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The prognosis of malignant gliomas remains poor, with median survival fewer than 20
months and a 5-year survival rate merely 5%. Their primary location in the central nervous
system (CNS) and its immunosuppressive environment with little T cell infiltration has
rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune
checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is
developing rapidly and can help overcome these obstacles. But for now, malignant gliomas
remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is
a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor
cells, replicate and spread through tumors while inducing antitumor immune responses.
OVTs can also recondition the tumor microenvironment and improve the efficacy of other
immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can
penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling
intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses
(OVs), optimizing OVT has proved challenging in clinical development, and marketing
approvals for OVTs have been rare. In June 2021 however, as a genetically engineered
OV based on herpes simplex virus-1 (G47D), teserpaturev got conditional and time-limited
approval for the treatment of malignant gliomas in Japan. In this review, we summarize the
current state of OVT, the synergistic effect of OVT in combination with other
immunotherapies as well as the hurdles to successful clinical use. We also provide some
suggestions to overcome the challenges in treating of gliomas.
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INTRODUCTION

Gliomas, which arise from glial or their precursor/stem cells, including diffuse gliomas and non-
diffuse gliomas, are the most common primary CNS tumors (1, 2). Approximately 100,000 people
around the world are diagnosed with diffuse gliomas every year (3). Based on WHO 2016
classification, diffuse gliomas can be further classified as: diffuse or anaplastic astrocytoma,
org October 2021 | Volume 12 | Article 7218301
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isocitrate dehydrogenase (IDH)-wild type; diffuse or anaplastic
astrocytoma, IDH-mutant; glioblastoma (GBM), IDH-wild type;
glioblastoma, IDH-mutant; and oligodendroglioma or anaplastic
oligodendroglioma, IDH-mutant and 1p19q co-deletion (4, 5).
GBM, another term for WHO grade IV astrocytoma, is the most
common type in adults and it is about four times more common
than anaplastic astrocytoma (6). Currently, the treatment of
gliomas faces great difficulties:

1. Gliomas have a poor prognosis after being treated with
ex i s t ing therap ies ( surgery , chemotherapy and
radiotherapy) with median survival fewer than 20 months
and a 5-year survival rate merely 4–5% (7, 8);

2. The presence of the BBB renders many conventional cancer
drugs ineffective;

3. The immune-privileged environment in CNS makes immune
checkpoint inhibitor therapy, which has been widely studied
in recent years, less effective in gliomas (9);

Over the last decade, hopes have risen that emerging
immunotherapy could improve specific immune responses
against tumor cells in patients with brain tumors (10–13).
Despite intensive clinical research, the FDA is yet to approve
an immunotherapy for glioma.

Oncolytic Viruses can selectively or preferentially infect
tumor cells and induce tumor lysis. Some of them, including
parvovirus H-1 and reovirus, can also penetrate the BBB and
possess tropism for the CNS, enabling intravenous delivery in
clinical trials (14, 15). Furthermore, OVs can activate the innate
immune response and the adaptive anti-tumor immunity to
target distant uninfected tumors cells. As of 2021, at least 15
different virus species are currently under study: adenovirus,
herpes simplex virus-1 (HSV-1), parvovirus, vaccinia virus,
myxoma virus, reovirus, enterovirus, measles virus, Newcastle
disease virus (NDV), vesicular stomatitis virus (VSV), retrovirus,
Zika virus, M1 virus, Semliki Forest virus and Seneca
Valley virus.

In this review, we will summarize the state of oncolytic
virotherapy and its combination with other immunotherapies
in gliomas.
IMMUNOSUPPRESSIVE
MICROENVIRONMENT OF GLIOMAS

The BBB consists of endothelial cells, astrocytes and pericytes,
forming tight junctions to make the CNS an immune-privileged
environment. In healthy individuals, most of peripheral immune
cells are excluded from entering the brain (16). However, T cell
entry and immunosurveillance within the brain have been
documented over the years (17, 18).

During inflammation, particularly, microglia within the brain
undergo substantial phenotypic changes, and specific
macrophage populations are recruited from circulating
monocytes (19). Microglia are CNS-resident myeloid cells that
migrate to the developing brain early in gestation (20). They are
Frontiers in Immunology | www.frontiersin.org 2
responsible for phagocytosis and synapse formation and pruning
in both healthy and pathological states (21, 22). More and more
preclinical and clinical studies found that microglia can
modulate glioma growth via facilitating proliferation, invasion
and stemness of gliomas (23–26). Furthermore, microglia can
promote the recruitment of T-reg cells and anti-inflammatory
macrophages from systemic circulation through the release of
chemokine ligand 2 (CCL2) (27). Anti-inflammatory
macrophages (AIM) in gliomas have reciprocal effects with
microglia on enhancing tumorigenesis (28). AIM in gliomas
are also suggested to support angiogenesis and mediate glioma
recurrence (29, 30). Therefore, glioma-associated microglia and
macrophages can be developed as therapeutic targets for glioma
patients (31) (Figure 1).

It is also well-documented that tumors can secrete soluble
factors in high concentrations, such as vascular endothelial
growth factor (VEGF) and matrix metalloproteinases (MMPs).
These factors can destroy the endothelial tight junctions, degrade
proteoglycans and induce numerous blood derived factors (32,
33). A significant challenge in treating brain tumors is to enable a
drug to cross the BBB so the breakdown of the endothelial tight
junctions can be an opportunity to deliver drugs to gliomas.

Despite increasing evidence showing that the notion of
“immune-privileged” is inaccurate, brain tumors still can
prevent the immunosurveillance of the CNS and foster
antigenic ignorance - for example, in sphingosine 1 phosphate
receptor 1 (S1PR1)-dependent fashion. S1PR1 is a G protein-
coupled receptor (GPCR) that binds sphingosine-1-phosphate
(S1P), a lipid second messenger. S1P-S1PR1 axis plays an
important role in lymphocyte trafficking. The level of S1P1 on
the surface of T-cells in GBM patients is decreased compared to
healthy controls. The dysfunction of this axis results in T-cell
trapping within lymphoid organs, preventing T-cells from
trafficking to the brain (34, 35).

Owing to the vulnerability of the brain to changes in
intracranial pressure, an immunosuppressive environment
inhibits the development of intracranial inflammation,
including tumor-related inflammation (36). Various cells
(AIMs, microglia, astrocytes) in tumor microenvironment can
produce high level of immunosuppressive cytokines like
transforming growth factor b (TGFb) and interleukin-10 (IL-
10) in response to inflammatory stimuli (18, 37, 38). Glioma cells
can generate a great amount of indolamine 2,3-dioxygenase
(IDO) to both inhibit T cell activity and promote the
recruitment of regulatory T cells (Treg) through depletion of
tryptophan from the microenvironment (39). Also, glioma cells
attract both microglia and AIM to enhance tumor growth and
promote immunosuppression (23). A large amount of arginase
can be produced by microglia and tumor-infiltrating myeloid
cells to inhibit T cell proliferation and function by depleting
tissue arginine levels (18, 40, 41). Relatively low mutation
load, little T cell infiltration and immunosuppressive
microenvironment have been observed in GBM, making for a
“cold” tumor microenvironment (10). It is generally accepted
that this “cold” microenvironment makes ICIs less effective in
the treatment of GBM (42).
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ONCOLYTIC VIROTHERAPY
FOR GLIOMAS

Oncolytic Virus
Oncolytic viruses are an emerging class of antitumor
immunotherapies. Talimogene laherparepvec (T-Vec), a
genetically engineered OV based on HSV-1, is the most
prominent and the only FDA approved OV used for treating
malignant melanoma (43). OVs can selectively or preferentially
infect and kill tumor cells, while activating the immune system
(44) (Figure 2), by the following general mechanisms:

1. OVs can selectively or preferentially infect tumor cells and
induce direct tumor lysis due to the deficient or inhibited
antiviral innate immunity pathways (e.g. IFN pathway) in
many tumor cells (45, 46).

2. Tumor cell lysis due to OV infection can cause the release of
tumor associated antigens (TAAs), cell-derived damage-
associated molecular patterns (DAMPs) and viral
pathogen-associated molecular patterns (PAMPs), which
Frontiers in Immunology | www.frontiersin.org 3
can recruit dendritic cells (DCs) and innate lymphoid cells
(e.g. NK cells) for early clearance of virus-infected cells (47).

3. The release of TAAs, DAMPs, PAMPs, pro-inflammatory
cytokines and chemokines by lysed tumor cells and innate
immune cells can promote antigen presentation and antigen-
specific adaptive immune responses (48, 49).

4. The immune responses kill not only infected tumor cells, but
also uninfected tumor cells through bystander effects (50, 51).

5. OVs can promote the recruitment of tumor infiltrating
lymphocytes into tumor sites, making the immunosuppressive
microenvironment “hot” and suitable for other
immunotherapies (52).

In the following, the particularities of these mechanisms in
glioma are discussed. In glioblastoma cancer stem cells, antiviral
innate immunity pathways (IFN pathway, TLR pathway) are
reduced, which contributes to the tumor cell specificity of OVs
(mechanism 1) (53, 54). Interestingly, due to the isolated location
surrounded by mitotically silent normal neurons, malignant
gliomas may be particularly suitable for treatment with OVs,
FIGURE 1 | Cell interactions in brain tumor microenvironment. Microglia can 1) modulate glioma growth via facilitating proliferation, invasion and stemness of
glioma; 2) promote the recruitment of T-reg cells and anti-inflammatory macrophages (AIM) from systemic circulation through the release of chemokine ligand 2
(CCL2); 3) produce high level of immunosuppressive cytokines like transforming growth factor b (TGFb) and interleukin-10 (IL-10); 4) produce a large amount of
arginase to inhibit T cell proliferation and function by depleting tissue arginine levels. AIM can 1) support tumorigenesis; 2) produce high level of immunosuppressive
cytokines like TGFb and IL-10; 3) produce a large amount of arginase to inhibit T cell proliferation and function by depleting tissue arginine levels. Glioma cell can 1)
secrete soluble factors (VEGF, MMPs) to destroy the endothelial tight junctions, causing blood-brain barrier leakage; 2) generate a great amount of indolamine 2,3-
dioxygenase (IDO) to both inhibit T cell activity and promote the recruitment of regulatory T cells (Treg) through depletion of tryptophan from the microenvironment; 3)
attract both microglia and AIM to enhance tumor growth and promote immunosuppression. Astrocyte can also produce high level of immunosuppressive cytokines
like TGFb and IL-10.
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which require active cell cycles for their replication (55, 56).
Utilizing mechanisms 2-5, a growing body of evidence suggests
that OVs can “heat” the immunologically “cold” micro-
environment of GBM by inducing immunogenic cell death
(ICD) and inflammation. In a large number of preclinical
studies, ICD was induced by OVs, along with infiltration of
cytotoxic T cells and reduced accumulation of myeloid-derived
suppressor cells (MDSCs) (57, 58). Clinical studies have also
shown that OVs can induce cytotoxic T cells infiltration and
other relevant immune responses against glioma (59–61).
Frontiers in Immunology | www.frontiersin.org 4
Further research is needed to understand mechanisms of
interaction of components in the tumor microenvironment to
fully exploit the potential of OVs in glioma. Modern discoveries
related to the molecular mechanisms of specific OVs are discussed
in paragraphs “DNA Viruses” and “RNA Viruses”.

When considering OVs for glioma treatment, it is vital to
exclude OVs which display neurotoxicity. With few exceptions,
these viruses fall into one of two groups: 1) non-neurotoxic
viruses and 2) neuro-attenuated viruses. Non-neurotoxic viruses
are viruses that have not been observed to be neurotoxic and do
FIGURE 2 | Anti-tumor effects of oncolytic virus (OV) and combination therapy in brain tumor. 1. OVs can selectively or preferentially infect tumor cells and induce
tumor lysis. 2. Innate immune response. Tumor cell lysis due to OVs infection can cause the release of tumor associated antigens (TAAs), cell-derived damage-
associated molecular patterns (DAMPs) and viral pathogen-associated molecular patterns (PAMPs), which can recruit dendritic cells (DCs) and innate lymphoid cells
(e.g. NK cells) for early clearance of virus-infected cells; 3. Adaptive immune response. The release of TAAs, DAMPs, PAMPs, pro-inflammatory cytokines and
chemokines by lysed tumor cells can trigger activation of antigen presenting cells (APCs) and promote the priming of cellular mediated immune responses (CTL
infiltration); 4. OVs infection leads to the release of TAAs, PAMPs and DAMPs, which can induce innate immune responses (e.g. secretion of TNF-a) against not only
infected tumor cells, but also uninfected tumor cells through bystander effects; 5. Infection and replication of oncolytic viruses in tumors can activate anti-tumor
immunity and turn “cold” into “hot” tumors, which make combination therapies such as immune checkpoint inhibitors (e.g. PD-1/PD-L1 inhibitor), adoptive cell
therapy (e.g. CAR-T), tumor vaccines (e.g. DC vaccine) and immunotherapeutic modulators (e.g. GM-CSF, which can enhance the activation of NK cells and CD8-
mediated T cell response) more effective. For glioma specifics, (A) antiviral innate immunity pathways (IFN pathway, TLR pathway) are reduced in glioblastoma cancer
stem cells (GBM CSC), which contributes to the tumor cell specificity of OVs. (B) Due to the isolated location surrounded by mitotically silent normal neurons,
malignant gliomas may be particularly suitable for treatment with OVs, which require active cell cycles for their replication.
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not necessarily require additional engineering before being used
for treatment, including parvovirus, myxoma virus, M1 virus and
Seneca Valley virus (SVV) (62). Neuro-attenuated viruses are
viruses with neurovirulent features that have been modified (e.g.
by gene editing) to reduce neurotoxicity. Adenovirus, herpes
simplex virus (HSV), VSV, poliovirus and measles virus fall
under this category. The various mechanisms of viral attenuation
leading to decreased neurotoxicity are discussed below.

In the case of HSV, a number of mutants were created by
modifying the virus to reduce neurovirulence without affecting
the virus’s ability to infect actively dividing cells (63).
For example, HSV-1716 and R3616 mutants have deletions in
both copies of the viral g134.5 genes, which are necessary for
neurovirulence (64, 65). The neurovirulence of poliovirus is
attributed to the following two aspects: 1) selective binding of
CD155 receptor-expressing motor neurons and 2) an internal
ribosomal entry site (IRES) sequence in the viral genome.
The neurotoxic poliovirus was engineered into a neuro-
attenuated virus by replacing the entire IRES with its non-
pathogenic counterpart from human rhinovirus type 2 (66).
Several mutants have been created to reduce the potential
neurotoxicity of VSV in the treatment of glioma, studied in a
rodent model (67, 68).

In this review, we will discuss 15 different virus species which
are currently under study to treat gliomas. Among them, 5 are
DNA viruses, while 10 are RNA viruses. Important features of
these viruses have been listed in Table 1.

DNA Viruses
We have listed the current clinical trials utilizing DNA viruses
against gliomas in Table 2.

Adenovirus
Adenoviruses are double-stranded-DNA viruses of the
Adenovir idae fami ly with 70–90 nm in s ize (88) .
The adenovirus has sufficient transgene capacity which can
Frontiers in Immunology | www.frontiersin.org 5
carry therapeutic genes of sizes of about 30–38 kb (69). A
genetically modified variant, AdDelta24-RGD, also known as
DNX-2401, has the ability to selectively infect glioma cells after
either intratumoral or intracavitary (injection into the surgically
created resection cavity) delivery (59).

Safety in patients with recurrent high-grade glioma has been
demonstrated in phase I clinical trial (NCT00805376). In this
study, an improved median overall survival has been shown in
patients who received surgical resection as well as AdDelta24-
RGD. Seven patients had a long-term survival of over 24 months
and no Grade 3 or greater adverse events occurred (59, 89).
Another phase I trial demonstrated safety in patients treated with
AdDelta24-RGD through convection enhanced delivery (CED),
an intratumoral delivery using continuous, low–positive-
pressure bulk flow to deliver drugs through the implantation of
catheters (90–92). AdDelta24-RGD is currently studied as a
combination therapy in multiple phase I and II studies
(NCT01956734, NCT02197169, NCT02798406).

CRAd-S-pk7 is an oncolytic adenoviral vector containing a
survivin promoter and a pk7 fiber modification to selectively
target glioma (93). A recent study found that it could be
successfully encapsulated within mesenchymal stem cells
(MSCs) as a new delivery strategy to treat diffuse intrinsic
pontine glioma (DIPG), one of the deadliest brain tumors in
children (94). Another phase I clinical trial using neural stem
cells (NSCs) as delivery vehicles is ongoing (NCT03072134).

High levels of chronic immune activation detected in cancer
patients correlate with poor prognosis in treatment with
oncolytic adenovirus. Therefore, it might be necessary to
screen the immune status of patients before treatment (95, 96).

Herpes Simplex Virus
Herpes simplex virus-1 is a double-stranded, linear-DNA virus
of the Herpesviridae family that has been widely adopted for
OVT and most extensively studied (71). An advantage of HSV-1
is that it can incorporate multiple large transgenes within its
TABLE 1 | Important features about the oncolytic viruses mentioned above.

Virus type Family Genome Genome size Transgene capacity Viral immunogenicity BBB penetration Ref

Adenovirus Adenoviridae dsDNA 32kb High Low – (69, 70)
Herpes simplex virus Herpesviridae dsDNA 152kb High Low – (70, 71)
Parvovirus Parvoviridae ssDNA 5kb Low High + (70, 72)
Vaccinia virus Poxviridae dsDNA 190kb High High – (73, 74)
Myxoma virus Poxviridae dsDNA 161.8 kb High High – (74, 75)
Reovirus Reoviridae dsRNA 23kb Low Low + (70, 76)
Enterovirus Picornaviridae ss(+)RNA 7.2-8.4kb Low Moderate + (70, 77)
Measles virus Paramyxoviridae ss (–)RNA 16kb Low Moderate – (78, 79)
Newcastle disease virus Paramyxoviridae ss (–)RNA 15kb Low Low + (79, 80)
Vesicular stomatitis virus Rhabdoviridae ss (–)RNA 11kb Low Low – (79, 81)
Retrovirus Retroviridae ss(+)RNA 7–10 kb Moderate Low + (79, 82)
Zika virus Flaviviridae ss(+)RNA 10.7kb Low High + (79, 83, 84)
M1 virus Togaviridae ss(+)RNA 11.7kb Moderate Moderate + (79, 85)
Semliki Forest virus Togaviridae ss(+)RNA 13kb Moderate Moderate + (79, 86)
Seneca Valley virus Picornaviridae ss(+)RNA 7kb Low High + (70, 87)
October 2
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dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; dsRNA, double-stranded RNA; ss(+)RNA, positive single-stranded RNA; ss(-)RNA, negative single-stranded RNA;
Transgene capacity, the maximum size of inserted foreign gene fragments, Low(<7kb), Moderate(7-10kb), High(>10kb); Viral immunogenicity, the strength of immune response to the
oncolytic virus backbone and the transgene(the Low-Moderate-High comparison is based on the capacity of virus induced antibodies); BBB penetration, (+) with study validation,
(-) without study validation.
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genome. In preclinical studies, by incorporating transgenes
encoding immunomodulatory molecules, such as interleukin
12 (G47D-mIL12), oncolytic HSV-1 has been shown to greatly
enhance the efficacy of treatment in a glioblastoma model (97,
98). An HSV-1 based intralesional oncolytic immunotherapy, T-
Vec, has been approved by EMA and FDA to treat unresectable
melanoma in adults (99).

G207 and HSV-1716 are two HSV-1 variants with the ability
to target and kill glioma cells. Phase I and II trials have
investigated their safety as monotherapies and combined with
radiotherapy, with no serious adverse events documented (100–
102). In particular, a phase I clinical trial using G207 alone and
with radiation to treat pediatric high-grade gliomas recently
reported no dose-limiting toxicity or serious adverse events
(103). In addition, an interleukin-12 expressing HSV-1, M032,
is being evaluated for the safety and tolerability of the maximum
dose in patients with recurrent gliomas in a phase I clinical
trial (NCT02062827).

G47D is another oncolytic HSV-1 strain developed by
introducing another deletion mutation to the genome of G207
(104). G47D has a strong induction of antitumor immunity, and
it has been shown to kill cancer stem cells derived from human
glioblastoma efficiently (105). G47D is greatly attenuated and
therefore expected to be safer than G207 and T-Vec in normal
tissues (105). Recently, a single-arm phase II clinical trial in
Japan was completed to test the efficacy of G47D administered
stereotactically in patients with residual or recurrent
Frontiers in Immunology | www.frontiersin.org 6
glioblastoma. Side effects were limited and the 1-year-survival
rate of 13 patients has reached 92.3% (UMIN000015995) (106).
Based on this phase II trial, G47D (Delytact/Teserpaturev) has
received conditional approval from Japan’s Ministry of Health,
Labour andWelfare (MHLW) as an oncolytic virotherapy for the
treatment of patients with malignant glioma in Japan. This
certainly represents a breakthrough for OVT in glioma and the
publication of the detailed results of the Phase II trial that led to
approval are eagerly awaited by the scientific community.

Parvovirus
Parvoviruses are small, single-stranded DNA viruses of the
Parvoviridae family (72). One variant, H-1, is the smallest
among all OVs and it has potential for intratumoral and
intravenous application. It is suitable for oncolytic virotherapy
of brain tumors due to its capacity to cross the BBB (14, 107, 108).
It has been shown to be effective in rat and human GBM cell lines
(14). Besides, it has been shown to increase DC cross-presentation
of tumor antigens in a melanoma cell line, demonstrating its
ability to boost host immune reactivity (109). In glioblastoma
patients, H-1 treatment was safe and triggered immunogenic
changes in the tumor microenvironment in a phase I/II clinical
trial (NCT01301430) (110).

Vaccinia Virus
Vaccinia viruses are large, enveloped, double-stranded-DNA
viruses of the Poxviridae family. Strong transgene capacity (up
TABLE 2 | Current clinical trials utilizing DNA viruses against gliomas.

Virus type Strain Targeted malignancy Routes Latest
phase

Combination therapy Trial No. Status

Adenovirus SCH-58500 Brain tumor IT I Conventional surgery NCT00004080 Completed
DNX-2440 Glioblastoma IT I NCT03714334 Recruiting
CRad-S-
pk7

Brain tumor IC I Neural stem cells loaded with an oncolytic
adenovirus

NCT03072134 Active, not
recruiting

DNX-2401 Glioblastoma/Recurrent
Tumor

IT I Temozolomide NCT01956734 Completed

Glioblastoma or Gliosarcoma IT I IFN-g NCT02197169 Completed
Recurring Glioblastoma IT I NCT00805376 Completed
Recurring Glioblastoma IT(CED) I/II NCT01582516 Completed
Brain tumor IT II Pembrolizumab NCT02798406 Active, not

recruiting
Recurrent Glioblastoma IA I NCT03896568 Recruiting

HSV C134 Brain tumor IT I NCT03657576 Recruiting
M032 Brain tumor IT I NCT02062827 Recruiting
rQNestin
34.5

Brain tumor IT I NCT03152318 Recruiting

G207 Brain tumor IT I Radiation NCT02457845 Active, not
recruiting

Brain tumor IT I/II NCT00028158 Completed
Pediatric brain tumor IT I Radiation NCT03911388 Recruiting
Pediatric brain tumor IT II Radiation NCT04482933 Not yet recruiting

HSV-1716 Pediatric brain tumor IT I dexamethasone NCT02031965 Terminated
G47D Residual or recurrent

glioblastoma
IT II UMIN000015995 Completed

Vaccinia
virus

TG6002 Glioblastoma IV I/II 5-flucytosine NCT03294486 Recruiting

Parvovirus H-1PV Glioblastoma IV, IT,
IC

I/II NCT01301430 Completed
Octobe
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to 40kb), efficient life cycle and selective replication in cancer
cells make vaccinia viruses very promising for use as an OVT
(73). Double deleted vaccinia virus (vvDD), with deletions of the
thymidine kinase and vaccinia growth factor genes to enhance
the safety profile, could preferentially infect and kill both
Temozolomide (TMZ) resistant human brain tumor stem cells
(BTSCs) and differentiated compartments of GBMs in vitro.
Therefore, vvDD can be used as an effective supplement in the
treatment of glioma, particularly for GBM patients resistant to
TMZ (111, 112).

In a recent study, vvDD, expressing the fusion protein
IL15Ra-IL15 and a fluorescent protein, was used to treat
murine glioma GL261 in vitro and in vivo in combination with
other treatments, including chemotherapy, peptide vaccine and
adoptive T cell therapy (ACT). Pre-clinical results show potent
antitumor effects against brain tumors when combined with
celecoxib, rapamycin and ACT (113). To date, there are no
clinical trials of VV in patients with glioma.

Myxoma Virus
Myxoma virus (MYXV) is also a double-stranded-DNA virus of
the Poxviridae family (75). MYXV infects only rabbits in nature
and is non-pathogenic to humans. More importantly, MYXV
can preferentially infect and kill cancer cells originating from
humans (75). MYXV has shown potent oncolytic activity in
experimental human gliomas and produced a synergistic effect
when combined with rapamycin in an immunocompetent
glioma model (114, 115). It can promote natural killer (NK)
cell mediated lysis of malignant gliomas both in vitro and in
vivo (116).

MYXV could infect and kill both TMZ-resistant and
-sensitive brain tumor-initiating cells (BTICs), which retained
stem-cell-like properties (117). Anti-apoptotic M011L-deficient
MYXV induced apoptosis in BTICs and prolonged animal
survival in an immunocompetent glioblastoma model (118).
Multiple compounds, e.g. axitinib, that synergize with
oncolytic MYXV against human BTICs were identified (119).
In immunocompetent animal models of glioma, MYXV armed
with IL15Ra-247 has been shown to be a safe and powerful agent
Frontiers in Immunology | www.frontiersin.org 7
aga ins t bra in tumors when combined wi th other
immunotherapeutic methods (120). To date, there are no
clinical trials of MYXV in patients with glioma.

RNA Viruses
We have listed the current clinical trials utilizing RNA viruses
against gliomas in Table 3.

Reovirus
Reovirus is a double-stranded RNA virus of the Reoviridae family
and is 75–85 nm in size with an icosahedral capsid (76). Reolysin
is a reovirus-based agent which has shown the ability to
penetrate the BBB, with specificity and oncolytic activity for
glioma cells in vitro and in vivo (15, 121). In a preclinical glioma
model, reovirus can up-regulate IFN-regulated gene expression
and activate PD-1/PD-L1 axis in tumors suggesting that the
reovirus combined with ICIs may enhance systemic therapy (15).

In a phase I dose escalation trial, dose limiting toxicities were
not identified and a maximum tolerated dose was not reached
(122, 123). A current phase I study of intravenously injected
reovirus combined with granulocyte macrophage colony-
stimulating factor (GM-CSF) is ongoing in pediatric patients
with high-grade relapsed or refractory brain tumors
(NCT02444546). Reolysin (Pelareoreop) has been granted
orphan drug status by US FDA for the treatment of brain
cancer (124).

Enterovirus
Poliovirus (PV) is a single-stranded, positive-sense RNA
enterovirus of the Picornaviridae family and the cause of
poliomyelitis (77). An attenuated poliovirus variant, PVS-
RIPO, remains oncolytic but does not cause poliomyelitis and
displays no neurovirulence in nonhuman primates (66, 125). It
has been shown in animal models that a strong inflammatory
reaction against infected glioma cells was triggered after PVS-
RIPO inoculation (126, 127). In another preclinical study, PVS-
RIPO improved OS in glioma-bearing mice (128).

Enterovirus A71 (EV-A71) has recently been found to have
the potential to treat malignant gliomas. EV-A71 can selectively
TABLE 3 | Current clinical trials utilizing RNA viruses against gliomas.

Virus type Strain Targeted malignancy Routes Latest phase Combination therapy Trial No. Status

Measles Virus MV-CEA Brain tumor IT/IC I NCT00390299 Completed

Poliovirus PVSRIPO Pediatric brain tumor IT(CED) I NCT03043391 Recruiting

Malignant glioma IT (CED) I NCT01491893 Active, not recruiting

Malignant glioma IT (CED) II NCT02986178 Active, not recruiting

Recurrent glioblastoma IT (CED) II pembrolizumab NCT04479241 Recruiting

Reovirus REOLYSIN Pediatric brain tumor IV I Sargramostim NCT02444546 Active, not recruiting

REOLYSIN Malignant glioma IT I NCT00528684 Completed

Retrovirus Toca 511 Recurrent high-grade glioma IC II/III 5-fluorocytosine NCT02414165 Terminated

Toca 511 Recurrent high-grade glioma IC I 5-fluorocytosine NCT01470794 Completed

Toca 511 Recurrent high-grade glioma IC I 5-fluorocytosine NCT01985256 Completed

Toca 511 Recurrent high-grade glioma IT/IV I 5-fluorocytosine NCT01156584 Completed
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infect and kill malignant glioma cells, thus inhibiting tumor
growth in mice (129).

In clinical studies, intratumoral injection of PVS-RIPO in
patients with recurrent WHO grade IV malignant glioma was
determined to be safe and improved OS (130). Currently, a phase
Ib pediatric clinical trial is investigating the safety and dosage of
PVS-RIPO by CED in high-grade gliomas as well as other brain
tumors (NCT03043391). Ongoing phase II trials are also
evaluating PVS-RIPO as a monotherapy or in combination
therapy with pembrolizumab (NCT02986178) (NCT04479241).

Measles Virus
Measles virus (MV) is a single-stranded, negative-sense RNA
virus of the Paramyxoviridae family. Unlike the wild type MV
strains, attenuated vaccine strains have adapted to bind CD46
receptor for target cell entry (78). Normal brain tissue expresses
low-level CD46, but glioma cells express abundant CD46
receptors on their surface. CD46 mediates MV attachment,
internalization and virus-induced cell-to-cell fusion, and the
safety of MV has been established in nonhuman primates
(131, 132).

MV-CEA is a modified MV expressing carcinoembryonic
antigen (CEA). CEA can serve as a marker of viral gene
expression as the virus replicates. A pre-clinical study found
that MV-CEA could induce brain tumor regression and improve
OS in mice (133). MV-CEA could up-regulate PD-L1 in human
GBM cells, and the combination with PD-1 blockade showed an
increase in CD8+ TILs and improved OS in mice (134),
supporting the potential of clinical combination of MV with
aPD-1 therapy in GBM treatment (135). A phase I clinical trial
of MV-CEA for the treatment of recurrent glioblastoma
multiforme found no dose limiting toxicities with MV-CEA
doses up to 2×107 TCID50 (NCT00390299) (136).

Oncolytic MV encoding thyroidal sodium iodide symporter
(MV-NIS) can enable in vivo tracking of MV infection and
enhance therapeutic efficacy (137). Cells infected by MV-NIS can
express NIS. which allows cells to actively transport iodide ions
into the cells, providing a possibility for in vivo radioiodine
imaging studies (138). It is possible to use NIS as a non-
immunogenic marker for viral gene expression in the future. A
phase I clinical trial evaluating the safety and recommended
phase 2 dose of MV-NIS for the treatment of recurrent
medulloblastoma or atypical teratoid rhabdoid tumor (ATRT)
in children and young adults is recruiting (NCT02962167).

Newcastle Disease Virus
NDV is a large, single-stranded, negative-sense RNA virus of the
Paramyxoviridae family (80). It has the ability to induce
apoptosis of host cells via mitochondrial pathway and activate
the antitumor immune response via increasing TNF-a secretion
by host immune cells (80, 139). NDV can kill cancer cells
through lytic viral infection as well (140). In the orthotopic,
syngeneic murine GL261 glioma model, survival of treated
animals was significantly prolonged with 50% long-term
survival versus none in the control group. Immunogenic cell
death was induced in GL261 cells after NDV infection (58).
Frontiers in Immunology | www.frontiersin.org 8
Recombinant NDV (rNDV−p53) constructed of p53
oncolytic agent for the treatment of glioma improved the
prognosis of mice with glioma due to inhibition of glioma cell
growth and aggressiveness both in vitro and in vivo compared
with rNDV or p53 alone. In addition, rNDV−p53 could induce
apoptosis of glioma cells by upregulating apoptosis−related
genes, stimulating lymphocyte infiltration and cytotoxic T
lymphocyte (CTL) responses and increasing the number of
apoptotic bodies in vivo (141).

In a Phase I/II trial, intravenous delivery of the oncolytic HUJ
strain of NDV (NDV-HUJ) was well tolerated in patients with
recurrent glioblastoma and one patient achieved a complete
response (142). Currently, there are no active clinical trials
using NDV as an oncolytic agent to treat GBM.

Vesicular Stomatitis Virus
VSV is a single-stranded, negative-sense RNA virus of the
Rhabdoviridae family (81). Mild or asymptomatic infection of
humans, rare and low pre-existing immunity to the virus and
selective replication within cancer cells render VSV promising in
OVT (143, 144). The strong neurotoxicity of VSV glycoprotein is
however a major concern. A preclinical study replaced the VSV
glycoprotein with the Chikungunya polyprotein E3-E2-6K-E1 to
form a chimeric virus (VSVDG-CHIKV), which appeared safe
within the CNS. Furthermore, this chimeric virus could
selectively infect brain tumors and prolong survival
substantially in tumor-bearing mice through intracranial
injection (145). Another variant, Vesicular Stomatitis Virus
(VSV-DM51), could infect and kill both the TMZ resistant
human brain tumor stem cells (BTSCs) and the differentiated
compartments of GBMs in vitro (111). Recently, a novel
recombinant VSV, G protein less (GLESS)-fusion-associated
small transmembrane (FAST)-VSV, demonstrated antitumor
effects in animal glioma models, providing the basis for clinical
trials in the future (146).

Retrovirus
Retroviruses, belonging to Retroviridae family, are 100 nm in
diameter containing two identical single-stranded, positive-sense
RNA molecules 7–10 kilobases in length (82). TOCA 511 is an
Moloney murine leukemia virus (MLV), encoding the cytosine
deaminase (CD) gene to improve direct tumor cell killing via
local conversion of prodrug 5-fluorocytosine (5-FC) to the active
5-fluorouracil (5-FU).

In a pre-clinical study, TOCA 511 was administered
intravenously or intracranially in combination with 5-FC to
treat immune-competent mice bearing glioma. Long-term
survival and tolerability were observed, especially in animals
with preexisting immunity to the virus, suggesting the potential
for repeated administration (147).

Three Phase I clinical trial utilized TOCA 511 to treat
recurrent high-grade gliomas (rHGGs) were completed
(NCT01156584) (NCT01470794) (NCT01985256). In contrast
to the promising results of the preclinical studies and the
multiyear durable responses found in rHGGs patients in phase
I clinical trials, no benefit was shown in a phase III randomized
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clinical study (NCT02414165) (148–150). One probable reason is
that TOCA 511 is a recombinant oncolytic MLV, which can only
spread efficiently in rapidly proliferating tumor cells in
transplantable mouse tumors due to the short half-life of the
virus in the cytoplasmic compartment, while slow proliferation is
a hallmark of human cancers (151).

In a recent study, a replication competent Foamy Virus (oFV)
was constructed with the ability to infect and replicate in slowly
dividing tumor cells (151). This virus showed broad cancer
tropism in vitro, including glioblastoma (U251).

Zika Virus
Zika virus (ZIKV) is a single-stranded, positive-sense RNA virus
of the Flaviviridae family (83, 152, 153), most prominent for an
outbreak in South and Central America that raised public health
concerns globally, due to its potential to cause microcephaly in
children of mothers infected during pregnancy (154).
Irrespective of this concerning fact, ZIKV has oncolytic
potential as it can cross the endothelial barrier and
preferentially target glioblastoma stem cells (GSCs) (155, 156).

Preclinical findings indicate that Brazilian Zika virus strain
(ZIKVBR) can selectively kill human malignant brain tumor cells
(157). As it can selectively kill GSCs within the tumor, a live
attenuated ZIKV vaccine candidate substantially reduced brain
tumor growth and prolonged survival in vivo. Antiviral immunity,
inflammation, and apoptosis of GSCs are stimulated through virus
infection (158). A recent in vivo study showed that CD8+ T cells
were required for ZIKV oncolytic activity and immune checkpoint
inhibitors could improve the effect of OVT (159). Cytosine
phosphate–guanine (CpG) recoding of Zika viral genome can
reduce virus infection kinetics in nonmalignant brain cells, but
retains high infectivity and oncolysis in GSCs (160).

A study using 3 dogs bearing spontaneous CNS tumors to
evaluate the safety and therapeutic effect of Brazilian Zika virus
(ZIKVBR) through intrathecal injection showed shrinkage of
tumor, extension of survival and improvement of clinical
symptoms without negative side effect (161). Further
preclinical development of ZIKA OVT is required, including
determinants of ZIKA infection in tumor cells, IFN signaling as
well as protein expression signatures that enable viral entry and
replication (162).

M1 Virus
M1 is a positive single-strand RNA virus, belongs to Getah-like
alphavirus, Togaviridae family and was isolated from Hainan
province in China (85). A number of studies found that M1 has a
natural tropism to tumors which can be used for oncolytic
virotherapy (163–165). It has significant anticancer activity
including colon, bladder and liver cancer (164). M1 is safe and
nonpathogenic for nonhuman primates after multiple rounds of
repeated intravenous injections (62). More importantly, M1 has
the ability to infiltrate the BBB, specifically suppress malignant
glioma and prolong the survival time of glioma-bearing
immunocompetent mice (166).

Infection with M1 induces the unfolded protein response
(UPR) and subsequent autophagy. This UPR-autophagy axis can
Frontiers in Immunology | www.frontiersin.org 9
be blocked to significantly enhance the antitumor efficacy of M1
in vitro and in vivo. Expression of IRE1, a key element in the
UPR pathway, is down regulated in higher-grade gliomas,
suggesting favorable antitumor activity of M1in gliomas (167).
No clinical trials with M1 in glioma have been conducted to-date.

Semliki Forest Virus
Semliki Forest virus (SFV) is another single-strand, positive-
sense RNA virus belonging to alphavirus genus, Togaviridae
family. SFV VA7-EGFP, an avirulent SFV A7 (92) strain with
replication-competent capacity, has been evaluated in vitro in
three human glioma cell lines (U172, U251, U87) and in vivo in
subcutaneous and orthotopic tumor models in BALB/c mice.
The three glioma cell lines were effectively killed and
intravenously administered SFV VA7-EGFP completely
eradicated 100% of small and 50% of large subcutaneously
implanted U87Fluc tumors. Moreover, long-term survival was
observed in 16 of 17 animals (86, 168).

miRNA expression is cell-type restricted which can be utilized
for OVT to prevent replication of OVs in healthy tissues (169).
To reduce neurovirulence and to target replicating tumor cells,
tissue-specific micro-RNAs (miRNAs) were incorporated into
multiple alphavirus vectors (169–171). Recently, an IFN-I
tolerant SFV was constructed and tested in combination with
ICIs in GL261 glioma model. Increased tumor-reactive CD8+ T
cell infiltration in tumor microenvironment has been observed
(172). No clinical trials with SFV in glioma have been conducted
to-date.

Seneca Valley Virus
Seneca Valley virus isolate 001 (SVV-001) is a single-stranded,
positive-sense RNA virus belonging to Picornaviridae family. It is
nonpathogenic and can selectively infect and kill tumor cells,
especially tumors with neuroendocrine features (87). As for brain
tumors, a2,3- and a2,6-linked sialic acids were identified as
necessary for SVV-001 infection in pediatric GBM cell lines. In
an immunodeficient (SCID) mouse model of pediatric GBM,
intravenous injection of SVV-001 significantly prolonged
survival and completely eliminated xenograft tumors without
infecting any normal cells in the brain (173). No clinical trials
with SVV in glioma have been conducted to-date.
OBSTACLES FACED BY ONCOLYTIC
VIRUS TREATMENT OF GLIOMAS

Although oncolytic virus therapy for gliomas is promising and
many clinical trials are under way, there are still fundamental
difficulties that need to be overcome:

1. Modulating OVs-mediated host immune response
2. Discerning radiographic progression from immunotherapy-

induced pseudoprogression using neuroimaging;
3. Finding appropriate markers for therapeutic efficacy;
4. Identifying a suitable animal model;
5. Overcoming existing obstacles in OVs delivery
October 2021 | Volume 12 | Article 721830
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Modulating OVs-Mediated Host
Immune Responses
Pre-existing immunity was considered to be a hurdle for OVT as
antibodies in peripheral blood would neutralize the virus
particles and prevent OVs from reaching the tumor (174, 175).
However, recent studies have shown that pre-existing immunity
can actually boost the immune-mediated antitumor response,
e.g., in NDV-immunized mice, anti-viral immunity to NDV
improved tumor clearance, abscopal effects and mice survival,
although virus replication within the tumor was limited (176).
Even pre-existing immunity to other pathogens (tetanus) could
be exploited to enhance the anticancer immune response
triggered by oncolytic adenoviruses (177).

As for OVT induced immunity, finding a balance between the
anti-tumor and anti-viral immunity remains a big challenge for
viruses use as therapeutic agents. Immunosuppression can
increase the distribution of the virus in the tumor, but it limits
the ability of the immune system to kill the tumor. Strengthening
the host’s immune system can enhance targeting of infected
tumor cells, but it also limits the virus` distribution in the tumor
site (178). An alternative strategy to prevent the injected OVs
from clearance before they reach the target tissue are cell-based
delivery platforms. These delivery platforms can provide shelter
from the host immune response without suppression of the anti-
tumor immune-response (94, 179, 180).

Attenuation is a viable strategy to avoid the toxicity of OVs
and hyper activation of the host´s immune system. For example,
the problem of high virulence and strong immunogenicity of
ZIKV has been solved by creating a genetically modified
attenuated vaccine variant of the virus that has low virulence
and reduced immunogenicity but retains viral oncolytic activity
against GBM (158).

Innate antiviral immunity is not just a hurdle for the efficacy
of oncolytic viruses: type I IFNs can also play an important role
in antitumor host immunity (181). In glioma, loss of type I IFN
signaling promotes tumorigenesis (182). However, it is
challenging to exploit enhanced type I IFN response to OV for
OVT, but a number of approaches are being studied. One
approach is to combine ICIs with OVT, as OVs can induce
IFN release in the tumor microenvironment with upregulation of
PD-L1 expression on tumor cells (70). Also, the local
administration of a Semliki Forest virus encoding IL12 (SFV-
IL12) induces tumor-specific CTLs only when the host expresses
IFNa/b receptor subunit 1(IFNAR1) (183, 184).

A recent study has found that stimulator of interferon genes
(STING) pathway for DNA sensing has a major role in activating
the adaptive immunity (by triggering type I IFN signals) against
tumors, including gliomas (181, 185). Cytoplasmic DNA binding
with cyclic GMP–AMP (cGAMP) synthase (cGAS), which in
conjunction with STING, initiates the synthesis of type I IFN by
immune cells (186). Batf3-lineage DCs respond to type I IFN,
which can facilitate cross-presentation of antigens to CD8+ T
cells (187, 188). In other words, STING is an important bridge
between innate antiviral and adaptive antitumor immunity. It is
reasonable to hypothesize that a curative therapeutic OV would
be a virus that potently activates the innate immune system to
Frontiers in Immunology | www.frontiersin.org 10
trigger the antitumor adaptive immunity and resists the
following antiviral response of the host (61).

There is a growing concern that OVT may be a double-edged
sword with regards to tumor immunity. OVs can activate the
immune system to fight the tumor through various mechanisms
such as antigen-presentation, cytokine release and gene delivery.
However, a growing body of evidence suggests that these
mechanisms, while act ivat ing immunity, a lso have
immunosuppressive effects. For instance, GM-CSF recruits
macrophages, but whether these macrophages are present in
the form of M1 or M2 remains in question (189). Also, OVs can
upregulate PD-L1 expression on tumor cells via the induction of
IFN release in the tumor microenvironment, enabling tumor
escape from the immune system (15). Furthermore, some OVs
like the vaccinia virus and VSV possess natural immune escape
mechanisms, which also have dual effects on cancer treatment
(190, 191). These mechanisms can prevent virus particles from
neutralization, increasing replication and treatment efficacy on
one hand, but at the same time they may not be able to
adequately activate anti-tumor immunity on the other. Simply
put, OVs activate the immune system, but they also suppress it to
establish themselves. This might be the main reason that the
efficacy of OVTs as monotherapies, including T-Vec, is not very
satisfactory. Each OV influences a unique, heterogeneous
immune microenvironment. To improve OVT further, we
should find the appropriate adjuvant therapy for each
oncolytic virus and enhance the therapeutic effect based on the
underlying mechanisms.

Discerning Radiographic Progression
From Immunotherapy-Induced
Pseudoprogression Using Neuroimaging
Pseudoprogression is a big challenge in the follow-up of glioma
patients that remains unsolved at present. It can be detected in
10–30% of GBM patients on their first MRI, which shows
oedema and sometimes contrast enhancement after undergoing
radiotherapy and concurrent TMZ in the first 12 weeks (192–
194). The target lesions in these patients continue to grow on
their first MRI and then become stable, shrink, or even disappear
during the subsequent imaging follow-ups. In addition,
pseudoprogression has also been observed in cancer patients
undergoing immunotherapies (e.g. ICIs and OVT) due to the
increased immune cell infiltration (195–197).

Pseudoprogression challenges the interpretation of results
and decision-making in clinical trials (198). Steroids are
commonly used to control oedema and increased intracranial
pressure during the stage of pseudoprogression, but long-term
use can cause substantial side-effects (199). Furthermore, steroids
are likely negatively affecting any immunotherapeutic
interventions due to their well-known immunosuppressive
effects (200). The pathophysiology of pseudoprogression and
the associated molecular changes have not been fully understood
yet and require further studies.

At present, RECIST 1.1 is the gold standard for assessing
treatment response in solid tumors including gliomas but has not
fully succeeded in overcoming the challenge of pseudoprogression
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during immunotherapy (201). A consensus guideline, iRECIST,
developed by the RECIST working group tries to address this
problem (202). In addition to iRECIST, Response Assessment in
Neuro-Oncology (RANO) criteria also takes pseudoprogression in
gliomas into consideration (203). With the development of
radiologist´s expertise and further experimental tweaks,
researchers are expected to overcome the problem of
pseudoprogression soon (204–206).

Finding Suitable Markers for Evaluating
the Effectiveness of Therapy
Currently, no validated biomarkers of OVT exist. However, some
biomarkers like the components of antiviral and antitumor
immune response pathways, including IFN signaling elements,
cGAS–STING, retinoic acid-inducible gene I (RIG-I), melanoma
differentiation-associated gene 5 (MDA5), and various Toll-like
receptors (TLRs) are showing great promise in OVT (207). In a
recent study, impaired immunogenicity was shown in STING-
knockout cancer cells after oncolytic HSV-1 infection. In
immunocompetent models, STING-knockout tumors were
more resistant to treatment with oncolytic HSV-1 combined
with PD-1 blockade. With a partial or complete loss-of-function
STING genotype, patients may not take full advantage of OVT,
at least for HSV-1 (185). Therefore, STING could potentially be
used as a biomarker for the screening of patients to identify those
who can benefit from OVT. A logical next step is to analyze the
expression of genes involved in the STING pathway in glioma
patients and the effect of STING pathway in other OVTs.

In addition to cGAS/STING pathway for foreign DNA
sensing, cells equipped with RIG-I/MDA5 pathway, which
mainly serve for foreign RNA sensing (208). Both RIG-I and
MDA5 have been observed to trigger a robust innate immune
response against various tumors and effectively counteracts
tumor cell heterogeneity, especially in human primary GBM
(209–212). TLRs are the most widely studied pattern-recognition
receptors. Targeting TLRs can have anti-tumor activity by
promoting antigen presentation and activating innate and
adaptive immunity (213, 214). All three, RIG-I, MDA5 and
TLRs can be activated by some OVs, providing the possibility
for combining agonist of these receptors with OVs (215–219).
However, the combination therapy has to avoid sensitizing the
patient to a cytokine shock-like response induced by IV delivery
of OVs (220). Also, some receptors like TLRs are expressed on
glioma cells with tumor-promoting properties, which should be
taken into account when developing agonists into cancer
immunotherapeutic (221).

Several other potential biomarkers are under investigation,
including the number, density and localization of immune cells
(NK cells, DCs, Treg cells, CD4+/CD8+ T cells), the levels of
checkpoint molecules (PD-L1, CTLA-4, LAG-3), the presence of
viral antigens in tumors and other pathways like IRE1 (15, 74,
134, 167, 222, 223).

Currently, since OVT biomarkers in glioma have not been
validated in clinical trials, they usually do not affect trial
enrollment. OVs are not usually based on specific markers
because they are not just targeting one molecule during the
Frontiers in Immunology | www.frontiersin.org 11
infection. The complex mechanism of OV makes the prospective
use of a single marker insufficient to assess the therapy success.

Using OVs with knowledge of the specific mechanisms of
their action will greatly benefit the OVT: appropriate markers
can provide information about whether these mechanisms are
working or not. More details on potential biomarkers for OVs in
GBM were recently reviewed by Stavrakaki et al. (224).

Identifying a Suitable Animal Model
Clinical trials are guided by preclinical studies. Therefore, it is
very important to apply the models that are most suitable for
clinical research. An ideal experimental model of glioma should
meet the following requirements: 1) tumor microenvironment
that resembles human tumors in the brain; 2) genetic
background that is similar to human gliomas; 3) a well-
developed immune system that resembles human immunity;
4) intratumoral heterogeneity; 5) manipulability; 6)
reproducibility; 7) cost-effectiveness; 8) ethical compliance
(225). Currently, the majority of the preclinical studies for
glioma include syngeneic models, xenografts models,
genetically engineered models (GEMs) and resection models.
Although each has different advantages and disadvantages, none
of them can meet all of the above requirements (226–231).

It is worth mentioning that established glioma cell lines and
primary glioma tumors (highly heterogenous) have substantial
differences in both genomic alterations and gene expression,
indicating that glioma cell lines may not be an ideal model
system for primary gliomas (232). Until now, rodents have been
commonly used for most preclinical studies, however, they are
not the best models for assessing OVT. Some OVs are species-
specific and unable to efficiently infect and replicate in murine
cells (e.g. human specific adenoviruses) (233). Consequently, the
use of xenografts may offer a solution to this problem, but the
complexity of the tumor microenvironment is not reproduced. A
study using Syrian hamster as an immune-competent model
found that this model could support the replication of both
human-adenovirus and vaccinia virus.

New glioma models are emerging that provide more
opportunities for preclinical research. These models include
new ways of organizing cells outside the body, such as
organoids, that better mimic natural gliomas. They also include
new organisms such as zebrafish, fruit flies and dogs (234–237).

Overcoming Existing Obstacles in
OVs Delivery
Current delivery approaches include local delivery (intracavitary,
intrathecal, and intratumoral delivery) and systemic delivery
(intravascular delivery) (238).

Many OVs have been studied in patients with glioma by
intracavitary or intratumoral injection, including HSV-G207,
HSV-1716, adenovirus-dl1520 (ONYX-015) and reovirus.
Intracavitary delivery is an established way to treat gliomas,
but it has been limited by the poor penetration ability of drugs
reaching only tumor cells adjacent to the surgical cavity.
Therefore, intracavitary delivery usually requires a maximal
surgical resection (239). Intratumoral delivery is the primary
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way for most oncolytic viruses in clinical trials of glioma
treatment, including adenovirus, herpes simplex virus, measle
virus and enterovirus (240). Studies show that intratumoral
injection can not only induce tumor lysis in the injected region
but also trigger systemic antitumor immunity of the whole body
(59, 123). Direct injection of oncolytic viruses into tumors
primes T cells specific to virus components as well as tumor
cells and induces local inflammation. This inflammatory
condition allows recruitment of more T cells, thus promoting
recognition and destruction of tumors (241). Intratumoral
delivery requires careful patient selection, and technically
challenging neurosurgery, limiting repeat administration
(Figure 3) (15). Another challenge is to balance the degree of
local immunosuppression which is discussed in section
“Modulating OVs-Mediated Host Immune Responses” CED is
an intratumoral delivery using continuous, low–positive-
pressure bulk flow to deliver drugs through the implantation of
catheters. The difficulty of delivering repeated doses and the
uncertainty in achieving meaningful drug concentrations
throughout the brain makes this approach challenging (92). In
the future, OVT may be based on local, image-guided delivery,
which will allow direct visualization of the injection site,
maximizing the availability and potential effectiveness of the
OVs (242).

Systemic vascular delivery is becoming an option for more
and more OVs. Current studies have found that several viruses,
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including reovirus, vaccinia virus, Newcastle disease virus,
parvovirus H-1, chimeric vesicular stomatitis virus, and M1
virus are able to infect brain tumors in animal models after
systemic vascular delivery (61). In addition, clinical studies
demonstrated that parvovirus H-1 and reovirus can reach the
brain after systemic delivery (15, 60, 110). Compared with local
delivery of OVs, systemic delivery can better stimulate immune
responses throughout the body, particularly in metastasis.
Because of the known heterogeneity of tumor cells, it is
important to stimulate antitumor responses to a wide range of
tumor associated antigens (TAAs) (243). However, there are
many difficulties associated with systemic delivery that have yet
to be overcome (Figure 3):

1. The intact BBB is able to block the passage of most viruses;
2. Even if the BBB is disrupted, the host immune system outside

the CNS can neutralize the viruses;
3. Off target effects may lead to the infection of host tissue.

Pre-clinical studies have demonstrated that low-intensity
pulsed ultrasound in combination with systemically injected
microbubbles could temporarily open the BBB in a localized
manner (244). This concept is currently undergoing clinical
trials, and has already demonstrated safety and tolerability in
patients, and therefore may provide enhanced systemic OV
delivery capabilities (245, 246).
FIGURE 3 | Obstacles to OVT of gliomas via intratumoral and systemic delivery. For intratumoral delivery only, 1) the expense and complexity of neurosurgical
procedures, limiting repeat administration. For systemic delivery only, 1) After injection, the first challenge is neutralization of OVs by antibodies in the peripheral
blood; 2) Off target effect is the second challenge for systemic delivery since OVs may not be able to reach to the brain and cause infection to normal tissue (e.g.
liver); 3) even if OVs can reach to the brain, the intact BBB is able to block the passage of most viruses. For both intratumoral and systemic delivery, 1) Innate anti-
viral response can prevent OVs from interacting with tumor cells; 2) the specific tumor microenvironment is also resistant to OVs infection and suppresses the OVs-
induced anti-tumor immune response; 3) tumor heterogeneity can make OVs insensitive to part of tumor cells.
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It is worth paying attention to antiviral antibodies that already
exist in patients, as they can be an obstacle to the systemic
delivery of the virus. Cellular carriers can protect some OVs (eg,
reovirus) from neutralizing antibodies (76). However, more and
more studies show that preexisting immunity to OVs can
enhance their therapeutic efficacy by inducing a more robust
antitumor immune response, which has been observed not only
with systemic delivery, but also with local delivery (176, 247).

Recently, a peptide-delivery platform for targeting malignant
brain tumor in an immunocompetent syngeneic murine GBM
model was developed. The approach enhanced targeted OV
delivery and therapeutic efficacy (248). It is promising that
with more clinical evidence in the future, negating the
requirement for repeated invasive cranial procedures, systemic
delivery may provide safer and more effective access to gliomas.

There is a shared problem of both local and systemic deliveries:
the heterogeneous genotype/phenotype makes the tumor
microenvironment challenging for viral replication (249).
Diverse levels of IFN response in tumor microenvironments due
to tumor heterogeneity make tumor cells in which the antiviral
pathway is functioning well, insensitive to OV (250). The
combination of several oncolytic viruses, as well as the
combination of OV and other immunotherapies based on a
different anti-tumor mechanism, may be a viable approach to
address the problem of tumor heterogeneity. Overall, multiple
approaches are currently undergoing clinical trials to overcome
significant difficulties in efficient OV delivery to the CNS.
COMBINATION WITH OTHER
IMMUNOTHERAPIES

Immunotherapy is a well-established cancer therapy. The
following types of immune therapies are used in clinics for
treating brain tumors: immune checkpoint inhibitors, anti-
tumor vaccines, adaptive T-cell transfer and cytokines (251).
Gliomas have immunosuppressive microenvironments, that
limits the effectiveness of traditional immunotherapy. The
infection and replication of oncolytic viruses in tumors can
activate the anti-tumor immunity and turn “cold” tumors into
“hot” ones (252). More and more evidence suggest that oncolytic
viruses can enhance the effect of immunotherapy. In preclinical
studies, many OVs launched an effective antitumor response
against TMZ resistant glioma (111, 117). Also, non-overlapping
mechanisms have been found between OVs and other
immunotherapies (253). These findings suggest that there may
be no cross-resistance to OVs and other glioma treatment.

Immune Checkpoint Inhibitors
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies
that inhibit cytotoxic T lymphocyte antigen 4 (CTLA4) or PD1
and its ligand PDL1 to reactivate the immune system against
tumor (254). Several phase III clinical trials of ICIs for the
treatment of glioblastoma are underway, including therapy
with ipilimumab to block CTLA-4 and nivolumab to block
PD-1 (NCT02017717, NCT02617589). However, in the
treatment of patients with recurrent GBM, no significant
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differences in overall survival (OS) were shown when
comparing nivolumab (anti-PD1) and bevacizumab (anti-
VEGF) (255). Brain metastases respond better to ICI compared
to primary brain tumors (NCT02320058). Probable reasons for
the limited response to ICIs are: relatively low mutant load, little
T cell infiltration and immunosuppressive microenvironment in
GBM (10). In addition, infiltrating PD-1-expressing T cells are
rare in GBM, and tumor cells rarely express PD-L1, making for a
“cold” tumor microenvironment (9).

OVs can enhance the immune responses by increasing
infiltration of immune cells to tumors and improve the efficacy
of ICIs, thus reconditioning the tumor microenvironment and
transforming a “cold” tumor microenvironment into a “hot” one
(52, 252). Studies suggest that OVs can be used to prime the
immune response init ia l ly to create a ‘hot ’ tumor
microenvironment and make brain tumors sensitive to
subsequent ICIs treatment (15, 256). Moreover, OVs can
upregulate PD-L1 expression on tumor cells via the induction
of IFN release into the tumor microenvironment, thus improving
the therapeutic response to ICIs (15). Also, OVs can be
engineered to express PD-L1 inhibitors, which can activate
tumor neoantigen-specific T cell responses (257). In an
immunocompetent mouse model of glioma, OVs combined
with ICI have shown promising results. Among these viruses
in combination with anti-PD-1 were tested adenovirus Delta-24-
RGDOX, HSV (G47D-mIL12), VSV, reovirus, and measles virus
(134, 258–260).

Of note, a multi-institution randomized clinical trial using
neoadjuvant anti-PD-1 immunotherapy for the treatment of
recurrent glioblastoma has shown positive results. The trial
was conducted by The Ivy Foundation Early Phase Clinical
Trials Consortium. OS was significantly longer for neoadjuvant
plus adjuvant pembrolizumab compared to adjuvant
pembrolizumab alone. Interferon- and T cell-related gene
expression was upregulated while cell cycle-related gene
expression was downregulated within the tumor only in the
neoadjuvant group (261). All these findings suggest that
scheduling of ICI and OV therapy might be of major
advantage and should be explored in future trials. Overall, ICIs
are the most promising therapy for combination with oncolytic
viruses. Since ICIs can affect OV-induced antiviral and
antitumor immunity, further studies of the immune responses
triggered by these agents could significantly contribute to the
development of OV plus ICI combination therapy (61).

Cancer Vaccines
There are several types of cancer vaccines, including cell-based,
protein, peptide, and genetic vaccines (249). Cancer vaccines
against brain tumors have broad application potential. However,
most tumor vaccines fail to recruit sufficient T helper cells and
display reduced MHC II epitope on DC surfaces, thus lacking
support to the enhancement of antitumor T-cell immunity (262,
263). The search for an optimal strategy for the use of antitumor
vaccines to enhance antitumor T-cell immunity is the main
direction of research in this area. The combination of vaccines
with oncolytic viruses is a promising therapeutic approach, since
T-cell immunity can be further improved with virotherapy (264).
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Dendritic Cell Vaccines
In phase I and II trials, DC vaccines increased cytokine
production in patients with gliomas after treatment and
improved survival (265). The most advanced DC vaccine
currently in clinical trials is ICT-107, which has been shown to
be safe and effective. In a phase II study of 124 patients with brain
tumors, compared with a control group, ICT-107 significantly
improved progression-free survival (PFS) while maintaining
QoL (quality of l i fe) (266, 267). To maximize the
immunogenicity of DCs, the focus is on optimizing the
culturing conditions for DC generation in vitro (268).
Additionally, preclinical studies have shown that oncolytic
HSV-1 in combination with immature myeloid dendritic cells
(iDCs) can reduce tumor volume and prolong survival by
enhancing antitumor immunity in murine malignancies. OVs
have the potential to enhance the therapeutic effects of cancer
vaccines in combination therapy (269–273).

Peptide Vaccines
A specific tumor antigen that can be targeted by peptide vaccines
can be represented by the following genes EGFRvIII, IDHR132H,
Wilms tumor 1 (WT1) and survivin. In a phase II trials, a peptide
vaccine targeting EGFRvIII improved survival in glioblastoma
substantially, but the effect could not be replicated in a
randomized phase III trial (8, 274). In a non-randomized trial,
another peptide vaccine against WT1 improved the survival of
patients with glioblastoma by stimulating the anti- WT1 IgG
responses (275). Further, in a preclinical study, synthetic long
peptides (SLPs) combined with oncolytic Maraba virus (MG1-
E6E7) showed a significant anti-tumor effect against advanced
HPV positive neoplasia. MG1-E6E7 expresses a tetravalent
transgene, which is based on attenuated viral oncogenes E6
and E7 from HPV16 and 18. HPV-associated cancers may
become an attractive target for peptide vaccination through the
expression of these transforming viral oncogenes. MG1-E6E7
substantially enhanced the specific CD8+ immune responses
induced by SLP vaccination (276). It is expected that the
combination with OV will soon be tested on gliomas.
However, antigenic loss is a substantial obstacle to single-
peptide vaccinations. For example, several studies have shown
that most patients gradually lost EGFRvIII expression after
treatment, leading to tumor recurrence (274). Therefore, multi-
peptide vaccines may be required to target glioma variable
antigens to improve treatment efficacy (277, 278).

Recently, phase I clinical trials of glioblastoma have shown that
neoantigens vaccines can induce intratumoral T-cell responses
(279). This could represent an interesting alternative approach to
improve the effectiveness of OVT treatment in glioma.

Adoptive Cell Therapy
ACT holds considerable promise for the treatment of brain
tumors. T cells are extracted from patients, cultured and
proliferated in vitro to improve their ability to recognize and kill
tumor cells, and then injected into patients. ACT includes tumor-
infiltrating lymphocytes (TILs) and genetically engineered T cells.
TILs have been reported to induce regressions in some tumor
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types, but it is difficult to isolate and expand TILs from the CNS
(18). The administration of autologous CMV- specific T cells offer
a new way to treat brain tumors (280). However, chimeric antigen
receptor (CAR) T cells therapy for brain tumors still faces
significant challenges, such as heterogeneity of target antigens in
tumor cells, induction of compensatory immunosuppressive
response in the brain and failure to recruit infused T cells into
brain tumors (281–284). Better strategies are needed to assist T
cells in efficient infiltration, overcoming the immunosuppressive
GBM microenvironment and handling the immune-related
complications associated with ACT (10).

Combination with emerging OVs offers massive opportunities
for ACT to overcome these obstacles. OVs can assist in the
recruitment and activation of selected or engineered T cells in
the tumor bed (285). Also, OVs can up-regulate the expression of
MHC class I molecules by tumor cells, which can improve the
targeting of ACT to tumor-specific antigens (286). In murine
neuroblastoma models, arming adenovirus with the chemokine
like CCL5/RANTES and the cytokine IL-15 not only preserved
their oncolytic effects but also enhanced the migration and
proliferation of the tumor- associated ganglioside GD2 CAR T
cells, thereby increasing overall survival (287, 288).

Unexpectedly, another pre-clinical study demonstrated that
OV-associated type I IFN response has negative effect on CAR T
cell therapy (289). The inflammatory environment generated by
the oncolytic viruses and the remodeling of the tumor
microenvironment neither helped in recruiting CAR T cells
nor enhanced their functionality. The concentration of type I
IFN in the tumor was inversely correlated with the number of the
CAR T cells. Furthermore, IFNAR1 knock out CAR T cells
showed resistance to the negative effects caused by OVs in the
setting of lymphodepletion or NK cell depletion. A solution may
be to limit the type I IFN signaling associated with an OV or
making CAR T cells insensitive to type I IFN. Serving as soluble
type I IFN decoy receptor, the expression of B18R gene in
vaccinia virus may improve the combination of oncolytic
vaccinia virus with CAR T cells in a TC1-mesothelin model
(289, 290). Negative effects on ACT efficacy are not the only
effects of type 1 IFN that can be caused by OV in tumor. There
may be other effects as well. The key role of type I IFN in tumors
should be considered more broadly with OV re-dosing when the
endogenous T cell compartment may be depleted. For the time
being, there are few experimental studies on the combination of
ACT with oncolytic viruses in gliomas. However, these studies
show that the combined approaches of OV and CAR T cells are
promising for the treatment of brain tumors.

Immunotherapeutic Modulators
Multiple OVs have been armed with different anti-tumor
cytokines to activate the tumor microenvironment and
enhance anti-tumor immunity induced by OVs (98).

IL-12 can produce multifaceted anti-tumor effects but has
been shown to have serious adverse effects when administered
intravenously (291, 292). Recent studies found that OVs can
limit the systemic toxicity of IL-12 by expressing IL-12 locally in
the tumors as well as in the brains of non-human primates (293,
October 2021 | Volume 12 | Article 72183
0

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zeng et al. Oncolytic Viruses for Cancer Immunotherapy
294). In a murine GSC model, oncolytic HSV-1 encoding IL-12
(HSV-1-IL-12) replicated in GSCs in vitro and enhanced survival
of syngeneic mice bearing GSC-derived tumors in vivo.
Furthermore, HSV-1-IL-12 can activate anti-tumor immune
response through increasing IFN-g release and reducing the
number of regulatory T cells in the tumor (98). At present, in
a phase I clinical trial, an engineered HSV-1 expressing IL-12, to
treat recurrent glioma is recruiting volunteers (NCT02062827).

The gene for granulocyte macrophage colony stimulating
factor (GM-CSF) has been used in several OV constructs. GM-
CSF enhances the activation of NK cells and CD8-mediated T
cell response downstream in OVT by promoting maturation of
monocytes in DCs and improving the DC’s ability to present
antigens (295, 296). Many other constructs are also being
investigated, including HSV-1-IL-4, VACV-CCL5, VSV-IFNg
and VSV-IL-15, ADV-IL-15 (259, 270, 297–301). There is no
doubt that OVs encoding immunotherapeutic modulators for
the treatment of malignant gliomas will become more and more
popular in clinical studies.
FUTURE DIRECTIONS

Because of the complex interactions between the tumor and its
host, gliomas remain lethal and conventional therapies have
improved little in recent years. Gliomas are heterogeneous
tumors and tend to be difficult to target for immunotherapy
since they contain few mutations (18). Immunotherapy can only
be successful if its effect reaches the brain and overcomes the
difficulties associated with tumor heterogeneity and tumor
targeting. The most significant result of OVT clinical trials is
that this therapy is well tolerated by patients with glioma and has
relatively rare serious side effects. Overall, OVT offers a selective,
innovative and safe approach to treating glioma (44).
Furthermore, antigen-specific T cells in gliomas display an
exhausted phenotype (302, 303). OVs have the potential to
change the phenotype of T cells from exhausted to activated
type and provide more possibilities for the combination of an
oncolytic virus with other immunotherapies (59). However, the
mechanisms of interaction between tumor, host and OVs in
brain tumor microenvironments have not been fully elucidated.
Further study is needed to maximize the efficacy of OVs.

As discussed in section “Modulating OVs-Mediated Host
Immune Responses”, OVT may be a double-edged sword
because OVs can not only activate the immune system but also
suppress it to establish themselves. Different viruses can create
different tumor microenvironments. Therefore, in the future,
improving OVT by finding the appropriate adjuvant therapy for
each OV and enhancing the therapeutic effect considering the
underlying mechanisms should be the norm. In principle, two
ways can be used to achieve this: combination therapy and
arming the OV with adjuvant factors.

At the same time, personalized therapeutic approaches are
becoming feasible for OVT. An ideal combination of appropriate
viruses could be chosen according to the type, stage and
biomarker expression of glioma. The success of oncolytic
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virotherapy may not only require careful screening of patients
based on different mutations and protein expression in their
tumors, but also require the selection of suitable OVs for a
particular tumor. An ex vivo 3D tumor model generated from
fresh tissue provides a culture condition that supports further
researches into the dynamics of viral infection and the
interaction with local immune system in the specific tumor
microenvironment (304). With application of this system, it is
possible to screen multiple OVs for a specific patient and
establish the optimal OVT (224). Undoubtedly, identifying the
optimal dosing, route of administration and schedule in OVs
treatment requires further investigation. The sequence of
application of different agents involving OVs is still under
investigation. Well-designed clinical trials will pave the way for
suitable, effective, and precise OV glioma treatments in
the future.

Approaches are being developed that combine oncolytic
virotherapy and many other types of immunotherapies. As two
or more agents are combined, there is always a concern about the
increased overall toxicity. Therefore, it is important to find more
synergistic combination therapy modalities and to further
understand the mechanisms of each therapy and clinical effects
on immune response (305). Currently, more and more
combinatorial clinical studies are under way, which
undoubtedly indicates that the application of oncolytic viruses
in glioma has great prospects (Tables 2, 3).
CONCLUSIONS

The development of OV for the treatment of gliomas has been
going on for over two decades, and the potential of this therapy is
being recognized in an increasing number of studies. As a special
immunotherapy, OVT can not only kill gliomas directly, but can
also activate the body’s effective anti-tumor immunity, which can
cause a synergistic effect with other immunotherapeutic
methods. However, much remains to be learned about OVT
and combination therapy, including the mechanisms that
mediate the immunosuppressive microenvironment of brain
tumors, optimal OVs intratumoral delivery, selection of most
appropriate OVs and immune targets for different tumors, and
molecular markers for prediction of therapeutic efficacy. The
approval of G47D (Delytact/Teserpaturev) for the treatment of
glioma in Japan, although time-limited and conditional, is the
culmination of decades of OVT research in glioma.
Undoubtedly, oncolytic viro-immunotherapy of gliomas has
great prospects and, in the future, will have a great impact on
cancer therapy.
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