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Genome assembly is the process by which an unknown 
genome sequence is constructed by detecting overlaps 
between a set of redundant genomic reads. Most genome 

assemblers represent the overlap information using different kinds 
of assembly graph1,2. The main idea behind these algorithms is to 
reduce the genome assembly problem to a path problem where the 
genome is reconstructed by finding the true genome path in a tan-
gled assembly graph1,2. The entanglement comes from the complex-
ity that repetitive genomic regions induce in the assembly graphs1,2. 
The first graph-based genome assemblers used overlaps of variable 
length to construct an overlap graph2. The main goal of the overlap 
graph approach and of its subsequent evolution, namely the string 
graph3, is to preserve the read information2,3. However, read-level 
graph construction requires an expensive all-versus-all read com-
parison3. The read-level nature implies that a path in such a graph 
represents a read layout, and a subsequent consensus step must be 
performed to improve the quality of bases called along the path3. 
These graph properties are the foundation of the overlap–layout–
consensus (OLC) paradigm3–5.

A seemingly counterintuitive idea is to fix the overlap length  
to a given size (k) to build a de Bruijn graph1. However, de Bruijn 
graphs have several favorable properties making them the method 
of choice in many modern short-read assemblers6–8. In this 
approach, the fixed-length exact overlaps are detected by break-
ing the reads into consecutive k-mers1. The k-mers are usually  
stored in hash tables (constant query time), thus avoiding entirely 
the costly all-versus-all read comparison6–8. Unlike a string  
graph, the de Bruijn graph is a base-level graph1,6–8; thus, a path  
(contig) represents a consensus sequence derived from a pileup  
of the reads generating the k-mers (k-mer frequency). Moreover, 
the de Bruijn graph is useful for characterizing repeated as well as 
unique sequences of a genome (repeat graph9). However, by split-
ting the reads into k-mers, valuable information from the reads may 
be lost, especially when these are much longer than the selected 
k-mer size3.

The type of overlap detected, and therefore the type of assembly 
graph constructed, is related to the sequencing technology used to 
generate the reads. One class of modern high-throughput sequenc-
ing machines produces short (100–300 base pairs (bp)) and accu-
rate (base error < 0.1%) reads10,11, and a second class produces long 
(>10 kilobases (kb)) but error-prone (base error < 15%) reads12,13. 
Despite the high per-base error rate of long reads, these are the bet-
ter choice for genome reconstruction14, as longer overlaps reduce 
the complexity of the assembly graph15, and therefore more contigu-
ous genome reconstructions are achievable14.

Regardless of the sequencing technology, the goals of a genome 
assembler are to reconstruct the complete genome in (1) the few-
est possible consecutive pieces (ideally chromosomes) with (2) 
the highest base accuracy while (3) minimizing the computational 
resources (the 1–2–3 goals). Short-read de Bruijn graph assemblers 
are good for accomplishing goals 2 and 3 (refs. 6–8), while long-read 
assemblers excel at achieving goal 1 (refs. 4,5).

Modern long-read assemblers widely adopted the OLC para-
digm4,5,16–19 and new algorithms have substantially accelerated the 
all-versus-all read comparison16–19. Such progress has been possible 
by avoiding entirely the long-read error-correction step16–19, and by 
representing the long reads as fingerprints derived from a subset 
of special k-mers (that is, minimizers20, minhash19 and so on). The 
reduced long-read representation is appropriate for detecting over-
laps >2 kb in a fast way16,18,19. The newest long-read assemblers are 
therefore starting to be good also at goal 3 (refs. 16,18,19). However, 
assembling uncorrected long reads has the undesirable effect of giv-
ing more work to the consensus polisher17,19,21–23. Genome assem-
bly polishing is the process of improving the base accuracy of the 
assembled contig sequences17,19,21–24. Usually, long-read assemblers 
perform a single round of long-read polishing16,18,19, which is fol-
lowed by several rounds of polishing with long17,19,21,23 and short17,22,24 
reads using third-party tools17,19,21–24.

Currently, polishing large genomes, such as the human genome, 
can take much more computational time than the long-read assembly  
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itself16,18,19. Even after several rounds of polishing, a substantial 
fraction of consensus errors remains, hampering the subsequent 
genome analyses such as gene and protein prediction25. Lastly, 
PacBio recently introduced high-fidelity reads (HiFi reads), sub-
stantially increasing the base accuracy of long reads26. This technol-
ogy moves the polishing bottleneck up front by generating multiple 
error-prone reads (10 passes) of circularized fragments (10–20 kb in 
size)26. Each fragment is then computationally corrected to generate 
a single consensus long read (>10 kb) with high base accuracy (base 
error < 1%). To fully exploit HiFi reads, new assemblers have been 
developed27,28 that do not require a final polishing phase28.

When this assembly approach employs short-read polishing17,22,24, 
then it corresponds to a long-read-first hybrid assembly strategy29,30. 
Another hybrid assembly strategy consists of starting the assembly 
process with short reads31. However, none of the described hybrid 
strategies employs the short reads to tackle the problem of assembly 
contiguity; that is, they do not aim at joining two long reads by a 
short-read contig, and therefore exploit only partially the short-read 
sequence information.

In this Article we introduce WENGAN, a hybrid genome assem-
bler that, unlike most long-read assemblers, entirely avoids the 
all-versus-all read comparison, does not follow the OLC paradigm 
and integrates short reads in the early phases of the assembly process 
(short-read-first). We validated WENGAN with standard assembly 
benchmarks. Our results demonstrate that WENGAN optimizes 
the 1–2–3 goals and is particularly effective at low long-read cov-
erage (15×). Furthermore, we show that the WENGAN assemblies 
performed by combining ultralong Nanopore reads with short or 
HiFi reads surpass the contiguity of the current human reference 
genome.

results
The WENGAN algorithm. WENGAN starts by building short-read 
contigs using a de Bruijn graph assembler6–8 (1 in Fig. 1). Then, the 
pair-end reads are pseudo-aligned32 back to detect and error-correct 
chimeric contigs as well as to classify them as repeats or unique 
sequences (2 in Fig. 1). Repeated sequences induce complex de 
Bruijn graph topologies in their neighborhood, and short-read 
assemblers can choose wrong paths while traversing such complex 
regions, thus leading to chimeric contigs (Supplementary Fig. 1). 
Chimeric short-read contigs limit the accuracy and contiguity of 
the assembly when left uncorrected (Supplementary Fig. 2). Each 
short-read contig is therefore scanned base-by-base and split at 
sub-regions lacking pair-end read support (Supplementary Fig. 1).

Following short-read contig correction, we generate synthetic 
paired reads of different insert sizes from long-read sequences, 
which are mapped to the corrected short-read contigs (3 in Fig. 
1). The spectrum of synthetic libraries is used to span the genomic 
repeats. For instance, with ultralong Nanopore reads, we can cre-
ate a spectrum composed of 24 synthetic libraries with insert sizes 
ranging from 0.5 kb to 200 kb (Supplementary Fig. 3). Matched pairs 
are stored with a reference to the long read from which they were 
extracted (colors appearing in pairs; 3 in Fig. 1). Using the mapped 
pairs and the corrected short-read contigs, we then build the syn-
thetic scaffolding graph (SSG). The SSG is an extension of the scaf-
folding graph33, where there is an additional edge-labeling function 
that labels (colors) the SSG edges with the long reads (3 and 4 in 
Fig. 1). After the SSG construction (4 in Fig. 1) and subsequent 
repeat masking (5 in Fig. 1), we employ the SSG to compute implicit 
approximate long-read multiple alignments by searching for transi-
tive long-read-coherent paths (6 in Fig. 1). The aim of this graph 
operation (called transitive reduction) is to restore the full long-read 
information in the SSG. Each successful reduction modifies the 
weight as well as the shape of the SSG (6 in Fig. 1). After restor-
ing the long-read information, we order and orient the short-read 
contigs by applying an approximation algorithm34 that uses all of the 

connectivity information at once to produce an optimal assembly 
backbone (7 in Fig. 1). The solution is validated by checking the dis-
tance constraints that the reduced long-read-coherent paths impose 
on the assembly backbone (8 in Fig. 1).

A property of the SSG is that all edges connecting two short-read 
contigs (called mate edges) are spanned by at least one long read. 
We therefore use the inner long-read sequence of the synthetic mate 
pairs that span the mate edge to build a long-read consensus sequence 
using a partial order alignment graph17,35 (9 in Fig. 1). The corre-
sponding short-read contig ends are then aligned36 to the mate-edge 
consensus sequence to determine the correct boundaries, thus fill-
ing the gap between the two short-read contigs. We computed the 
Pearson correlation of the mate-edge length before and after filling 
the gap for a total of 283,727 mate edges. The correlation is very high 
(R2 > 0.99) even for large gaps (>100 kb; Supplementary Fig. 4).

The final steps use the SSG to polish the mate-edge consensus 
sequences by finding long-read-coherent paths that traverse the 
repeated regions (that is, P4 and P6 for R1; 10 in Fig. 1) or pair-
wise alignments36 between the repetitive short-read contigs and the 
mate-edge consensus sequences (10 in Fig. 1). Finally, the hybrid 
contigs are reported in FASTA format (Fig. 1).

WENGAN surpasses the contiguity of GRCh38. To explore the con-
tiguity limit of WENGAN, we assembled the human haploid cell line 
CHM13, which has been sequenced with a plethora of technologies 
including accurate short Illumina reads, long and accurate PacBio/
HiFi reads28 and ultralong Nanopore reads30. In particular, the HiFi 
reads were generated using a large-insert-size (20 kb) library at 30× 
genome coverage, with half of the HiFi data (N50) contained in 
accurate reads larger than 17 kb (Supplementary Table 1). Similarly, 
the Nanopore reads were generated using an ultralong-read protocol 
optimized for MinION29 resulting in 30× genome coverage by reads 
of at least 100 kb (Supplementary Table 1).

We generated two WENGAN assemblies, one that combines 60× 
Illumina reads (2 × 250 bp; Supplementary Table 2) with ultralong 
Nanopore reads, termed WENGAN (ILL + UL), and a second one 
that combines both long-read technologies, termed WENGAN 
(HiFi + UL). The WENGAN (ILL + UL) assembly has a total length 
of 2.84 Gb with half of the genome contained in contig sequences 
larger than 71.25 Mb (NG50; Fig. 2a). Similarly, the WENGAN 
(HiFi + UL) assembly has a total length of 2.84 Gb with a con-
tig NG50 of 80.64 Mb (Fig. 2a). The contig NG50 values of both 
WENGAN assemblies exceed the contiguity of the human reference 
genomes GRCh37 and GRCh38 (Fig. 2a and Supplementary Fig. 5).

We compared WENGAN to state-of-the-art non-hybrid 
long-read assemblers (Fig. 2) using public assemblies generated 
from ultralong Nanopore5,18,19,30 or PacBio/HiFi reads5,27,28 (see 
Supplementary Table 3 and the Assembly validation section in the 
Methods). These genome assemblies of CHM13 represent the qual-
ity that can be achieved using the two long-read technologies inde-
pendently. In terms of assembly contiguity, the NG50 of WENGAN 
(ILL + UL) is almost twice as long compared to PEREGRINE 
(HiFi)27 (NG50: 38.11 Mb) and CANU (HiFi)5 (NG50: 46.82 Mb), is 
substantially longer than the assembly generated by SHASTA (UL)19 
(NG50: 58.09 Mb) and has a similar NG50 to the assemblies gener-
ated by FLYE (UL)18 (NG50: 70.32 Mb) and CANU (UL)5 (NG50: 
77.96 Mb). The WENGAN (HiFi + UL) assembly reaches an NG50 
of 80.64 Mb, which outperforms all aforementioned assemblers, 
except for the recently developed HiCANU (HiFi) assembler28 
(NG50: 82.40 Mb; Fig. 2a). An assessment of the assembly quality 
with QUAST37 based on a whole-genome alignment to the GRCh38 
reference and subsequent masking of complex genomic regions (see 
Methods) reveals that both WENGAN assemblies have a low rate 
of assembly errors (average: 107.5; Fig. 2b), which is comparable or 
lower than its peers, except for SHASTA (78 errors). Replacing the 
GRCh38 reference by the curated CHM13 assembly generated by 
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the T2T consortium (v.0.7)30 confirms the low error rate achieved 
by WENGAN (Supplementary Table 4).

We evaluated the consensus quality of the assemblies using an 
independent set of bacterial artificial chromosome (BAC) sequences 
of CHM13 located in unique genomic regions30 (Supplementary 
Table 5). Our analysis shows that WENGAN (ILL + UL) and 
WENGAN (HiFi + UL) assemblies achieved median consensus 
qualities (median QV ≥ 36.06 and QV ≥ 42.88) that exceed the base 
quality of Nanopore assemblers, and are comparable to the base 
qualities of HiFi assemblers (Fig. 2c). Moreover, the WENGAN and 

HiFi assemblies excel at BUSCO completeness with a recovery of at 
least 94.5% of the BUSCO genes (Fig. 2d). In terms of computational 
resources, WENGAN (ILL + UL) took 1,198 CPU hours (maximum 
RAM 646 Gb, 38 h real time). The run time of WENGAN was at least 
183 times faster than that of CANU (UL) (~219,000 CPU hours)19, 
while at the same time using less memory than other assemblers 
such as FLYE and SHASTA. Interestingly, generating HiFi consen-
sus reads for 30× human genome coverage requires ~40,000 CPU 
hours (ref. 28), which is ~40 times more computationally intensive 
than the WENGAN (ILL + UL) de novo assembly. Disregarding the 
excessive generation time for HiFi reads, WENGAN (HiFi + UL) 
took 981 CPU hours (maximum RAM 125 Gb, 85 h real time), 
which is more efficient than HiCANU (5,000 CPU hours)28, but less 
efficient than PEREGRINE (58 CPU hours)28.

We assessed the performance of the assemblers in hard-to- 
assemble regions such as the repeat sequences annotated in the 
curated CHM13 T2T-X chromosome30, the major histocompat-
ibility complex (MHC) and segmental duplications (SDs). The 
T2T-X chromosome (154 Mb, v.0.7) is the first human chromo-
some completely assembled30, and thus is useful to assess the per-
formance of assemblers across all of the repeat families. The MHC 
region is repetitive and highly polymorphic29, while SDs are the 
most complex repeats annotated in the human genome38 with more 
than 100 Mb of the SD sequence composed of repeats larger than 
100 kb (Supplementary Fig. 6a). The T2T-X chromosome is cov-
ered by 2 and 4 contigs with a total size of 150.9 Mb and 150.56 Mb 
in WENGAN (HiFi + UL) and WENGAN (ILL + UL), respec-
tively (Supplementary Fig. 7). Both WENGAN assemblies solve 
more than 99.6% of the total interspersed repeats annotated in the 
curated T2T-X chromosome, which is better than or comparable to 
its peers (Supplementary Table 6). All evaluated CHM13 assemblies 
span the 4.97 Mb MHC region in a single contig (Supplementary  
Fig. 8), with the WENGAN assemblies reaching an NGA50 of 
2.8 Mb (Supplementary Fig. 8). The WENGAN assemblies resolve 
between 168 and 176 BAC sequences (Supplementary Table 5), 
which is better than PEREGRINE (136), comparable to SHASTA 
(176) and lower than FLYE (253), CANU (314) and HiCANU (326). 
While the BAC library is enriched in SDs30, it does not represent the 
full range of SDs annotated in GRCh38 (175 Mb). The WENGAN 
assemblies resolve between 60.9 and 65.9 Mb (Fig. 2e) of the SDs 
annotated in GRCh38 (ref. 38), which is better than PEREGRINE, 
comparable to HiCANU and lower than FLYE, SHASTA and 
CANU (Supplementary Fig. 6). However, none of the assemblers 
resolved more than 42% of such hard-to-assemble regions, with the 
best performer assembling just 22% (CANU (UL): 23.4 Mb) of the 
SDs ≥100 kb (104.7 Mb; Supplementary Fig. 6). Even with ultralong 
reads or accurate HiFi reads, a further improvement of the algorith-
mic approaches will be necessary to complete the assembly of SDs38.

Overall, we demonstrated that WENGAN achieved a genome 
assembly quality that rivals the curated CHM13 assembly (v.0.7) 
generated by the T2T consortium30. Furthermore, replacing the 
PacBio/HiFi reads for short reads produced a highly competitive 
assembly contiguity and quality.

Evaluation of assembly accuracy and contiguity using BIONANO 
optical mapping. We observed that the distance between the 
NG50 and NGA50 values increases at greater assembly contigu-
ity (�x ¼ 39:6Mb

I
; Fig. 2a), which is likely caused by real sequence 

variation between the sequenced CHM13 sample and the GRCh38 
reference genome. Given this limitation of the reference-based vali-
dation, we additionally used an independent de novo BIONANO 
genome map of CHM13 (ref. 30) to assess the correctness of the 
WENGAN assemblies. The BIONANO map is 2.97 Gb in size 
with 255 contigs and an N50 of 59.6 Mbp. The BIONANO map is 
integrated with the sequence assembly by identifying in silico the 
nicking endonuclease-specific sites on the contig sequences (in 
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Fig. 1 | the WENGAN algorithm. The WENGAN workflow consists of first 
assembling and error-correcting the short-read contigs (1 and 2), creating 
a spectrum of synthetic mate-pair libraries from long reads (3) and 
building of the SSG (4). The SSG is used to compute approximate long-read 
overlaps by building long-read-coherent paths (5 and 6). The long-read 
overlaps restore the long-read information and facilitate the construction 
and validation of the assembly backbone (7 and 8). The SSG is used to 
fill the gaps by building for each mate edge a consensus sequence using 
the partial order alignment graph (9). In the final step, the SSG is used to 
polish the consensus sequences (10). The repeat contigs (2–10) are drawn 
uncollapsed to explain the WENGAN steps.
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silico map) followed by alignment of both maps (Fig. 3). Conflicts 
between the two maps are identified and resolved, and hybrid scaf-
folds are generated by using the BIONANO maps to join the contig 
sequences and vice versa (Fig. 3). A total of 72 cuts at conflicting 
sites were made in 32 contig sequences of the WENGAN (ILL + UL) 
assembly, leading to a corrected contig NGA50 of 50.73 Mb. The 
WENGAN (HiFi + UL) assembly after BIONANO conflict correc-
tion has an NGA50 of 59.59 Mb (52 cuts in 24 contigs). Both cor-
rected WENGAN assemblies are more contiguous than the GRCh37 
reference genome (Fig. 2a). Notably, the contiguity of the corrected 
WENGAN (HiFi + UL) assembly surpasses the one of the GRCh38 
reference genome (59.59 versus 57.88 Mb; Fig. 2a). The hybrid scaf-
folding produced a maximum of 102 super-scaffold sequences with 
a total size of 2.83 Gb and an N50 of at least 80 Mb (Fig. 3) for both 
WENGAN assemblies. Only 0.8% (maximum: 22.42 Mb) of the 
WENGAN sequence was not integrated into the hybrid scaffolds 
(short contigs). The BIONANO scaffolding of CHM13 demon-
strates that both unpolished WENGAN assemblies are functional 
and appropriate for subsequent genome analyses.

WENGAN optimizes the 1–2–3 de novo assembly goals. To validate 
WENGAN on diploid human genomes, we assembled three human 
samples, HG00733, NA24385 and NA12878, which were sequenced 
with very long reads (Supplementary Table 1). All sequencing data 

were obtained from public repositories (Supplementary Tables 1 
and 2). HG00733 was sequenced using the PacBio Sequel I to 90× 
genome coverage with N50 ≥ 33.2 kb. NA24385 and NA12878 were 
sequenced using the Oxford Nanopore Technology (ONT) at 60× 
and 35× genome coverage and N50s of 54 kb and 72 kb, respec-
tively. The sequence data of NA24385 and NA12878 were gener-
ated using an ultralong-read protocol29 for ONT MinION and 
contain at least 3.3× genome coverage in reads larger than 100 kb 
(Supplementary Table 1). The long-read data were combined with 
at least 50× short-read coverage (pair ends: 2 × 150 bp or 2 × 250 bp; 
Supplementary Table 2).

WENGAN was benchmarked in its three assembly modes, 
namely WENGAN-M (MINIA3)6, WENGAN-A (ABYSS2)7 and 
WENGAN-D (DISCOVARdenovo)8. We compared WENGAN 
to six state-of-the-art assemblers (Table 1). The list is composed 
of five long-read-only assemblers4,5,16,18,19 and a hybrid assem-
bler31 (MaSuRCA; Table 1). All benchmarked genome assem-
blies were generated by the developer of the respective assembler 
(Supplementary Table 3). In particular, the SHASTA assemblies 
were generated using an independent Nanopore dataset19, with a 
genome coverage of ~60×, and including at least 6× coverage of 
ultralong reads (>100 kb).

For NA12878 (Table 1), WENGAN produced the most contiguous 
assemblies, with contig NG50 values of 17.24, 25.99 and 35.31 Mb for 
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WENGAN-M, WENGAN-A and WENGAN-D, respectively. The 
best long-read assembler among the four evaluated, namely FLYE 
(NG50 22.91 Mb), is comparable to WENGAN-A (NG50 25.9 Mb), 
but is surpassed by WENGAN-D (NG50 35.3 Mb). All of the other 
evaluated assemblers are outperformed by any WENGAN mode 
(NG50 ≥ 17.24 Mb; Table 1 and Supplementary Fig. 9). Moreover, 
WENGAN increased the contiguity of the short-read-only assem-
blies by a factor of 1,833×, 2,014× and 388×, for MINIA3 (NG50 
9.6 kb), ABYSS2 (NG50 12.9 kb) and DISCOVARdenovo (NG50 
91 kb), respectively (Supplementary Table 7). The WENGAN-D 
assembly of HG00733 has the fewest gaps of any PacBio continu-
ous long-read (CLR) assembly of a human genome, with more than 
half of the genome contained in contig sequences at least 32.3 Mb 
long (Table 1 and Supplementary Fig. 9), a substantial improvement 
in contiguity over the FALCON (NG50 22,3 Mb) and SHASTA 
(NG50 21.7 Mb) assemblies (Table 1). The WENGAN-D assembly 
of NA24385 (NG50 50.59 Mb) more than doubles the contiguity of 
SHASTA (NG50 20.35 Mb, Table 1), surpasses the contiguity of the 
GRCh37 reference (NG50 38.5 Mb) and matches the contiguity of 
the GRCh38 reference (Supplementary Fig. 9).

The structural quality was determined using QUAST37. The 
WENGAN assemblies cover up to 96.3% of the reference genome 
with few assembled sequences (<0.4%) unmapped to GRCh38 
(Table 1, Reference covered (%) and Unaligned length), and the 
contigs have fewer duplicates than the contigs of its peers (except 
SHASTA; Table 1, Duplication ratio). The NGA50 (which corre-
sponds to the NG50 corrected of assembly errors) of WENGAN-D 
(16.41–24.52 Mb) is the highest across the three assembled genomes 
(Table 1 and Supplementary Fig. 9). For NA12878, the NGA50 
of WENGAN (11.8 Mb–16.41 Mb) almost doubles the ones of 
MaSuRCA (5.69 Mb), WTDBG2 (7.38 Mb) and CANU (7.12 Mb; 
Table 1). Moreover, WENGAN consistently showed a lower num-
ber of assembly errors than its peers (Table 1 and Supplementary 
Table 8). The only exception is SHASTA, a conservative assembler19, 
which has a lower number of assembly errors than WENGAN-D 
on the HG00733 (107 versus 119) and NA24385 (126 versus 156) 
genomes. However, WENGAN-D reaches higher NGA50 val-
ues than SHASTA and almost doubles the NGA50 achieved by 

SHASTA on the NA24385 genome (24.5 versus 14.3 Mb; Table 1 and 
Supplementary Fig. 9).

The consensus accuracy of genome assemblies was determined 
using different sequence analyses (Table 1 and Supplementary  
Table 9). The level of polishing of the assemblies goes from none to 
complete (Table 1), including examples of long-read-only (SHASTA 
and FALCON) and hybrid (short + long reads, CANU and FLYE) 
polishing (Table 1). For all three genomes, WENGAN reaches a 
higher consensus accuracy than unpolished or long-read-only pol-
ished assemblies (Table 1). In the NA12878 genome, the hybrid pol-
ished assemblies of CANU and MaSuRCA have better short-indel 
rates than the WENGAN assemblies, but WENGAN has bet-
ter than or comparable medium- and long-indel rates (Table 1). 
Moreover, unlike long-read assemblers, the majority (≥73%) of 
the WENGAN consensus errors are located in the mate-edge con-
sensus sequences (Supplementary Fig. 10), representing at most 
10% of the WENGAN assembled sequence. The 100-mer analysis 
reveals that the WENGAN assemblies contain at least 84.5% of the 
100-mers of the reference (Table 1). The BUSCO gene complete-
ness of the WENGAN assemblies ranges from 94.62% to 95.20%, 
which is higher than the result of any other evaluated assembler and 
reflects the high consensus quality and contiguity of the WENGAN 
assemblies (Table 1). Hybrid polishing of the FLYE assembly 
consumed 755 CPU hours (Supplementary Table 10). While the 
hybrid polishing removed millions of consensus errors (Table 1 
and Supplementary Table 10), and increased the median quality 
value and the BUSCO gene completeness (to 23.39 and 89.7%), the 
hybrid-polished FLYE assembly still has a lower quality than any of 
the unpolished WENGAN assemblies (Table 1).

We analyzed how hard-to-assemble regions are resolved on 
these diploid human genomes (Supplementary Figs. 11a and 12). 
WENGAN with ultralong reads spans the MHC region with fewer 
than four contigs (Supplementary Fig. 11b). The top performers, 
namely CANU (NA12878), FALCON (HG00733) and WENGAN-D 
(NA243875), solve the MHC region in a single contig achieving 
NGA50 values ≥3.5 Mb (Supplementary Fig. 11b). However, all of 
the evaluated assemblers produce a mix of haplotypes, and there-
fore subsequent phasing must be performed to fully solve the MHC 
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Fig. 3 | BiONANO scaffolding of the WENGAN assemblies of chM13. We show the largest super-scaffold produced by merging the BIONANO map 
(BNG) and the WENGAN (WG) contigs generated by combining ultralong Nanopore reads (rel3) with pacBio/HiFi (20 kb) or Illumina (2 × 250 bp) reads. 
The name of the scaffolded WENGAN (WSC) contigs is displayed. The square brackets in the contig name indicate that the contig was corrected by the 
BIONANO map, and the numbers are the start–stop coordinates of the error-free contig region. In round brackets, we show the contig orientation in the 
super-scaffold. The white text in the alignments displays the number of matching nicking sites, the total number of nicking sites in the BNG contig and the 
length in megabases of the alignment. The blue bar in the BNG contigs shows examples of joins guided by the WENGAN contigs.
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region29. Regarding SDs (Supplementary Fig. 12), WENGAN-M 
and WENGAN-A resolve over 41 Mb (~6 Mb of SDs >100 kb), 
which is better than WTDBG2 (17 Mb) and comparable to SHASTA 
(�x ¼ 42Mb
I

; Supplementary Fig. 12). WENGAN-D resolves more 
SD sequences with ultralong Nanopore reads (56.09–60.12 Mb) 
and matches the top performer CANU on NA12878 (56.09 versus 
56.98 Mb). With PacBio reads, the FALCON assembler resolves 
6.4 Mb more SD sequences than WENGAN-D (Supplementary 
Fig. 12). The SD analysis of these three diploid samples shows 
that WENGAN-A and WENGAN-M are more conservative than 
WENGAN-D for SD assembly, and that WENGAN-D is compa-
rable to the top performers (FLYE and CANU), while achieving a 
lower rate of assembly errors (Table 1, Fig. 2b and Supplementary 
Fig. 12).

In terms of computational resources, the WENGAN assemblies 
consumed less than 1,000 CPU hours (Table 1 and Supplementary 
Table 8, maximum elapsed time of 45 h). WENGAN-M, the fast-
est WENGAN mode based on MINIA3, consumed ~738 times less 
CPU hours than CANU (203 versus ~150,000 CPUh; Table 1) and 
required only 53 Gb of RAM to complete the assembly (Table 1).

Collectively, the benchmark results demonstrate that WENGAN 
is the only genome assembler evaluated that optimizes all of the 
1–2–3 de novo assembly goals, namely, contiguity, consensus accu-
racy and computational resources.

WENGAN is effective at low long-read coverage. We investigated 
the required long-read coverage to produce de novo assemblies with 
an NG50 of at least 10 Mb. Moreover, we assessed the suitability of 
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sorted by NG50 at each long-read coverage (lolliplot). We computed the NGA50 (which corresponds to the NG50 corrected of assembly errors) of each 
assembly using QUAST (see Methods). b, The consensus quality (see Methods) of each genome assembly and the CpU hours required for the assembly. 
c, The WENGAN (W-X) and FLYE assemblies of the complex MHC region located in Chr6: 28,477,797–33,448,354 (4.97 Mb). The MHC sequence was 
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lines) indicate a contig switch, an alignment error or a gap in the assembly. The assemblies of the MHC region are displayed in tracks by long-read coverage.
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the MGI sequencing technology11 (MGISEQ-2000) as an alterna-
tive to Illumina SBS10 for hybrid assembly using matched short-read 
genomic data. We sequenced the NA12878 human cell line using 
the short-read sequencers NovaSeq 6000 (ref. 10) and MGISEQ-2000 
(ref. 11) as well as the long-read sequencer ONT PromethION13 
(Methods). We generated a total of 548.2 million pair-end reads 
(2 × 150 bp) of sequence (53.06×) from both short-read sequenc-
ers (Supplementary Table 2). Furthermore, three flow cells of 
PromethION produced a total of 10.4 million reads (40×) with a 
N50 of 17.18 kb (Supplementary Table 1). We randomly subsampled 
the long-read data from 10× to 30× genome coverage in increasing 
batches of 5×. The N50 was nearly identical for all of the long-read 
subsamples (N50 = 19.6 kb; Supplementary Table 11). WENGAN 
and the best long-read assembler among those evaluated, namely 
FLYE (v.2.5), were used to build hybrid and long-read assemblies for 
each subsample (Fig. 4 and Supplementary Table 12).

A major increase in contiguity for WENGAN was observed when 
going from 10× to 15× long-read coverage (Fig. 4a and Supplementary 
Table 12). In particular, we observed an NG50 increase from 2.5, 2.9 
and 6.9 Mb to 7.4, 8.2 and 15.5 Mb for WENGAN-M, WENGAN-A 
and WENGAN-D, respectively. At shallow long-read coverage 
(10–15×), FLYE is outperformed by all WENGAN modes. Over 
20× coverage, FLYE outperforms WENGAN-M and is comparable 
in contiguity to WENGAN-A (Fig. 4). Notably, WENGAN-D using 
15× long-read coverage leads to an NG50 of 15 Mb, which FLYE can 
reach only at 30× long-read coverage (Fig. 4a).

All assemblies generated by WENGAN cover more than 93.8% 
of the reference genome at any long-read coverage (Fig. 4b). As 
expected, FLYE achieves its highest consensus quality at 30× 
long-read coverage (maximum QV = 21.08; Supplementary Table 13).  
Polishing FLYE with long and short (NovaSeq) reads increased its 
median consensus quality to QV = 27.21 (Supplementary Table 14). 
Almost all WENGAN assemblies achieve a higher consensus quality 
than the polished FLYE assembly (minimum WENGAN QV = 27.67 
excluding WENGAN-A-MGI-10×; Fig. 4b and Supplementary 
Tables 12 and 13).

The contiguity and consensus quality of the WENGAN assemblies 
vary more as a function of WENGAN’s mode than with the type of 
short-read data used (Fig. 4a,b). Indeed, under the same WENGAN 
mode, the largest difference in contiguity between the short-read 
technologies of Illumina and MGI is NG50 = 2.8 Mb (WENGAN-D 
at 30×, Fig. 4a) and their consensus quality is almost identical 
(Fig. 4b). WENGAN-M required a maximum of 187 CPU hours 
(maximum elapsed time < 18.1 h on 20 CPUs) and 44 Gb of RAM 
to complete the assemblies (Fig. 4b and Supplementary Table 12).  
To our knowledge, this is the first time that a genome assembler 
reaches a contiguity of 10 Mb and consensus quality of QV 29.4 on 
such minimal and accessible sequencing and computing resources.

We checked the assemblies of FLYE and WENGAN to deter-
mine whether they solved the 4.97 Mb MHC region (Fig. 4c). 
The WENGAN assemblies at low coverage (≤20×) reach higher 
NGA50 than the FLYE assemblies (Fig. 4c and Supplementary 
Fig. 13). However, FLYE over 25× coverage assembles the MHC 
region in fewer than two contigs with a NGA50 of 4 Mb (Fig. 4c and 
Supplementary Fig. 13).

In summary, we demonstrated that WENGAN reduces the 
computational resources and the long-read coverage required for 
assembling a human genome. WENGAN produced a high-quality 
assembly with NG50 > 10 Mb (QV > 29) by combining 20× 
long-read coverage with 50× short-read coverage using less than 
one day of computing time on a low-end server (20 cores, ≤50 Gb 
RAM).

Discussion
We have demonstrated that WENGAN is the only genome assem-
bler that optimizes the three main goals of de novo assembly  

algorithms, namely, contiguity, consensus accuracy and computa-
tional resources. Furthermore, WENGAN is effective at shallow 
long-read coverage (≥15×), and in combination with ultralong 
reads generated de novo assemblies that surpass the contiguity of 
the human reference genome GRCh38. We introduced a hybrid 
assembly combining accurate PacBio/HiFi reads with ultralong 
Nanopore reads and achieved an assembly quality that rivals the 
quality of the assembly generated by the T2T consortium (v.0.7)30. 
Additionally, we observed no notable difference in assembly qual-
ity between using the short-read platforms Illumina NovaSeq 
6000 (ref. 10) or MGISEQ-2000 (ref. 11) for hybrid assembly with 
WENGAN. Moreover, WENGAN produces high-quality assemblies 
with any combination of short-read (NovaSeq or MGISEQ-2000) 
and long-read (ONT MinION/PromethION or PacBio Sequel I) 
technologies.

Unlike current long-read assemblers, WENGAN generates 
functional and ready-to-use genome reconstructions. The con-
sensus quality benchmark demonstrated that short-read polishing 
remains mandatory for assemblies generated from Nanopore and 
PacBio CLR reads (Table 1 and Supplementary Tables 3, 9 and 13). 
Although PacBio’s HiFi reads represent an option that mitigates 
the post-assembly polishing and, in combination with ultralong 
Nanopore reads, generates assemblies with the highest contiguity, 
this comes at a reduced throughput (~10 CLR reads to generate 1 
HiFi read) and substantially increased computational resources26,28. 
We found that hybrid WENGAN assemblies provide a computa-
tionally efficient solution for human genome assembly, produc-
ing, at the same time, highly competitive assembly contiguity and 
quality.

Previous genome assemblers cannot cope with the high 
throughput of a long-read and a short-read sequencer. Although 
other long-read-only assemblers may have a similar real-time 
execution19 (one day), they require less accessible computational 
resources and more long-read coverage, and process half the data 
compared with WENGAN. Still, our analyses of hard-to-assemble 
regions demonstrated that further algorithmic improvements are 
necessary for all examined assemblers. Even though we have cen-
tered our analysis on human genomes, WENGAN also achieves 
high assembly quality of non-human genomes (complete BUSCO 
genes ≥95%; Supplementary Table 15). Moreover, the WENGAN 
approach also provides a natural framework to combine long-read 
with linked-read data, and/or Sanger-size short reads39, and/
or optical maps (BIONANO), which may lead to the assembly of 
‘telomere-to-telomere’ scaffolds without the need for extra polish-
ing and finishing methods. Therefore, WENGAN should facili-
tate the democratization of de novo assembly of human genomes, 
enabling high-quality genome assembly for many applications. The 
WENGAN assembler is available at GitHub (https://github.com/
adigenova/wengan) and Code Ocean (https://doi.org/10.24433/
CO.9469612.v1).
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Methods
The WENGAN algorithm. Short-read assembly. WENGAN can employ MINIA3 
(ref. 6), ABYSS2 (ref. 7) or DISCOVARdenovo8 as the de Bruijn graph-based 
short-read assembler. All three short-read assemblers are able to assemble a human 
genome in less than a day. MINIA3 and ABYSS2 were intended for low-memory 
assembly of large genomes. They are able to assemble human genomes using 
less than 40 Gb of RAM6,7. MINIA3 is the fastest method, consuming less than 
77 CPU hours to complete a human genome assembly (Supplementary Table 7). 
Its speed comes from the novel unipath algorithm BCALM2 (ref. 40) that uses 
minimizers20 to compress quickly and with low memory the de Bruijn graph40. 
MINIA3 can be used iteratively to implement a multi-k-mer assembly approach. 
We used k-mer sizes of 41, 81 and 121 in all of the WENGAN-M assemblies 
described (Supplementary Table 7). ABYSS2 uses a Bloom filter and rolling 
hash functions as the main techniques to implement the de Bruijn graph-based 
assembly7. After filling the Bloom filter, ABYSS2 selects solid reads (that is, reads 
composed only of solid k-mers, namely those for which frequency(k) > 2) as 
seeds to create the unipaths. These are extended left and right by navigating in 
the de Bruijn graph until a branching vertex or a dead end is encountered. In 
our benchmark tests, ABYSS2 required on average 481 CPU hours to assemble a 
human genome (Supplementary Table 7). All of the ABYSS2 assemblies were run 
using a Bloom filter size of 40 Gb (B = 40 G), four hash functions (H = 4), solid 
k-mers with a minimum frequency of 3 (kc = 3), k-mer size 96, and only until 
the contig step. DISCOVARdenovo is a more specialized algorithm designed to 
assemble a single PCR-free paired-end Illumina library containing ≥150-bp reads. 
DISCOVARdenovo is greedier in terms of memory than MINIA3 and ABYSS2. 
We observed a memory peak of 650 Gb in our human assemblies (Supplementary 
Table 7). However, DISCOVARdenovo better leverages the pair-end information 
and therefore produces the most contiguous short-read assemblies of all three 
tested assemblers (average contig NG50 69 kb; Supplementary Table 7). All of 
the selected short-read assemblers refine the constructed de Bruijn graph by 
removing sequencing errors and collapsing the genomic variants (single-nucleotide 
polymorphisms and indels) to produce accurate consensus contigs6–8.

Pair-end pseudo-alignment as a building block for genome assembly. In the same 
way as k-mers are the elemental building blocks of de Bruijn graph assemblers, 
WENGAN relies on pair-end pseudo-alignments as the elemental building blocks 
for the de novo assembly. We recently introduced an alignment-free method called 
FAST-SG32 that uses unique k-mers to compute a pseudo-alignment of pair-end 
reads from long- or short-read technologies. Here, we present its successor, which 
we called FASTMIN-SG, which implements the same ideas as FAST-SG but 
using minimizers20 and chaining with the MINIMAP2 application programming 
interface41. The uniqueness of the pseudo-alignment is now determined using the 
MINIMAP2 mapping quality score, which gives a higher score to a primary chain 
when its best secondary chain has a weak pseudo-alignment.

To perform a pseudo-alignment of pair ends from short-read sequencing 
technologies, we use (10,21)-minimizers for querying and indexing. We discard 
pair-end pseudo-alignments when one of the mates has a mapping quality score 
≤30 or covers ≤50% of the read bases. For mapping synthetic pair ends extracted 
from long-read technologies, we use (5,20)-minimizers and a read length of 
250 bp. A synthetic pair end is a fragment of length d for which we have access 
to the long read of origin, the position of the fragment in the long read and the 
inner long-read sequence between both mates of the synthetic fragment. All of 
the synthetic fragments are extracted from the long reads using a moving window 
of 150 bp in forward–reverse orientation. We create a spectrum of synthetic 
mate-pair libraries (Supplementary Fig. 3) by extracting pair ends at different 
distances. The range of distances depends on the long-read lengths but go from 
0.5 kb to a maximum of 500 kb with ultralong Nanopore reads. For noisy PacBio 
reads, we use homopolymer-compressed k-mers41 for indexing and querying 
the synthetic pair ends. We discard synthetic pair-end alignments when one of 
the mates has a mapping quality score ≤40 or covers ≤65% of the synthetic read 
bases. The information associated with the long read of each synthetic pair is 
stored in the read names for computing approximate long-read alignments later. 
FASTMIN-SG, like MINIMAP2, uses presets to modify multiple parameters, thus 
simplifying its usability. Currently, it has presets for raw PacBio reads (pacraw), 
HiFi reads (pacccs), raw (ontraw) and ultralong (ontlon) Nanopore reads, and pair 
ends (shortr) from short-read technologies (supporting Illumina or MGI). The 
pseudo-alignments are reported in SAM format.

Detection and splitting of chimeric short-read contigs. The de Bruijn graph is 
complex around repeat sequences, and short-read assemblers can choose wrong 
paths while traversing such complex regions, thus leading to chimeric contigs 
(Supplementary Fig. 1). To detect potential chimeric contigs not supported by the 
short reads, we map the pair-end reads back to the assembled short-read contigs 
using FASTMIN-SG (preset shortr). From the pair-end pseudo-alignments, we 
infer the average �x and standard deviation σ of the insert-size distribution of the 
genomic library. Then, pair ends mapped within contigs at the expected orientation 
and distance �x � 2:5σ; �x þ 2:5σ½ ð Þ

I
 are transformed into physical fragments. For 

each contig, we create an array of length equal to the contig length, and the contig 
fragments are used to increase the physical coverage of the contig bases. We then 

scan the physical coverage array base-by-base to detect low-quality intervals (LQIs) 
that have a fragment coverage below a minimum depth threshold (def: 7). LQIs are 
classified according to their contig location as internal, start, end or whole. Finally, 
contigs are trimmed/split at the boundaries of the LQIs.

The SSG. We build on the work of Huson et al.33 to extend the scaffolding graph 
formulation and create the SSG. In brief, the contig scaffolding problem was 
defined by Huson et al.33 as the determination of an order and orientation of a set 
of contigs that maximize the amount of satisfied mate-pair links. The scaffolding 
graph G = (V, E), with vertex set V and edge set E, is a weighted, undirected 
multi-graph, without self-loops33. Each contig Ci is modeled by two vertices (v, 
w) and an undirected contig edge (e). The length of e is set to the contig length 
l(Ci). The contig orientation is represented by associating each of the contig ends 
to one of the two vertices (that is, tail(Ci) = v and head(Ci) = w). Then traversing 
from tail(Ci)→head(Ci) or head(Ci)→tail(Ci) implies forward or reverse contig 
orientation, respectively. Now, consider a pair of mate reads f and r originated 
from a synthetic mate-pair library with mean insert size �x, standard deviation 
σ and orientation forward–reverse that uniquely matches two different contigs 
Ci and Cj. The uniquely mapped mate pair induces a relative orientation and 
approximate distance between the two contigs. Such information is represented 
by adding a mate edge e into the graph. The length of the mate edge e is computed 
by subtracting from the expected mate-pair distance �xð Þ

I
 the amount of overlap 

that each contig has with the mate pair considering the read mapping orientations: 
l eð Þ ¼ �x � l Cið Þ � posCi

fð Þ
� �

� l Cj
� �

� posCj
rð Þ

� �

I

. Moreover, the standard 
deviation σ(e) of each mate edge e is set equal to the standard deviation of the 
synthetic mate-pair library. If there is more than one mate edge e between the same 
ends of two contigs Ci and Cj, we can bundle33 the mate edge e by computing from 
the set of mate edges e1, e2,…en the length of e as l(e) := p/q and its deviation as 
σ eð Þ ¼

ffiffiffiffiffiffiffi
1=q

p

I
, where p ¼

P lðeiÞ
σðeiÞ2

I

 and q ¼ P 1
σðeiÞ2

I

 (ref. 33). Additionally, the weight 
w(e) of a bundled mate edge e is set to 

Pk
i¼1 wðeiÞ

I
, and otherwise to 1.

The SSG is an edge-bundled scaffolding graph G = (V, E), built from a spectrum 
of synthetic mate-pair libraries, where there is an edge-labeling function (F) that 
maps the long reads to the edges through the synthetic mate-pair pseudo-alignments.

Computing approximate long-read overlaps with the SSG. As the SSG is built from 
a spectrum of synthetic mate-pair libraries (that is, 1 kb to 10 kb; 3 in Fig. 1), it 
contains mate edges from the short (1 kb) to the long (10 kb) range of connectivity 
(that is, e1, e4; 5 in Fig. 1). Now, consider a mate edge e from v to w that are also 
connected by a transitive path P = (m1, c1, m2,…mk) of mate edges (m1, m2,…), 
contig edges (c1, c2,…) and long-read labels F(P) = (F(m1), F(c1), F(m2),…F(mk)). 
We can compute the path length l(P) and its standard deviation σ(P) as follows33: 

l Pð Þ ¼ P
l mið Þ þP

lðCiÞ
I

 and σ pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

σðmiÞ2
q

I

. A mate edge e from v to 

w (that is, e4; 5 in Fig. 1) can be transitively reduced on the path P (that is, 
P2 = (tail(c2), e3, c3, e5, head(c4)); 6 in Fig. 1) if e and P have similar lengths and the 
long-read labels of e are coherent with every edge ei of P: |l(e) − l(P)| ≤ 4max(σ(e), 
σ(P)) and F(e) ⊂ F(ei) ∀ ei ∈ P. If this is the case, then the transitive path P (that 
is, P2) is long-read coherent with the mate edge e (that is, ei) and represents an 
approximate overlap of length l(P) among all of the long reads composing the 
mate edge e (F(e)). We store the overlap information by removing e (that is, e4) 
from the SSG and incrementing the weight of every mate edge mi in P by w(e) 
(that is, w(e3) = w(e3) + w(e4) and w(e5) = w(e5) + w(e4); 6 in Fig. 1). Before starting 
the computation of approximate long-read overlaps, the repetitive contig edges 
are masked, the mate edges are sorted by ascending length l(e) and the set of 
biconnected components of the SSG is computed. The masking of repetitive contig 
edges is performed by estimating the average coverage of unique genomic regions 
using as a proxy the longest (10%), all likely to be single-copy, short-read contigs 
(�u). Contig edges with an average coverage cx>1:5 ´ �u

I
 are masked by default. 

This repeat masking procedure is similar to but simpler than the A-statistic and 
threshold (~1.44) introduced by Myers3. Transitive long-read-coherent path search 
takes place inside each biconnected component. In practice, we use a depth-first 
search algorithm to enumerate all of the long-read-coherent paths of a given mate 
edge e. At each edge extension, we extend the path only if the new added edge is 
long-read coherent with the given mate edge e (F(e) ⊂ F(ei)). We stop searching 
when the size of a partial path P is larger than 80 vertices or its length is longer 
than expected (l(P) > l(e) and |l(e) − l(P)| > 4max(σ(e), σ(P))). If there is more 
than one long-read-coherent path, we choose the path having the maximum 
number of hits from the long reads supporting the given mate edge e. For very 
long mate edges (l(e) ≥ 100 kb), we stop searching if we find more than 100 
long-read-coherent paths. All of the selected long-read-coherent paths are stored in 
a path database for later use.

The final SSG graph is created by performing first bundling and then transitive 
reduction (approximate long-read overlaps) of mate edges. From now on, we will 
refer to this simply as the reduced SSG.

Generation of the assembly backbone with the SSG. Computation of approximate 
long-read overlaps allows one to solve the scaffolding problem using all of the 
synthetic mate-pair libraries simultaneously. Given the reduced SSG, our goal is to 
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determine an optimal set of vertex disjoint paths covering all of the contig edges 
with a maximum total weight of the mate edges. As this optimization problem is 
NP-hard (non-deterministic polynomial-time hard), we use Edmond’s maximum 
weighted matching approximation algorithm that guarantees to find an optimal 
solution with a worst-case performance ratio r = W(S)/W(G) > 2/3 (ref. 34). The 
matching algorithm implementation is based on an extensive use of priority 
queues, leading to an Ο(VElog[V]) time complexity42,43. All of the contig edges, as 
well as the mate edges associated with repetitive contigs or having a weight smaller 
than 5, are masked during the matching cover step. After computing the matching 
cover, all of the contig edges are added to the matching cover solution and we 
use a depth-first search approach to detect simple cycles. If such cycles are found, 
the set of biconnected components of the graph is computed and simple cycles 
are destroyed by removing the mate edge of lowest weight in each biconnected 
component. In practice, the matching cover solutions contain few cycles (<10 on 
human genomes) and we observed performance ratios higher than r > 0.8. The set 
of optimal simple paths (lines or scaffolds) is what we call the assembly backbone.

Validation of the assembly backbone with the SSG. We validate the assembly 
backbone using the physical genomic coverage obtained from the computation of 
the approximate long-read overlaps. The key idea is to identify suspicious mate 
edges e (corresponding to potentially incorrect joins) not supported/covered by 
long-read overlaps longer than O (by default O ≥ 20 kb). We first assign genomic 
coordinates to each line Li = (c1, m2,…mk−1, ck) from 1 to l(Li), taking into account 
the orientation of the contig edges and the ordering and distance provided by 
the matched mate edges. In a second step, all of the contig edges are converted 
into physical genomic fragments as well as the mate edges spanned by long reads 
longer than O. In a third step, if the vertices v, w of a reduced mate edge e belong 
to the same line Li and the length of l(e) is longer than O, we create a new simple 
path pf that goes from v to w in the line Li. The new simple path pf is converted 
into a physical genomic fragment f only if the length of pf is similar to the length 
of the reduced mate edge e; that is, if |l(e) − l(pf)| ≤ 4max(σ(e), σ(pf)). If that is 
the case, the simple path pf increases the physical genomic coverage of the line 
Li. In a fourth step, once the physical genomic coverage of all the lines Li has been 
computed, we look for all of the intervals inside a scaffold having a lack of physical 
coverage at the mate-edge locations and we tag such mate edges as potentially 
erroneous joins. A line Li is split at potential error joins only if the number of long 
reads supporting the suspicious mate edge e is less than mlr (default mlr ≤ 4). In 
practice, we observe that the physical path coverage of human assemblies is around 
20× (30× long-read coverage); thus, usually fewer than 200 mate edges  
are removed.

Gap filling with the SSG. A property of the SSG is that all of the mate edges are 
spanned by at least one long read. Therefore, after construction and validation 
of the assembly backbone, we proceed to create a consensus sequence for each 
of the matched mate edges. We start by ordering the lines by decreasing length, 
which imposes a global order to the mate edges and consequently to the long-read 
sequences. For each mate edge e, we select the N best long reads (default: 
20) spanning e. The long-read selection is carried out by counting, with the 
edge-labeling function F(e), the number of synthetic mate pairs contributed by 
the long-read li to compose the mate edge e. This means that, the more synthetic 
mate pairs are contributed by long-read li, the greater is the confidence that the 
long-read li spans e. All of the selected long-read sequences are sorted according 
to the mate-edge order using an external merge sort algorithm to create a 
long-read sequence database. Following the long-read database creation, we build 
a consensus sequence for each mate edge using the partial order alignment graph35. 
For each mate edge, we select the long read contributing the most synthetic 
mate pairs as the consensus template; then the remaining long reads spanning 
e are aligned to the template using a fast implementation of Myers’s bit-vector 
algorithm36. The long-read alignments are scanned to partition the long reads into 
non-overlapping windows of size w (by default 500 bp) on the template sequence. 
The long-read chunks that have an average identity lower than 65% are removed 
from the corresponding windows. The purpose is to use high-quality alignments to 
build the template consensus. For each window w, we call the consensus sequence 
using an SIMD-accelerated (single instruction multiple data) implementation of 
the partial order alignment graph17. The mate-edge consensus is built by joining 
the window sequences. Finally, the corresponding contig ends are aligned (using 
once again Myers’s bit-vector algorithm) to the mate-edge consensus sequence to 
determine the correct mate-edge sequence boundaries, thus filling the gap between 
the two contig edges.

Polishing with the SSG. As not all of the contig edges are part of the assembly 
backbone (as is the case for the contig edges related to repeats or short sequences), 
we can use them to improve the consensus base accuracy of the mate-edge 
sequences. To this end, we use two polishing strategies, one based on the SSG 
and a second based on pairwise alignments. The graph polisher uses the reduced 
SSG to find transitive long-read-coherent paths as before, but masking the contig 
edges composing the assembly backbone. Since now we navigate on more complex 
parts of the SSG (unmasked repeat sequences), we limit the path search to a 
maximum of 5 million iterations on each mate edge. Once a long-read-coherent 

path has been found, we align the contig edges (with the proper orientation) to the 
mate-edge sequence using Myers’s bit-vector algorithm36. Then, the alignments 
are trimmed as a function of the average long-read depth of the mate-edge 
consensus sequence. We thus expect a minimum identity between 80% and 99% 
when the average long-read depth of the consensus sequence is between 1 and 20, 
respectively. If a contig edge maps with an identity higher than the expected and 
the alignment covers at least 75% of the contig edge, we replace the corresponding 
mate-edge-aligned sequence with the contig-edge-aligned sequence, thus polishing 
the mate-edge sequence. The alignment polisher searches for matches between the 
singleton contig edges and all of the mate-edge consensus sequences. In brief, we 
first index all of the mate-edge consensus sequences using (5,17)-minimizers20. 
Minimizers are stored in a hash table and the ones having a frequency higher 
than 1,000 are excluded. The (5,17)-minimizers of the contig edges are scanned 
on the mate-edge sequence index to collect high-scoring segment pairs or exact 
(5,17)-minimizer matches. High-scoring segment pairs are sorted by mate edges 
and hits are identified by finding the longest strictly increasing subsequence 
(co-linear chain) between the contig and the mate edges. After collecting all of the 
hits, we use a greedy algorithm to determine a layout of contig-edge hits along the 
mate-edge sequence. The greedy algorithm starts by sorting the contig-edge hits by 
number of minimizer matches and then adds the hits to the layout only if there is 
no overlap with a previously added hit. We then proceed as in the graph polisher 
to align and polish the mate-edge sequence using the best-hit layout. Finally, 
WENGAN outputs the sequence of each line plus the sequence of contig edges 
(>5 kb) not used in the polishing steps.

WENGAN assemblies of CHM13. The WENGAN (HiFi + UL) assembly of 
the haploid CHM13 genome was generated using the WENGAN-M mode. The 
PacBio/HiFi reads were assembled with MINIA3 using an iterative multi-k-mer 
approach with the following k-mer sizes: 41, 81, 121, 161, 201, 251, 301 and 351. 
The PacBio/HiFi reads were then included in all of the subsequent WENGAN-M 
steps (Fig. 1). The WENGAN (ILL + UL) assembly was generated using the 
WENGAN-D mode. The specific commands to reproduce both WENGAN 
assemblies are provided in Supplementary Subsection 1.2.

Assembly validation. Genome assemblies generated by WENGAN and other 
assemblers were assessed by whole-genome alignment to the human reference 
genome using the QUAST37 (v.5.0.2) tool. QUAST was run with the options 
–large –min-identity 80 –fragmented using the GRCh38 (patch 19) reference 
(autosomes plus X and Y). We also ran a QUAST analysis using as a reference 
the curated CHM13 assembly (chm13.draft_v0.7, 2.9384 Gb) generated by the 
T2T consortium30 for all of the CHM13 assemblies (Supplementary Table 4). 
Several assembly metrics (that is, NG50, NGA50, longest alignment block, indels 
per 100 kb, genome fraction and others) were collected from the QUAST report. 
QUAST assembly errors overlapping centromeric regions or SDs annotated in 
GRCh38 were excluded from the analysis using the script and annotation files 
provided by Shafin et al.19 (quast_sv_extractor.py -s empty -d GRCh38_masked_
regions.bed -c centromeres.bed -q quast-all_alignments.tsv). The procedure 
masked a total of 610 Mb of the GRCh38 reference. Assembly errors before and 
after the masking of highly repetitive regions are reported. The consensus quality 
was determined by computing a more stringent alignment allowing a maximum 
of 1% divergence using the MINIMAP2 (ref. 41) program (MINIMAP2 options: 
cxasm10 –cs -r2k), and then contig-to-reference alignments longer than 1 kb were 
scanned by PAFTOOLS (option call −l1000 −L1000) to call single-nucleotide 
variants, insertions and deletions. Additionally, we used the 100-mer completeness 
analysis to assess with an alignment-free method the consensus quality of the 
genome assemblies using the KMC44 k-mer counter (v.3.1.0). The GRCh38 
(patch 19) reference genome has a total of 2,835,070,131 distinct 100-mers and 
those were intersected with the 100-mers of the genome assemblies using the 
KMC_TOOLS utility (option intersect -ci1 -cx1000). The gene completeness of 
the genome assemblies was assessed with the BUSCO45 program (v.3.0.2) using the 
MAMMALIA ODB9 gene set (4,104 BUSCO groups). The single plus duplicated 
complete BUSCO gene counts are reported. The consensus quality of the genome 
assemblies was determined by aligning orthogonal BAC or fosmid sequence data 
(Supplementary Table 16). The statistics were computed considering fully resolved 
BAC/fosmid alone. The BAC/fosmid consensus quality analysis was performed 
using the BACVALIDATION tool (https://github.com/skoren/bacValidation). 
The amount of SD resolved by the genome assemblies of CHM13, HG00733, 
NA12878 and NA24385 was determined using SEGDUPPLOTS38 (https://github.
com/mvollger/segDupPlots). SEGDUPPLOTS aligns the assembled contigs to 
GRCh38 and considers an SD as resolved when the aligned contig extends the 
SD flanking sequences by at least 50 kb. The sequence of the T2T-X chromosome 
was repeat-masked with the REPEATMASKER program (v.4.1.0, search engine: 
HMMER v.3.2.1, options: -species human -gff -xm) using the DFAM (v.3.1) 
database. The contigs of the CHM13 assemblies were anchored to the T2T-X 
chromosome using MASHMAP (v.2.0) and then masked with REPEATMASKER 
using the aforementioned options. Finally, the WENGAN assemblies of CHM13 
were validated and scaffolded using the hybridScaffold.pl program (BIONANO 
Solve3.4_06042019a) (with the options -c hybridScaffold_DLE1_config.xml -B 2 
-N 2) and the BIONANO map was assembled by the T2T consortium30.
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Hybrid polishing of FLYE assemblies. We polished the FLYE assemblies of 
NA12878 using the same sequencing reads employed in the WENGAN assemblies. 
We used two rounds of long-read polishing with RACON17 followed by three 
rounds of short-read polishing with NTEDIT24. The commands executed as well as 
the consensus quality improvement after each round of polishing are provided in 
Supplementary Tables 10 and 14.

Genome sequencing of NA12878. The genomic DNA from the GM12878 
human cell line was purchased from the Coriell Institute (catalog no. NA12878, 
RRID:CVCL_7526).

MGI sequencing. Library preparation for the NA12878 sample was performed 
with the MGIEasy DNA Library Prep Kit V1.1 (MGI, 940-200022-00) following 
the manufacturer’s instructions. Briefly, 1 μg genomic DNA at a concentration 
of 12.5 ng μl−1 was fragmented with an E220 Covaris program optimized to yield 
fragments of 450 bp in average length. A double-sized selection was performed 
with AMPure XP beads (Beckman Coulter) at 0.52× ratio followed by a 0.15×  
ratio as recommended by MGI. A total of 50 ng fragmented DNA was used for  
the end repair and A-tailing reaction following the manufacturer’s instructions.  
A set of adapters with 8 barcodes were ligated to the repaired DNA for 1 h at  
23 °C. After purification with AMPure XP beads (Beckman Coulter) at a 0.5× 
ratio, the DNA was subjected to PCR enrichment following the manufacturer’s 
instructions. A total of 330 ng PCR product was hybridized with the Split 
Oligo (MGI, 940-200022-00) for the circularization step followed by digestion. 
Circularized single-stranded DNA (ssDNA) was purified with Library Purification 
Beads (MGI, 940-200022-00) and quantified with an ssDNA assay on a Qubit 
3 fluorometer (Thermo Fisher). For the linear amplification to generate DNA 
nanoballs (DNBs), 75 fmol circularized ssDNA was used. The DNB library 
was loaded in a single lane and sequenced on an MGISEQ-2000 instrument 
with a paired-end modus and read length of 150 bp with the MGISEQ-2000RS 
High-Throughput Sequencing Set PE150 (MGI, 1000003981) according to the 
manufacturer’s instructions.

Illumina sequencing. The library was prepared using the TruSeq DNA PCR-Free 
Library Prep kit (Illumina, FC-121-3001) following the TruSeq DNA PCR-free 
reference guide (Illumina, 1000000039279v00). Briefly, 1 μg genomic DNA 
was used for fragmentation on an E220 Covaris to yield insert sizes of 350 bp. 
The DNA was end-repaired, adenylated and subjected to adapter ligation as 
described in the reference guide. The library was quantified using the KAPA Lib 
Quantification Kit (Roche, LB3111) and the double-stranded DNA (dsDNA) HS 
(high sensitivity) assay (Qubit). The average fragment size was estimated with an 
HS DNA kit (Agilent) on a 2100 Bioanalyzer (Agilent). An S2 flow cell loaded with 
2.2 nM library was processed on a NovaSeq 6000 instrument to generate 2 × 150 
paired-end reads.

Nanopore sequencing. Three flow cells were run with the sample NA12878. One 
flow cell was loaded with a library prepared from unsheared genomic DNA. 
For the additional two sequencing runs, 14 μg NA12878 genomic DNA was 
mechanically sheared with Megaruptor 3 (Diagenode) (at a concentration of 
70 ng μl−1 in a volume of 200 μl) with the manufacturer’s recommended speed 
to get sheared DNA with an average fragment length of 30 kb. Size selection was 
performed with Blue Pippin (Sage Science) to remove fragments shorter than 10 kb 
using a 0.75% agarose cassette, the S1 marker and a high-pass protocol (Biozym, 
342BLF7510). A further clean-up with AMPure XP beads (Beckman Coulter) on 
the size-selected DNA was performed at a 1× ratio for one library. The fragment 
size was assessed with the Genomic DNA 165 kb Analysis Kit on a FemtoPulse 
(Agilent) and the concentration of DNA was assessed using the dsDNA HS assay 
on a Qubit 3 fluorometer (Thermo Fisher). For each of the three sequencing runs, 
one library was prepared with the SQK-LSK109 Ligation Sequencing kit (ONT) 
per flow cell following the instructions of the ‘1D genomic DNA by ligation’ 
protocol from ONT. Briefly, 1.1 to 1.3 μg genomic DNA was used for the DNA 
repair reaction with the NEBNext Ultra II End Repair/dA-Tailing Module (New 
England Biolabs, E7546S) and the NEBNext FFPE DNA Repair Module (NEB, 
M6630S). On clean-up with AMPure XP beads (Beckman Coulter) at 1× ratio, 
the end-repaired DNA was incubated for 1 h at room temperature with Adapter 
Mix (ONT, SQK-LSK109), Ligation Buffer (ONT, SQK-LSK109) and the NEBNext 
Quick Ligation Module (NEB, E6056S). The ligation reaction was purified with 
AMPure XP beads (Beckman Coulter) at a 0.4× ratio and L Fragment Buffer (ONT, 
SQK-LSK109). A 600 ng (25 fmol) quantity of each generated library was loaded 
into the flow cell (FLO-PR002) on a PromethION instrument (ONT) following the 
manufacturer’s instructions. The Nanopore reads were base-called using GUPPY 
(v.3.0.3) with the high accuracy FLIP-FLOP model.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequence datasets and de novo genome assemblies described in the manuscript 
are publicly available through the corresponding repositories. Specific hyperlinks 
for the four human datasets are provided in the Supplementary Information: 
Supplementary Table 1 provides hyperlinks for all of the long-read datasets; 
Supplementary Table 2 provides hyperlinks for all of the short-read datasets; 
Supplementary Table 3 provides hyperlinks for all of the de novo assemblies used in 
the benchmark; Supplementary Table 16 provides hyperlinks for the BAC/fosmid 
sequences used for consensus quality assessment. The BIONANO data of CHM13 
are available at https://github.com/nanopore-wgs-consortium/CHM13. Specific 
hyperlinks for the non-human datasets are provided in Supplementary Table 17. 
The supplementary files, including all of the WENGAN assemblies described in the 
manuscript, are available through Zenodo at https://zenodo.org/record/3779515. The 
specific commands for each WENGAN assembly are provided in Supplementary 
Subsection 1.2. The NovaSeq 6000, MGISEQ-2000RS and PromethION sequence 
data of NA12878 were submitted to the Sequence Read Archive under the BioProject 
accession number PRJNA603060. Source data are provided with this paper.

code availability
The WENGAN code (v.0.2) used in this manuscript is freely available at https://
github.com/adigenova/wengan and is distributed under the MIT open source 
license, and at CODE OCEAN (https://doi.org/10.24433/CO.9469612.v1).
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