatine kinase B-type), P16617 (Phosphoglycerate kinase 1), A9UMV8 (Histone H2A.J).

https://doi.org/10.1371/journal.pone.0258969.g007
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survival and proliferation cells has also been suggested since these proteins bind to glandular

receptors that may activate critical survival pathways such as PI3K-Akt [55]. Moreover, kalli-

kreins are predominantly found in the striated ducts and ductal cells of mammals’ SM glands

[56,57]. Therefore, the lack of kallikreins expression in the MeHg group of this study may

compromise the regeneration capacity of the SM glands and also explain previous MeHg-

induced toxicopathologic findings in the ductal area [11].

The proteomic analysis showed the expression of annexins only in the SM glands of off-

spring rats exposed to MeHg (Table 2). These calcium-binding proteins can be involved in

intracellular transport [58] and some family members such as annexin A1 (ANXA1, P07150)

are associated with the inflammatory process [59]. Moreover, ANXA1 has an important func-

tional attribute in the phagocytic clearance of apoptotic cells [59]. It is well known that Hg

Fig 8. Circos plot of protein-protein interaction (PPI). The analysis of the Parotid (PA), Sublingual (SL), and Submandibular (SM) glands of offspring rats

after pre- and postnatal exposure to methylmercury (MeHg) vs. control group in categories apoptosis (green), cell cycle (blue), development (red) cytoskeleton

(lime green), response to stimulus (orange), stress response (pink) and mitochondrial activity (grey). Blue-scale proteins are down-regulated and red up-

regulated in the MeHg group when compared to the control group.

https://doi.org/10.1371/journal.pone.0258969.g008
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exposure leads to inflammation [60]; however, this study specifically describes the molecular

pathways of damage associated with MeHg exposure in the salivary glands of offspring rats.

The oxidative stress was also a pathway of damage associated with MeHg exposure. The prote-

omic network analysis revealed protein-protein interactions related to protein metabolism.

The disulfide isomerase A4 protein(P38659), which controls disulfide bonds between two thiol

groups, was exclusively observed in the group control. The down-regulation of endoplasmic

reticulum resident protein 29 (P52555), endoplasmin (Q66HD0), and endoplasmic reticulum

chaperone BiP (P06761) associated with secretory proteins processing in the endoplasmic

reticulum (ER) can compromise protein folding and cell survival [61]. Conversely, the down-

regulation of peptidyl-prolyl cis-trans isomerase B (P24368), hypoxia up-regulated protein 1

(Q63617), and peroxiredoxin-4 (Q9Z0V5) proteins indicate changes in redox homeostasis

control. It must be highlighted that peroxiredoxin-4 is responsible for cellular protection

against oxidative stress by reducing hydrogen peroxide in water and alcohol [5]; thus, its

downregulation favors cellular oxidative reactions.

Similarly, the results of SL glands analysis also emphasized the role of oxidative stress mech-

anisms in MeHg intoxication of developing salivary glands. Interestingly, a lack of protein

expression was observed in the control group (Table 3), while the majority of proteins

expressed in the MeHg group was related to stress response such as the heat shock proteins

(HSP) 70 kDa 1A [P0DMW0], HSP 70 kDa 1B [P0DMW1], HSP 75 kDa mitochondrial

[Q5XHZ0], HSP 90-alpha [P82995], and HSP 90-beta [P34058]). The HSP is produced as a

response to stress conditions such as exposure to toxins [62]. The findings of this study with

offspring rats are similar to those found in a study with adult animals exposed to MeHg and

corroborate with the oxidative imbalance evidenced by Bittencourt et al. [45].

Furthermore, proteins associate with stimulus-response were only expressed in the SL

glands exposed to MeHg. The alpha-enolase (P04764) presents different functions and can be

associated with HSP and cytoskeletal structures [64]. This protein was recently indicated as an

antigenic target in primary Sjogren’s syndrome [65], which is an autoimmune disease mainly

associated with xerostomia; thus, this study findings regarding salivary glands exposed to

MeHg may be directly related to oral dryness [66]. The proteomic network analysis of the

MeHg group revealed protein-protein interactions such as peroxiredoxin-5 mitochondrial

(Q9R063) and aconitate hydratase mitochondrial (Q9ER34) in the mitochondrial activity,

which suggests a response to oxidative reactions induced by reactive oxygen species (ROS).

Meanwhile, the ATP synthase subunit alpha mitochondrial (P15999), sodium/potassium-

transporting ATPase subunit alpha-2 (P06686), and peptidyl-prolyl cis-trans isomerase A

(P10111) proteins were up-regulated, which indicates increased mitochondrial activity as a cel-

lular response to MeHg toxicity.

Overall, the main protein categories affected by MeHg in the salivary glands are related to

apoptosis, cell cycle, development, cytoskeleton, stimulus-response, stress, and mitochondrial

activity (Fig 4). Considering the previously reported MeHg-induced structural changes in sali-

vary glands, a down-regulation of the proteins associated with glandular architecture was

expected; however, the variations observed in the over-representation analysis need a more

detailed investigation. A subexpression of the actin gamma-enteric smooth muscle (P63269),

actin alpha cardiac muscle 1 (P68035), and actin alpha skeletal muscle (P68136) proteins was

observed in all salivary glands. The three main actin isoforms (alpha, beta, and gamma) have

been identified in vertebrate animals. The alpha actins are found in muscle tissues and are sig-

nificant constituents of the contractile apparatus, while both beta and gamma actins coexist as

cytoskeleton components in most cell types and are mediators of internal cell motility [63].

The modulation of proteins associated with the ubiquitin-proteasome system, which is vital

for proteostasis, was observed in all salivary glands. The abovementioned HSP are associated
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with maturation, re-folding, and degradation of proteins [64,65]. The HSP 70-binding 1

(Q6IMX7) was only expressed in PA glands exposed to MeHg, while the HSP 10 kDa mito-

chondrial (P26772) was only expressed in the SM glands of the control group and HSP with

different molecular weights such as 10 kDa (P26772; exclusive in control), 70 kDa, and 90 kDa

(P0DMW0 and P82995, respectively) were only observed in the SL glands exposed to MeHg.

Moreover, the E3 ubiquitin-protein ligase TRIM23 (P36407) was only observed in the SM

glands exposed to MeHg, the polyubiquitin-B (P0CG51) was only expressed in the SL glands

exposed to MeHg, and the ubiquitin-fold modifier 1 (Q5BJP3), which act as a quality control

[66,67], was only observed in the control PA glands. Therefore, the potential proteostasis

impairment can cause protein aggregation or dysfunctionality, and compromise glandular

activity.

Overall, this study suggests that salivary glands are targets for MeHg-induced molecular

changes during early life, especially at an environmental exposure dose. This experimental–

environmental model demonstrated the main proteomic changes in PA, SM, and SL glands

associated with significant modulation of proteins involved in cytoskeleton components, tissue

morphogenesis, and response to stimulus and stress. Therefore, further studies are needed to

investigate whether such changes can also alter saliva biomarkers in vulnerable populations

such as neonates and infants.
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16. Martı́-Álamo S, Mancheño-Franch A, Marzal-Gamarra C, Carlos-Fabuel L. Saliva as a diagnostic fluid.

Literature review. J Clin Exp Dent. 2012; 4(4):e237–e43. https://doi.org/10.4317/jced.50865 PMID:

24558562.

17. Greabu M, Battino M, Mohora M, Totan A, Didilescu A, Spinu T, et al. Saliva—a diagnostic window to

the body, both in health and in disease. Journal of medicine and life. 2009; 2(2):124–32. Epub 2010/01/

30. PMID: 20108531; PubMed Central PMCID: PMC3018981.
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