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Electrocardiographic signals (ECG) and heart rate viability measurements (HRV) provide
information in a range of specialist fields, extending to musical perception. The ECG
signal records heart electrical activity, while HRV reflects the state or condition of the
autonomic nervous system. HRV has been studied as a marker of diverse psychological
and physical diseases including coronary heart disease, myocardial infarction, and stroke.
HRV has also been used to observe the effects of medicines, the impact of exercise
and the analysis of emotional responses and evaluation of effects of various quantifiable
elements of sound and music on the human body. Variations in blood pressure, levels of
stress or anxiety, subjective sensations and even changes in emotions constitute multiple
aspects that may well-react or respond to musical stimuli. Although both ECG and
HRV continue to feature extensively in research in health and perception, methodologies
vary substantially. This makes it difficult to compare studies, with researchers making
recommendations to improve experiment planning and the analysis and reporting of
data. The present work provides a methodological framework to examine the effect of
sound on ECG and HRV with the aim of associating musical structures and noise to the
signals by means of artificial intelligence (AI); it first presents a way to select experimental
study subjects in light of the research aims and then offers possibilities for selecting and
producing suitable sound stimuli; once sounds have been selected, a guide is proposed
for optimal experimental design. Finally, a framework is introduced for analysis of data
and signals, based on both conventional as well as data-driven AI tools. AI is able to
study big data at a single stroke, can be applied to different types of data, and is capable
of generalisation and so is considered the main tool in the analysis.

Keywords: noise, music, machine learning, deep learning, performance evaluation, research methodology

INTRODUCTION

While the electrocardiogram (ECG) is an electrical recording of heart activity, heart rate variability
(HRV) is a measurement derived from the ECG signal that provides information about the state or
condition of the autonomic nervous system (ANS) (1). Given that HRV is linked to autonomic
cardiac control, it has been studied as a marker for diverse diseases (2), both physical (3) and
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psychological (4)—e.g., for coronary heart disease, myocardial
infarction, and stroke (5). HRV has been used to observe,
among other indicators, the effects of medicines (6, 7), emotional
responses (8), and the impact of exercise (9). Research has shown
that HRV is affected by stress, as a result of low parasympathetic
activity; stress reflects a sympathetic dominance (10), while
relaxation states are associated with parasympathetic dominance
(11, 12). Just as it has been measured to observe the effects
of various elements on the human body, HRV has also been
considered in assessing the effects of sound and music (13).
Studies have been undertaken to look at the effect of music
therapy (14) and diverse soundscape conditions (15). Given that
it is a measurement related to both ANS and the state of the
heart, HRV is a crucial record able to provide information about
multiple aspects that might react to music. These include changes
in stress levels (16), emotions (17), anxiety (18), subjective
sensations (19), and blood pressure (13).

Although ECG and HRV are widely used in research
related to health and perception, the studies vary greatly in
their methodology. Koelsch and Jäncke therefore affirm the
need to develop high-quality systematic research to study the
effects of music on the heart—implying the implementation of
standardised methodologies in this type of research (13, 20, 21).
From experimental design to methods of data analysis and
reports, huge variation is found. Researchers have therefore
proposed several recommendations about measuring HRV for
experiment planning, data analysis, and data reporting (22).
Nevertheless, as the recommendations generally address an
global focus, it becomes necessary to develop methodologies
focused on specific stimuli such as sound and music and
their characteristics (21). These methodologies should be guided
towards how stimuli are able to affect physiological signals such
as HRV (23) and autonomic control of the heart (24). Bearing in
mind these conditions, this document proposes a methodological
framework to design new experiments to study the effects of such
sounds as musical structures and noise on ECG and HRV signals;
the need for this framework arises as a result of the difficulty of
making comparisons between many of the studies carried out on
this topic.

The framework reveals just how complex any research
examining the effects of sound on the heart might be. Shown
within the framework are as many elements to be considered
as possible, however clearly not all of these elements are
presented in their entirety. Instead, providing general guidelines
in this type of research and understanding that the topic is
very complex, the framework makes no claim to be a set of
unbreakable rules. Rather, the guidelines should be adapted to
each study and the possibilities featured therein, the ultimate
goal being that research on this topic might begin to be
standardised. Future research could thus be more productive
and even more conclusive as different studies will have a better
chance of being able to be compared. Similar findings, as well
as points of disagreement might then be illustrated, based on
firmer foundations.

In the first instance, this document puts forward some
elements of experimental design, such as definition of the
experimental procedure, selection of subjects and sounds

FIGURE 1 | Block diagram of framework.

according to the research aims, and elements required for data
collection. It then presents a framework for data analysis, in
which it introduces the selection of data analysis techniques,
methods of analysis of demographic, perception, ECG and
HRV data, and elements to associate stimuli with ECG and
HRV signals. Finally, some recommendations for the report of
outcomes are presented.

FRAMEWORK DESCRIPTION/DETAILS:
MATERIALS AND EQUIPMENT

The framework comprises three main components (Figure 1):
experimental design and procedure; data analysis; and report of
outcomes. In the following sections, each is described along with
the elements it contains.

EXPERIMENTAL DESIGN

The first phase involves experimental design. It is necessary
here to clearly establish the aim of the study, according to
which the experimental procedure will be defined, and subjects
and sound stimuli selected. Devices for signal/data acquisition
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TABLE 1 | Experimental designs and their description (25, 26).

Experimental design Description

Between-subjects (27) Each stimulus or set of stimuli is administered to a different group of subjects, minimising learning and transfer
across conditions; shorter sessions, set-up more accessible than for within-subject.

Within-subjects (28) All subjects are exposed to complete set of stimuli, one each time; fewer participants, minimising random noise.

Mixed (29) Considers both between-subject and within-subject designs; allows evaluating effects of variables that cannot be
manipulated in a within-subjects design because of irreversible carryover effects.

Nested (30) Different possibilities exist in this category, including assignation of the whole group to the same stimuli, with
different groups assigned to different stimuli; generality of outcomes is increased.

Combined (31) This design includes more than one type of variable, for example combining correlational and experimental
variables.

Correlational (32) Descriptive method to determine if two or more variables covary and the nature of the relationships between them.
Although less time-consuming than experimental research, the correlational method does not allow controlling
observed variables nor establishing causality between them.

Pre-test–post-test (33) This design performs pre-test of subjects on a dependent variable before presentation of stimuli; post-test is then
carried out. Used to assess effects of change in observed variables; susceptible to carryover effects and requires
control group.

Quasi-experimental (34) [Time
Series/Samples (35),
Interrupted Time Series]

Use quasi-independent rather than independent variables, observing the quasi-independent variable in naturally
occurring conditions. No control over this variable should be carried out, however, such that use of a control group
is suggested.

Developmental
[cross-sectional (36),
longitudinal (37), or
cohort-sequential (38)]

Useful for figuring out changes in observable variables over time. Studies mostly focus on how age, cohort,
gender, and social class influence development. In the cross-sectional approach, subjects of different ages are
exposed to the same stimulus and studied at a unique time. In the longitudinal design, subjects are exposed to
the stimuli several times during a specific time period. In the cohort-sequential approach, subjects from a
cross-sectional sample are exposed to stimuli twice or more over a period of time.

should be selected and measurement conditions optimised.
Ideally, an interdisciplinary team should be formed to design
the experiments, including health professionals (physicians,
psychologists), experts in data analysis, computing science and
statistics, and professionals in music or music therapy, with the
resulting design benefiting from research from these disciplines.
It is important to consider that, depending on the study aim,
the experimental design ought to allow researchers to perform
causality analysis, i.e., to establish cause-effect relationships.

Defining Experimental Procedure
Definition of the experimental procedure is critical and involves
carrying out as many pilots as necessary to fully adjust all
procedures. Note that at this point, given the multiple design
options, only general indications are provided.

Experimental Design and Procedure
In the design, it is necessary to select between existing
experimental designs (25) or a mixture of several, taking account
of advantages and disadvantages and the aim of the study
(Table 1).

Other relevant elements to consider in experimental design
are physiological and psychological measurements, baseline
measurement, stimuli presentation, possible carryover effects,
and consideration of a control group. All physiological and
psychological variables should be defined to achieve the research
aim. Baseline measurement is recommended in all observable
variables and may become a useful information source in the
data analysis phase. The method of presentation of stimuli
should be selected in such a way that study subjects will be
as affected by them as much as possible. Experimental design

should consider any source of carryover effects such as learning,
fatigue, habituation, sensitisation, contrast, and adaptation (25).
Design should reduce these unwanted effects. Finally, the design
should establish consideration of inclusion or exclusion of a
control group, based on the aim and hypothesis of the study, and
conditions or limitations in resources and in the sample available.

It is good practise to consider a control group. The control
group should not be in a state of silence and subjects in this
group should receive a type of stimuli (13) different to that of
the study group(s). Where a control is not possible, effects could
be established in respect of subject baseline measurements.

System Selection
Subject Selection
Given the study goal, the research population is selected
(children, young people, men, women, with a particular disease
or in good health) and inclusion and exclusion criteria (39)
defined. A general flow process is proposed below (Figure 2):

Regardless of application of pre-determined inclusion and
exclusion criteria, the following steps are proposed:

1. Selection of subjects according to age range and gender.
2. Definition of whether the research concerns musicians/music

students or non-musicians, or a mix. Note that perception of
music and noise in musicians could produce an outcome bias,
as it may differ from that of non-musicians (40–42).

3. Assessment of physical and psychological condition
through medical evaluation or tests such as General
Health Questionnaire (GHQ) (43), Medical Outcomes
Study 36-item Short-Form Health Survey (SF-36) (44),
Instrumental Activity of Daily Living (IADL) (45), Patient
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FIGURE 2 | A general flow diagram to select and apply inclusion and
exclusion criteria.

Health Questionnaire (PHQ) (46), and State-Trait Anxiety
Inventory (STAI) (47). These evaluations can be applied
in the inclusion and exclusion of subject; moreover, if
performed after experimental procedures or as part of them,
they could be considered as a source of information that
might be susceptible to analysis as a response to stimuli or
experimental procedures.

4. Selection of subjects based on their health conditions.
According to the previous evaluation, healthy subjects or
subjects with a specific disease should be chosen; in the latter
case, it is essential to control the type of medicine taken, as
some medicines could affect outcomes unexpectedly.

5. Providing subjects with all necessary indications before
the experiments. Indications might include avoiding
consumption of heavy meals, psychoactive substances,
alcoholic beverages, stimulants, caffeine, and tobacco during
at least 24 h before experiments or data acquisition. These
substances could affect experimental measurements since they
could produce unwanted effects both in physiological (heart
rate, blood pressure) and psychological variables (anxiety)
(48). Moreover, refraining from the practise of sport and
exhaustive exercise is suggested between 24 and 48 h before
data acquisition (49–51). Finally, on compliance with given
instructions, subjects may be included for participation in the
experimental phase.

Selection and Conditioning of Stimuli
It should be decided if both music and noise are to be used.
Nevertheless, where it is important to consider more than one
type of stimuli, the use of an acoustical control stimulus is
recommended (13). If the study is linked to music, music
with lyrics and stimuli with verbal content should be avoided
unless the experimental design requires it. Verbal content could
produce additional effects (52), deviate outcomes or perhaps
overcome effects produced by stimuli with no verbal content

(52, 53). A general flow process is proposed to select sound
stimuli (Figure 3).

Regarding the selection of music, it is first necessary to
define if the research is to involve simple structures—scales,
simple melodic lines, harmonic intervals, chords and simple
progressions—for an in-depth analysis of the bare essence of
music, or more complex structures—complex melodic lines,
chord progressions, sections or complete songs or musical
pieces—for a more general perspective. Having thus defined
musical structures, it should be established whether these will
be synthetic or natural. Where design permits, the use of
synthetic sounds is recommended, since is possible to exert more
control over several stimuli characteristics—frequency content
(timbre), homogeneity in the range of sounds, and precision in
playback. Synthetic sounds are also suggested if the study focuses
on more profound or specific elements of music. In contrast,
natural sounds might be preferred if the research has a more
general approach.

Apropos of sound synthesis, it is possible to select between
several methods according to sound type (54). For instance,
to synthesise pitched sounds, it is recommended to use
additive synthesis, concatenative/granular synthesis, frequency
modulation synthesis, or oscillators (55). Alternatively, for
acoustic instrument sounds, wavetables, waveguides/physical
models, concatenative/granular synthesis, or additive
synthesis (55) are encouraged. For textures and soundscapes,
concatenative/granular synthesis, linear predictive coding,
stochastic and wavelet-based methods (55) are favoured.

Concerning noise selection, noise sounds can be chosen
principally by considering their frequency content, selected
from six main types (56): brown, pink, white, grey, blue, and
purple. Selection is made using frequency bands. For instance, to
study low frequencies, pink or brown noise should be selected;
for higher frequencies, blue or purple noise, while white or
grey noise is suitable when considering all of the frequencies.
Once sounds are selected, stimuli are presented in at least
standard CD quality, i.e., sample rate of 44.1 or 48KHz and 16
bits per sample (57). Similarly, synthetic sounds should meet
sound/acoustic research standards, such as ISO 226: Acoustics—
Normal equal-loudness-level contours (58); ISO 16: Acoustics—
Standard tuning frequency (Standard musical pitch) (59); and
ISO 266: Acoustics—Preferred frequencies (60). If there is no
focus on effects of sound level, volume, intensity, or loudness, the
loudness of all stimuli should be normalised, applying methods
such as ReplayGain (61); the sound equivalent level in dB should
be the same for all the considered stimuli. Furthermore, it is vital
to consider sound levels according to the dose of sound energy.
Following the WHO-ITU standard: Safe listening devices and
systems (62) is advised.

Data Collection
Consent Form
All procedures ought to be conducted under the Helsinki
Declaration, where it should be ensured that subjects will not
be at risk. A consent form with a description of the research
and experimental procedures must be approved by a competent

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 August 2021 | Volume 8 | Article 699145

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Idrobo-Ávila et al. Data-Driven Approach to Sound Influence

FIGURE 3 | A general flow diagram to select the sound stimuli.

ethical committee and the form presented to be voluntarily
signed by each subject before beginning the experimental process.

Measurement Conditions
For data acquisition, it is important to ensure study subjects are
as comfortable as possible. In this way, outcomes are much less
likely to be influenced by tiredness or discomfort. Maintain light
exposure and influence of external sounds as low as possible.
Subjects should be in a comfortable posture, e.g., in a supine
position or sitting in a comfortable chair, to be more focused on
the proposed task(s). They might also reduce body movement,
improving the process of physiological signal acquisition. It is
important to emphasise that the posture of the subjects needs to
be standardised (supine or sitting) since gravity influences the
baroceptors, affecting the HRV and the analysis that could be
carried out.

Elsewhere, subjects should be alone during experiments.
Where procedures allow, one subject per room is preferable,
to avoid dealing with conditions involving more subjects.
Researchers themselves should stay out of the experiment room.
Wheremonitoring the subjects is necessary, remote use of a video
camera is suggested.

Physiological and Psychological Measurements
For physiological measurements, in addition to the variables
ECG and HRV, it is recommended to maintain a record of
other variables likely to change. The acquisition of several
electroencephalographic (EEG) channels is invaluable, as well as
electrodermal activity (EDA) or galvanic skin response (GSR)
measurement. Measurements of blood pressure (BP), respiration,
and photoplethysmography (PPG), likewise. Measurement of
psychological and perception variables (13) is also recommended;
the STAI test, and recording perception using scales of valence,
arousal, and dominance; to measure emotion, non-verbal
assessment is recommended—Geneva emotion wheel (63) or
Self-assessment manikin (SAM) where subjects can evaluate

valence, arousal, and dominance on a pictorial scale (64); while
a questionnaire on musical preferences of subjects and their
listening habits (13) is recommended.

Devices for Signal/Data Acquisition
Hardware implementation enables measurement of the
variables of interest. Having defined the physiological variables
to be acquired, the devices that obtain the best quality
measurements should be selected. Devices should also be
selected to ensure the safety of study subjects and all personnel
involved. All hardware devices should therefore comply
with or be based on elements that comply with standards
such as International Standardisation Organisation (ISO) or
International Electrotechnical Commission (IEC). Devices or
components should thus be made based on IEC 60601 for
Medical electrical equipment: General requirements for basic
safety and essential performance (65, 66); and ISO 13485: Quality
management for medical devices (67).

Having ensured the safety of the subjects, the minimum
sample acquisition rate (SAR) is determined, taking into account
the frequency content of the physiological variables to be
measured. According to the Nyquist principle, a sampling rate
is required of at least twice the highest frequency of the signals to
be recorded (68). An acquisition system with a minimum sample
rate is therefore recommended based on the bandwidth of the
signals (69): 250Hz for ECG; 200Hz for EEG; 10–100Hz for EDA
(70); 100Hz for BP; 25Hz for respiratory movements; and 1Hz
for PPG.

A final consideration regarding hardware implementation
relates to standardisation of the sample rate. If the study requires
a multisignal acquisition, all signals should be acquired with the
same sample rate. In the event that signals are acquired with
different sample rates, then in order to perform comparative
analysis all of them must be resampled at the same sample rate.
Finally, the acquisition system needs to be synchronised with
the presentation of stimuli in such a way that it is possible to
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know the concordance between the presented stimuli and the
acquired signals.

Presentation of Stimuli
A double-blind study design is recommended (13), in which
sounds should be presented using headphones, preferably with
noise-cancelling in order to reduce possible effects of external
sounds. Another possibility is the consideration of a triple-
blind design, in which a blind statistical analysis might be
applied to complement an AI analysis. It is suggested to consider
stimulus duration of at least 10 s; this interval of time is
recommended since it allows the establishment of a pattern
behaviour in some aspects of the HRV analysis (22, 71). The
inclusion of a period of silence between successive stimuli
is suggested, to reduce a carry-over effect from the previous
stimulus. The duration of this period of silence should be set,
considering the general experimental design: the total duration
of the experiment should be as short as possible while enabling
the stated objective to be achieved. Shorter experiments are
preferred to lengthier ones to reduce fatigue in the study subjects,
minimising the impact of tiredness in the latter part of the
experimental phases. Where possible, it is advised that study
subjects keep their eyes closed as they listen to stimuli during
the experiment; the use of a mask to cover the eyes would assist
in avoiding the influence of visual stimuli on the measurements.
This would also favour the capture of electroencephalographic
signals as eyelid movements are reduced, minimising a source
of noise.

Baseline Measurement
Once informed consent has been signed, and before beginning
the experimental procedures, a period of at least 15min is
suggested to allow all physiological variables to stabilise. After
this period, a record of physiological variables should be
performed to establish the baseline. Baseline measurements must
be carried out under the same conditions as the rest of the
experiment in order to compare outcomes. The baseline is used
to determine if there was an influence of stimuli, in relation
to it.

DATA ANALYSIS

This section is focused on the more recent techniques of
data analysis, specifically techniques of artificial intelligence:
machine and deep learning. These types of technique have
shown significant potential in data analysis and modelling. They
are particularly useful and present advantages in comparison
with traditional techniques when large time series with many
variables are considered. Their use is encouraged since they can
deal with a significant number of features. As shown in this
paper, research on this topic has several sources of features or
data; features can be extracted from signals such as ECG, HRV,
and other physiological data. Moreover, data from perception,
psychological variables and demographic data might be available.
Analysis of sound stimuli would provide more features; with
music stimuli, among other features it is possible to take account
of pitch, tempo, loudness, and melodic and harmonic relations.

Finally, the analysis of different subjects according to age or
gender groups should be undertaken carefully during all stages
of data analysis since it is important to bear in mind the
physiological differences between them.

Selection of Analysis Techniques
It is mostly necessary to use some kind of software to
implement the experimental procedure (Table 2), to implement
psychological tests or questionnaires with demographic
information as well as to get information about listening habits
or musical preferences. Additionally, software could be used
to control the flow of actions in the experimental process—to
implement an audio player with selected stimuli while at the
same time presenting a graphical interface with which to obtain
the perception scores of subjects.

Demographic and Perception Data
Analysis
Demographic data are related to measurements of the size and
composition of a particular population. This data is usually
made up of descriptive information, including gender, age,
marital status, household composition, ethnic background, state
of health, education and training, employment status, income,
and urban and rural residence (85). It is advisable to complete
this information with preferences related to music knowledge
and the listening habits of study subjects (86). Equally, it could be
complemented with information about the subjects’ perception
or reported emotion.

Commonly, demographic data could be classified as nominal,
ordinal, interval, or ratio. Its analysis might be performed
with a descriptive or inferential character. Estimation of
percentages, measures of central tendency and dispersion could
be computed to enable a descriptive study (85). Measures
of central tendency could be determined through arithmetic,
geometric and harmonic means, median, and mode; measures
of dispersion could be performed by means of variance,
standard deviation, and quantiles. The relationships between
groups or population characteristics could be studied if an
inferential approach is sought (85). These relationships could
be studied with tools such as correlation and regression. A
review of the book “Methods of Demographic Analysis” is
recommended for a complete overview of demographic data
analysis tools (85).

ECG and HRV Analysis
This section of the text presents the general methods used to
process ECG and HRV data. However, it does not include the
analysis of other physiological signals since it is not within the
scope of this document. If the study to be undertaken includes
other biosignals, revision of some documents related to EEG (87),
EDA (64, 88), PPG (89), and BP (90) is suggested. This section
therefore presents especially information related to digital signal
processing, since ECG and HRV are generally recorded as digital
signals. Additionally, AI techniques such as machine and deep
learning are described, since they are considered as the main
analysis tools in this proposal.
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TABLE 2 | Software to analyse data and implement experiments in the behavioural sciences.

Category Name Brief description

Language, platform,
or software

Matlab (72) Multi-paradigm numerical computing environment and licenced programming language; very useful for data
analysis and an option for producing sounds.

Octave (73) A free option similar to Matlab, containing many of its tools.

Labview (74) A graphical programming environment able to develop data analysis applications, user interfaces, and hardware
integration.

Python (75) A multi-paradigm programming language that allows several possibilities for processing data, interacting with
hardware, producing sounds, designing interfaces, and controlling experiments.

Software or
packages

Psychtoolbox (76) A free toolbox for Matlab and Octave for research in vision and neuroscience, enables synthesising and controlling
visual and auditory stimuli, interacting with the observer, and an interface with computer hardware.

PsychoPy (77) A free cross-platform Python package to carry out experiments and paradigms in behavioural sciences; able to
run experiments online.

OpenSesame (78)
and Psynteract (79)

A free software based on Python to conduct research in psychology, neuroscience, and experimental economics.
It has a user-friendly interface and can run experiments online.

PEBL (80) A free software based on C++ Free psychology software for creating and design experiments. PEBL includes
more than 50 psychological testing paradigms.

PsyScope (81) A software to design and run psychological experiments; runs on Apple Macintosh. Enables control of several
kinds of stimuli, such as movies and sounds.

Online tool Testable (82) This tool allows for implementing behavioural surveys and experiments. It is possible to use stimuli. It is
commercial software but has a free version.

Gorilla (83) This tool has a graphical interface and coding is not necessary. It allows collecting behavioural data and payment
is required for each respondent.

PsyToolkit (84) This is a free toolkit for carrying out cognitive-psychological experiments and surveys. It has several survey and
experiment libraries.

Introduction to Methodology of Analysis Using AI
- Digital signal processing

A signal is a variable phenomenon that changes with time
(though it may vary with another parameter, such as space) and
can be measured (91). Signals are processed through different
tools or methodologies, which include statistics and digital
signal processing (DSP). DSP is an instrument composed of
a set of numerous mathematical tools designed for extracting,
enhancing, storing, and transmitting useful information from a
signal (92).

In many biomedical and bioengineering applications, data are
collected using polls, standardised tests, medical or laboratory
exams, and sensors. Once data is collected, it is analysed through
different stages such as data pre-processing, feature extraction
and selection, and data modelling (Figure 4) (93). In biomedical
signal processing, pre-processing is commonly regarded as signal
filtering; feature selection is also related to dimension reduction;
and datamodelling is associated with classification and, to a lesser
extent, prediction. The modelling stage is also complemented by
expert knowledge and metadata. These stages aim to perform
the detection, prediction, and decision-making tasks, in which
AI techniques such as machine and deep learning are used as
part of digital signal analysis. In this regard, within the deep
learning gamut, transfer learning is considered a very useful and
powerful technique.
- Artificial intelligence

Artificial intelligence, or AI, is focused largely on tasks
such as problem-solving and learning. For instance, a common
application is the development of computational algorithms to
distinguish between healthy and unhealthy subjects. AI seeks to

develop algorithms to sort out real problemsmore efficiently than
can humans (94) and has applications in several areas; however,
in the context of this document the main implementations are
related to expert systems, data mining or knowledge extraction,
and knowledge representation (95).

Approaches based on AI present advantages compared to
traditional analysis. AI might be used to study big data as a whole
(96), it has the ability to “learn” features from a large volume
of data (97), and it could also be utilised to study the influences
of many features, initially, without having an idea which feature
might be the most important one. AI also has the potential
to study different types of data—features, time series, signals,
and images. In general AI systems work without the need for
human experts (expert systems: after training or development)
(98). Other benefits of AI are related to efficiency, accuracy,
and precision in analysis (99); competence to identify, classify
and extract features from complex, high-dimensional and noisy
data (100); the capability of generalisation; robustness; and the
possibility to integrate expert knowledge (101).

Methodology of Analysis

Preprocessing: Signal Conditioning
- Signal detrending

Some non-stationary signals such as EEG, EMG, and HRV
signals (102) are usually pre-processed in such a way that they
could be considered as stationary signals. Detrending techniques
are implemented so that the mean and standard deviation of the
signals are almost constant (103). This procedure is widely used
in treatment of signals such as EEG and ECG, and sometimes
in HRV. Another way to deal with non-stationary signals is
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FIGURE 4 | Stages of data and signal processing (93).

to analyse them by taking small parts in which they could be
considered as stationary (103). Baseline wander is produced by
different sources of low-frequency noise (104), among them a
deficient contact of the electrodes to the skin and some effects
of respiration as changes in impedance (105). Other techniques
for detrending biosignals include cascaded moving average filter
(105), quadratic variation reduction (104), wavelet transform
(106), and adaptive filtering (107).
- Signal filtering

After removing baseline wander, a filtering stage is
commonly performed to remove the noise of medium or
high frequencies from several sources such as physiological
variability, environmental noise or interference, transducer
artifact, and electronic noise (103). A conventional filter stage
is implemented to cancel interference from the power-line; in
this case, it is possible to use anything from a notch filter with
a cut-off frequency of 50 or 60Hz to an adaptive filter (108).
Concerning ECG signals, since ECG is affected by diverse noise
sources (109, 110), the filtering process is a crucial stage that will
influence systems analysis stages such as feature extraction and
classification. Some techniques used are FIR and IIR filters (111),
least mean square filters (112), wavelet transform (113), and
Kalman filtering (114). Finally, after signal filtering, the signal to
noise ratio (SNR) (115) is often used to assess the performance
of the filtering stage.
- R-peak/QRS-complex detection: HRV computation

An important step following signal pre-processing is
segmentation of R-peaks or QRS complexes. This segmentation
is necessary in HRV computation since the analysis requires to
know with precision the moment (occurrence) of each R-peak
or QRS-complex (116). The element most used for detecting
R-peaks is perhaps the Pan-Tompkins algorithm (117), other
methods being linear regression algorithm (118), adaptive
Hermite functions (119), adaptive bandpass filters and wavelet
analysis (120), and CNN (121, 122). Once the R-peaks or
QRS complexes are segmented, it is possible to compute the
HRV signal. Thus, HRV is related to the variation between
consecutive R-peaks, namely RR or NN intervals (116). HRV is
normally presented as a time series expressed as the difference in
milliseconds between successive R-peaks or QRS complexes.

ECG Feature Extraction
Some important information in ECG is represented by
characteristics which are named features, and they are used
for several purposes such as ECG filtering (123), ECG quality
assessment (124), and disease classification (110). Many tools
have been used to extract features from ECG signals, such as
wavelet transform (113), PCA (125), statistics (126), analysis-
based autocorrelation (127), Fourier transform (128), singular
value decomposition SVD, variational mode decomposition
VMD (129), Hilbert transform (130), and morphological
methods (131). Several features have been extracted (132),
for example, morphological features (commonly P, Q, R, S,
T, and U waves) (121, 126, 133), statistical features (energy,
mean, standard deviation, maximum, minimum, kurtosis and
skewness) (126), wavelet features (coefficients and metrics
extracted from continuous WT, Dual-Tree complex WT, tunable
Q factor WT, flexible analytic WT and dyadic DWT) (134–136)
and others, such as Lyapunov Exponents (137), the ratio of power
spectrum (138), power spectral density (138), Kolmogorov Sinai
entropy (137), and Kolmogorov complexity (137).

In addition to these elements, other tools could contribute
to new approaches in ECG signal processing and analysis; e.g.,
fractal analysis. Thus, fractal geometry and multifractals allow
analysing and processing complex shapes and signals (139). It
is useful to look at the fractal or chaotic nature of ECG signals
to inspect how the cardiac mechanism works, and so design
modern approaches for analysis (140). More recent publications
have shown that fractal analysis has contributed to the study of
heart activity (141, 142). In addition to analysis with fractals, it
is pertinent to bear in mind that this analysis can be used for the
feature extraction process (143).

HRV Feature Extraction
HRV parameters are normally extracted from four different
approaches—geometrical/non-linear analysis, fractal analysis,
time domain, and frequency domain (Table 3) (150).
- HRV and time-frequency domain

Frequently, continuous wavelet transform (CWT) is used as
a time-frequency representation of ECG signals (151). However,
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TABLE 3 | Analysis of HRV signals.

Analysis approach Description

Geometrical analysis Geometric methods to analyse HRV allow transformation of RR intervals into geometric patterns (144). The most used geometric indices
include Triangular index (TRI), a metric extracted from a histogram of normal RR intervals with all the RR values and their frequency of
occurrence (5); triangular interpolation of normal RR interval histogram (TINN), a distribution of all RR intervals calculated from the base of a
triangle shape formed from the histogram peaks (5); and the Poincaré or Lorenz plot, a graphical representation of HRV (145) obtained by
plotting each RR interval as a function of the previous RR interval. From this plot, quantitative parameters are computed extracted from an
ellipse fitted on the plot (144): length SD1 of a transverse line of that ellipse and length SD2 of its longitudinal line. Additionally, the SD1/SD2
ratio is taken into account (146).

Fractal and other
analysis

Fractal analysis options include fractal dimension (147) and detrended fluctuation analysis (DFA) (148). Fractal dimension is often computed
using the Higuchi and Katz algorithms (147), while in DFA two slopes α1 and α2 are produced, which describe brief and long-term fluctuations,
respectively (148). Additionally, chaotic invariant and entropy analysis have been performed on HRV (147). Chaotic invariant analysis has used
elements such as correlation dimension, largest Lyapunov exponent, and Hurst exponent (147, 148). The entropy approach has implemented
tools such as Shannon spectral entropy, Kolmogorov Sinai entropy, approximate entropy, sample entropy, and Renyi’s entropy (147, 148).

Time domain Time indices of HRV are usually expressed in milliseconds. These metrics consider the mean and standard deviation (SDNN) of RR normal
beats, the standard deviation of the means of RR (SDANN), the mean of the 5-min standard deviations of RR (SDNN), the root mean square of
differences between adjacent normal RR (RMSSD, and the percentage of adjacent RR with a difference of duration >50ms (pNN50) (149).

Frequency domain Frequency-domain analysis commonly considers Fourier transform to extract ultra-low-frequency (ULF: 0–0.003Hz), very-low-frequency (VLF:
0.0033–0.04Hz), low-frequency (LF: 0.04–0.15Hz), and high-frequency (HF: 0.15–0.4Hz) bands (148). The LF/HF ratio is also usually
considered.

this tool is not often used in analysing HRV (152); instead, Lomb-
Scargle periodograms have occasionally been used (153). As such,
this technique is proposed as an element to link HRV analysis
to new techniques such as those related to deep learning. Several
tasks could be performed through CWT by using algorithms such
as convolutional neural networks.

Feature Selection—Dimension Reduction
After feature extraction, feature selection is required; here,
several useful techniques have been used: wrappers (154) as
a recursive feature elimination method (155), filters (156) as
information gain (157, 158), and embedded, such as least absolute
shrinkage and selection operator LASSO (159). It is sometimes
necessary to reduce the number of selected features from the
last stage by selecting the principal variables that best represent
the signals and suppressing the ones with redundant information
(dimensionality reduction). Moreover, PCA, LDA, Fuzzy C-
mean, divergence analysis, ICA, and Fisher score are the most
widely used dimension reduction tools in the applications with
the best performance (160). In case of ECG analysis, among the
most common tools are clustering methods such as k-means and
hierarchical clustering (161), matrix factorisation methods such
as singular value decomposition (SVD) (131), PCA (162), LDA
(163), independent component analysis (ICA) (164), and other
methods such as genetic algorithms (GAs) (164) and canonical
correlation analysis (165).

ECG/HRVModellin—Classification
- Machine learning

Classification is one of the final stages in analysing ECG
signals. Most research develops systems for several tasks, such
as disease classification (166), patient classification (167), ECG
simulation (168), and emotion recognition (169). With this
aim, supervised methods such as naive Bayes (170), random
forest (171), genetic algorithms (128), linear and quadratic

discriminants (172), SVM (173, 174), decision trees (175),
discriminant analysis (138), and ANN (173, 174) have been used.
In the same way, unsupervised methods such as hierarchical
clustering (161), Gaussian mixture models (176), self-organising
maps (177), and kNN (178) have been used. Modern methods of
deep learning (179) such as CNN (180), long short-termmemory
(LSTM) (181), deep neural network (DNN) (182), robust deep
dictionary learning (RDDL) (183) and restricted Boltzmann
machine (RBM) (184) have been implemented.

Machine learning has contributed to various elements such
as detection or classification of heartbeats (185), arrhythmias
(129, 186), and unexpected changes in heart morphology (187,
188). Aspects related to the diagnosis of cardiac diseases and
the analysis and classification of a considerable volume of
ECG recordings have been improved. Real-time analysis and
ECG simulations are growing topics (189). Regarding ECG
classification techniques such as support vector machine, ANN,
hidden Markov model, linear discriminant analysis, naive Bayes,
and hybrid methods have been implemented (190). From the
literature review, probabilistic neural network and support vector
machine are observed as the classification algorithms with
the most accuracy, higher than 98%, for cardiac arrhythmia
detection (160).

Machine learning has been used to analyse ECG data (191),
while these techniques have been used to a lesser degree to analyse
HRV data. The extreme gradient boost (XGBoost) algorithm
was thus implemented to find a connexion between HRV and
long-term cardiovascular (192). Some algorithms such as logistic
regression, support vector machine, random forest and AdaBoost
were trained to classify between healthy and pulmonary patients
from their HRV data (193). In addition to classification, XGBoost
has been implemented to predict cardiovascular events from
HRV parameters (194). Moreover, a Q-learning algorithm was
implemented to associate HRV with the avoidance of negative
emotional events (195).
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- Deep learning

Among new machine learning methodologies, deep learning
is being used in several areas related to biomedical engineering
(196), perhaps due to the fact that deep learning performs
better for large, diverse datasets than standard classification and
analysis tools (179). Regarding ECG analysis, deep learning has
been implemented in several applications (197), among them
heartbeat classification, detection of coronary artery disease,
myocardial infarction and congestive heart failure, detection
and classification of arrhythmia, and detection and monitoring
of atrial fibrillation (179). Analysis of ECG signals using deep
learning has been implemented in applications related to sleep,
to classify sleep stages and to detect obstructive sleep apnea
(179, 196).

Even though deep learning is a new tool, published results
have shown that it is possible to model several attributes of ECG
signals and extract their particular features through deep learning
(179). Convolutional neural networks (CNN) are the most used
deep learning algorithms in analysis of several biological signals
such as EEG, EMG, and ECG (179). One example is observed
in Al Rahhal et al. (180), where the authors used CNN with
continuous wavelet transform for detection and classification of
arrhythmia. Another example is observed in (198), where deep
CNN were used to detect atrial fibrillation.

Deep learning techniques have also been used to analyse HRV
signals, though less often than for ECG signals. Deep neural
networks were used to measure stress levels from HRV records
(199). CNNs were used in emotion recognition tasks, where
HRVwas integrated with multiple physiological signals (200). An
LSTM approach was implemented to identify sleep-wakes from
acceleration data and HRV (201) and to detect congestive heart
failure (202).

Association Between Sound Stimuli and
ECG/HRV Signals
Having observed the advantages of using AI, and in particular
the benefits that machine learning and deep learning bring
to cardiovascular medicine (203) on including ECG and HRV
analysis, it is clear these tools represent a valid method to
associate these signals to sound stimuli. As such, it is proposed
to consider classification tasks as an element of correlation
between signal features, in a machine learning approach, or
time-frequency representation of the signals, in a deep learning
approach, and stimuli characteristics as target classes (Figure 5).
In this approach, high performance in the classification process
represents a good correlation between the signals measured
and the stimuli presented. The association between stimuli and
their effects on the heart should be carried out by means of
HRV/ECG comparison between participants exposed to the same
auditory stimulation.

Correspondingly, as described above, following signal
acquisition, conditioning of the signal is necessary. Depending
on the power source, applying a notch filter with a cut-off
frequency at 50 or 60Hz may well be required. In any event,
some pre-processing techniques will also require to be applied
(filtering techniques might be applied, for example, to remove

the noise from different sources). The techniques should be
chosen depending on the sources of noise present during the
experiment as well as the acquisition system employed. Once
signals have been suitably conditioned, if few data are found, a
data augmentation process may be necessary. Augmentationmay
be required on applying machine learning techniques, whereas
with deep learning techniques, it is almost always necessary.
In contrast, the possibility exists of applying transfer learning
techniques (204), where it is possible to deal with restricted data.
Augmentation techniques suited to ECG signals might include
noise addition (205), wavelet-based shrinkage filtering (206),
and signal windowing or segmentation (206) with or without
overlap. After signal pre-processing, if the research is focused
on HRV, this should be extracted from the captured ECG signal.
R-peaks must be segmented and subsequently, computing the
time difference between successive peaks is required. With both
ECG and HRV signals conditioned, the next phases of the study
can begin.

At this point, the method for analysing the data is selected
determined by the main aim of research and the amount
of data available (machine or transfer learning if data are
scarce; deep learning techniques where data is more abundant).
If determining which data features or elements most affect
outcomes is relevant (i.e., an exploratory, descriptive, or
explanatory approach), machine learning techniques should
be applied. Where the focus is on the results (i.e., without
considering their provenance, in a relational, or applicative
approach), transfer or deep learning tools apply. It is next
necessary to prepare the data before applying it; if a machine
learning technique was selected, some techniques of feature
extraction from the data are likely required. After this procedure,
where there is a large set of features, applying a feature selection
method is recommended. If a transfer or deep learning technique
was selected, applying a transformation of data into a two-
dimensional representation—a time-frequency or autoencoder
algorithm transformation—might be required (207).

The dataset should next be split into sets to train and test
the selected algorithm; a validation set may be included. The
training set should always be the larger set, usually 60–80%
of total data. The remainder is assigned to the test set, or
distributed between validation and test sets. The k-fold cross-
validation method can reduce overfitting (208). As data is split
into training sets, the algorithm to analyse data is chosen. If
this algorithm is supervised, the target class could be established
from different characteristics of the sound stimuli: an association
between the training data and the selected characteristics could
thus be performed. Following algorithm selection, the algorithm
structure must be selected taking training data and research aims
into account.

Performance Evaluation
It is then time to train the algorithm using the training set or k-
fold cross-validation method. Performance evaluation with the
test set follows, measured using such elements as the confusion
matrix (209), and derived metrics such as F1 score, accuracy
(208), and receiver operation characteristic (ROC) curve (210).
Although these metrics are used widely, most have drawbacks
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FIGURE 5 | Methodology for the association between sound stimuli and ECG/HRV signals.
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(13). F1, for instance only takes into account positive classes,
carrying bias by disregarding negative classes (13). Similarly,
AUC does not take a classification threshold, which classifiers
generally require (13).

Among other possible metrics, the Kappa coefficient (211) and
Matthews correlation coefficient (MCC) have emerged strongly
(212). By considering all elements of the confusion matrix, these
provide a better idea of the general performance of machine
learning algorithms (13, 213). The Kappa coefficient can take
values between 0 and 1, for which Landis and Koch have
proposed a scale for interpreting the coefficient (211), divided
into intervals 0 to 0.20, 0.21 to 0.40, 0.41 to 0.60, 0.61 to 0.80,
and 0.81 to 1.00 that indicate slight, fair, moderate, substantial,
and almost perfect agreement, respectively. MCC is usually
interpreted as a correlation coefficient because it can produce
values betweenminus one and one (214). A value of one relates to
a perfect classification; minus one indicates discrepancy between
observations and prediction; and zero indicates an uncorrelated
or random prediction (13). It must be noted that MCC can be
used even with imbalanced datasets (214).

Given the framework aims, MCC is highly recommended
for validating the performance of the selected machine learning
tools. It can equally provide a quantitative measurement of
the correlation between sound stimuli and the responses
observed in the variables, since it can be interpreted as a
correlation coefficient.

Metric for Applications Related to Harmonic Musical

Intervals and Noise
In addition to using MCC, developing new metrics for
each specific application is recommended (215, 216). One
possibility involves implementing a cost matrix. In classification
applications, the cost matrix provides information about the cost
of wrong classifications. Cost is incremented with each instance
incorrectly classified. This metric can consequently describe
system performance and further be adapted to each specific
application. Unlike most standard metrics, a cost matrix provides
the fullest idea of right and wrong classifications.

If performance is evaluated as not sufficiently high,
improvements are made to the system. Adjustments to the
algorithm structure could be performed, or a different algorithm
employed. Finally, when performance is high enough, data
analysis can proceed. An example of application of this
framework is again found in “Assessment of heart rate variability
and heart response to harmonic music interval stimuli using a
transfer learning approach.”

Building a cost matrix as evaluation metric is proposed, based
on the following rules:

1. A hierarchical order must be established between classes
to be classified, dependent on each specific case: e.g., in
classifying harmonic musical intervals, a hierarchical order
might be determined by degree of consonance or dissonance.
The established order will allow assigning classification costs.
Sorting classes into adjacent orders will cost less than sorting
between more hierarchically distant classes.

2. When seeking to classify more than one general class, a
hierarchy must be established for each general class: e.g., for
two general classes A and B, with subclasses A1, A2, B1, and
B2, two hierarchies are established, one for general class A and
one for B. Maximum cost to pay is set equal to 1 (C = 1).
This cost will be distributed among all possible classification
options for each class. For more than one general class, a
sub cost (SC) is defined for each class. This sub cost will
be established dividing the maximum total cost by the total
number of classes.

SC =
C

#GeneralClasses

3. SC is then distributed among all subclass elements. If an
element belonging to a subclass is classified within another
subclass, a higher cost will be paid than if classified as an
element of its same subclass. Taking the previous example, if
an element in class A1 is classified within class A2, the cost
to be paid will be less than if classified within any class of
general class B, B1 or B2. In the case of the SC of different
classes, this ought to be distributed equally among classes.
Thus, in the case of classification of elements of general class
A, classification of these subclasses as elements of subclass B
will cost SC/2 where 2 corresponds to the number of classes,
B1 and B2, of subclass B in this example.

4. For the SC of classes corresponding to the same subclass,
the cost of correctly classified classes will have the minimum
value, corresponding to zero. To distribute SC between
erroneous classifications within the same subclass, three
methods are proposed:

n = number of subclasses

SC = sub cost

a. Linear distribution: in this case aminimum cost is assigned,
given by Equation 1, and the costs corresponding to the
other classes according to Equation 2:

CostMinimum =
SC

∑n−1
i=1 i

(1)

SCi =

{

0, i = 1
(i− 1) ∗CostMinimum, i = [2, n]

(2)

b. Distribution based on the inverse-square law. Since
various physical phenomena—gravity, electrostatics, and
the radiation of light and sound—vary inversely to the
square of the distance, allocation of costs is proposed taking
this approach into account. Equation 3 is proposed to
assign SC values:

SCi =
1− 1

i2

#GeneralClasses∗
∑n

j=1 1−
1
j2
, i = [1, n] (3)

c. Distribution based on Gompertz function (217). As this
function is widely used in the field of biology (description of
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TABLE 4 | Stage of framework validation.

Item Stage

0 1 2 3 4

Subjects

Healthy subjects + + ± ± ±

Number of subjects >10 >10 >20 >20 >20

Recordings

Conventional methods ± ± ± ± ±

Dedicated device + + + + +

Analysis

Training & testing using the dataset + + – – –

Predefined algorithm and cut-off values – – ± ± ±

+, compulsory; ±, optional; –, excluded.

growth of plants, animals, cells, bacteria, etc.), it is proposed
as a tool for cost allocation. To assign SC values, Equation
4 is proposed:

SCi =
e−βe−γ i

− e−βe−γ

#GeneralClasses∗
∑n

j=1 e
−βe−γ i

− e−βe−γ
,

i = [1, n] (4)

In this case β and γ represent constants that modify
horizontal displacement of the function and growth
rate, respectively.

Linear distribution is recommended where the cost of wrong
classifications does not have great consequences, i.e. when the
cost to pay for wrong classifications is not very high. This
method could be used in classifying the same type of stimulus,
but would be recommended in classifying heart disease and
normal signals. Distribution based on the inverse square law is
recommended for stricter applications, e.g. medical applications
where a high cost is paid for wrong classifications. Finally, use of
the Gompertz-based distribution is generally recommended. This
function can be adapted according to each specific application,
through constants β and γ and can be used for both flexible and
strict cost applications.

Once established, the cost matrix is multiplied by the
confusion matrix to determine the classification cost matrix. All
values in the classification cost matrix are then added together to
obtain the total cost. Finally, to standardise the value between 0
and 1, total cost is divided by maximum possible cost. Maximum
possible cost is determined considering the case where each
instance of the classes is classified as the class with the highest
cost in the cost matrix.

Framework Validation
Following implementation, framework validation is a vital step
(218), to determine whether it was well-adapted to the study
in question and used to the full, or might be improved.
Just as it was suggested above that an interdisciplinary team
carry out the experiment design, so a multidisciplinary team
is recommended for framework validation, which should be

FIGURE 6 | Framework validation protocol.

conducted from the viewpoint of each discipline involved in the
research. The framework is evaluated according to application
requirements and its implementation is then optimised under
research conditions (219). Validation should confirm that the
framework is within ethical considerations, all its procedures
ensuring high quality scientific practise and should further assure
that results can be compared with outcomes of other research
performed under similar conditions. Such validation increases
possibilities to obtain meaningful data. In this regard, some
critical characteristics of testing and clinical validation presented
in Beniczky and Ryvlin (220) were adapted to this framework as
follows (Table 4):

Validation should assess the quality, reliability, robustness,
and consistency or reproducibility of the outcomes (221). As a
validation protocol of this framework, carrying out the following
steps is suggested (Figure 6):

1. Present the adapted framework to an expert committee.
2. Determine if the framework and the experimental design are

correct. Otherwise, it is necessary to perform adjustments and
go back to step 1.

3. Cheque if all experimental materials are working well:
devices, stimuli, laboratory, or experimental place in
optimal conditions.

4. Develop a set of pilots or validation experiments.
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TABLE 5 | Checklist of research elements.

Research elements Check

Definition of experimental procedures

Inclusion and exclusion criteria

Health and music preference questionnaires

Informed consent

Available subjects

Selection or generation of stimuli

Devices of data acquisition

Devices of stimulus presentation

Review and adjustment of protocol—Pilot test

Pilot test

Data analysis

Review and adjustment of protocol—Pilot test

Beginning of the experimental phase

With the outcomes of the pilots, confirm if the hypothesis
is verifiable and assess the quality, reliability, robustness, and
consistency or reproducibility of outcomes. If this evaluation
does not produce good results, it is necessary to perform
adjustments and go back to step 1.

One method of verifying the validation protocol is by means
of a checklist. Constructing a checklist of items included in the
research is recommended (Table 5).

This framework was inspired in the studies reported in the
literature and also in our own research and experience in the
fields of artificial intelligence, perception, music, and health. One
example of the application of this framework can be observed in
our most recent publication “Recognition of valence judgments
in music perception using electrocardiographic signals and
machine learning” (222)1.

SOME SUGGESTIONS TO PRESENT A
REPORT OF OUTCOMES

On completion of result analysis, it is essential to provide a
report as a scientific paper regarding the findings of the research.
Initially, it is necessary to make clear the objective of the study
and the methodology with which to achieve it. Provide as much
information as possible about the methodological procedure,
describing the most critical aspects of the experimental
procedure. Stimuli, method of presentation of stimuli, and
physical conditions of the place of experimentation should also
be described, together with the considered population and the
methods employed to acquire data.

It is furthermore relevant to provide sufficient information
about the methods used to analyse the data. Outcomes of the
analysis should be presented clearly and precisely. Finally, it
is essential to demonstrate the significance of the results and
their relevance. A possible additional element is the presentation
of limitations in the research and possible ways of improving
similar research in the future. Wherever possible, it is a good

1Available in http://ceur-ws.org/Vol-2747/paper6.pdf

idea to present new conceivable ideas to deal with new studies
related to the research topic or the study aim. If it is desired
to obtain a complete reference about research in music and its
written reports, review of the book “Music in words: a guide to
researching and writing about music” is recommended (223).

Other useful tools to bear in mind for reporting outcomes
are: STROBE statement (STrengthening the Reporting of
OBservational studies in Epidemiology) (224, 225); CONSORT
statement (Consolidated Standards of Reporting Trials) (226,
227); SQUIRE stands (Standards for QUality Improvement
Reporting Excellence) (228, 229); STARD initiative (Standards
for Reporting of Diagnostic Accuracy Studies) (230, 231); and
STREGA initiative (STrengthening the REporting of Genetic
Association Studies) (232, 233).

DISCUSSION

A methodological framework to design new experiments to
study the effects of musical structures and noise on ECG
and HRV signals was presented. This framework has three
main components—experimental design and procedure, data
analysis, and report of outcomes—and is able to be generalised
to research related to other types of sound. Its objective is
to provide guidelines to standardise new studies and thus
facilitate comparison between study outcomes. AI techniques
were considered as the main analysis tool as AI has recently
revealed its advantages in studying different types of data,
showing great capacity to deal with big data at a single stroke
with efficiency, accuracy, and precision in analysis. Moreover,
AI allows extracting features from complex, high-dimensional
and noisy data, providing a high capability of generalisation
and robustness.

Considering that new trends in AI suggest developing
new metrics for each specific application, a cost matrix was
introduced as an evaluation metric. Additionally, validation of
the framework is presented, for which a clinical validation was
adapted. As future work, this is a new proposal that needs
to be validated in future experiments; moreover, it requires a
series of studies with different types of patients and different
sound techniques in order to be improved. This framework
was developed to contribute to quality improvement of research
associated with sound and music. This version constitutes
an initial perusal of the perception field; it is expected that
researchers can contribute with their own vision and experience
to develop new, enhanced versions of the present framework.
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Zieliński K, Duplaga M, IngramD, editors. Information Technology Solutions
for Healthcare. London (2006). doi: 10.1007/1-84628-141-5_13

70. Martinsen ØG, Pabst O, Tronstad C, Grimnes S. Sources of error in ac
measurement of skin conductance. J Electr Bioimpedance. (2015) 2015:49–53.
doi: 10.5617/jeb.2640

71. Munoz L, Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, et al. Validity
of (Ultra-)Short recordings for heart rate variability measurements. PLoS
ONE. (2015) 10:e0138921. doi: 10.1371/journal.pone.0138921

72. Wallisch P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS,
Hatsopoulos NG. MATLAB for Neuroscientists?: An Introduction to
Scientific Computing in MATLAB. Amsterdam: Academic Press (2014).
doi: 10.1016/C2009-0-64117-9

73. Nagar S, editor. Introduction to Octave BT - Introduction to Octave:
for Engineers and Scientists. Berkeley, CA: Apress (2008). p. 1–16.
doi: 10.1007/978-1-4842-3201-9_1

74. Dubey S, Narang N, Negi PS, Ojha VN, editors. LabVIEW Programming BT -
LabVIEW based Automation Guide for Microwave Measurements. Singapore:
Springer (2017). p. 3–9. doi: 10.1007/978-981-10-6280-3_2

75. Doberkat E-E. Python 3. Berlin: De Gruyter Oldenbourg (2018).
doi: 10.1515/9783110544138

76. Kleiner M, Brainard DH, Pelli DG, Broussard C, Wolf T, Niehorster
D. What’s new in Psychtoolbox-3? Perception. (2007) 13:1–16.
doi: 10.1068/v070821

77. Peirce JW. PsychoPy-psychophysics software in Python. J Neurosci Methods.
(2007) 162:8–13. doi: 10.1016/j.jneumeth.2006.11.017

78. Mathôt S, Schreij D, Theeuwes J. OpenSesame: An open-source, graphical
experiment builder for the social sciences. Behav Res Methods. (2012)
44:314–24. doi: 10.3758/s13428-011-0168-7

Frontiers in Cardiovascular Medicine | www.frontiersin.org 16 August 2021 | Volume 8 | Article 699145

https://doi.org/10.1016/j.ctim.2018.08.014
https://doi.org/10.1177/0305735619868285
https://doi.org/10.4103/0019-5049.190619
https://doi.org/10.1007/s00221-019-05707-8
https://doi.org/10.3389/fpsyg.2019.02562
https://doi.org/10.1080/14992027.2019.1623424
https://doi.org/10.1159/000496456
https://doi.org/10.1155/2018/7683897
https://doi.org/10.1016/j.neuropsychologia.2012.09.019
https://doi.org/10.3389/fmed.2018.00151
https://doi.org/10.1136/neurintsurg-2018-014313
https://doi.org/10.1089/jcr.2012.0018
https://doi.org/10.3389/fphys.2013.00314
https://doi.org/10.14814/phy2.13905
https://doi.org/10.3390/jcm8050723
https://doi.org/10.3389/fpsyg.2011.00308
https://doi.org/10.1525/mp.2015.32.5.470
https://doi.org/10.4324/9781315106342-13
https://doi.org/10.1016/j.neuropsychologia.2015.03.001
https://doi.org/10.17743/jaes.2016.0015
https://www.iso.org/obp/ui/#iso:std:iso:226:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:226:ed-2:v1:en
https://doi.org/10.1007/s11042-014-1897-2
https://doi.org/10.2471/BLT.15.010415
https://doi.org/10.1177/0539018405058216
https://doi.org/10.1016/0005-7916(94)90063-9
https://webstore.iec.ch/publication/2604#additionalinfo
https://webstore.iec.ch/publication/22634
https://webstore.iec.ch/publication/22634
https://www.iso.org/standard/59752.html
https://www.iso.org/standard/59752.html
https://doi.org/10.1002/9781118445112.stat03517
https://doi.org/10.1007/1-84628-141-5_13
https://doi.org/10.5617/jeb.2640
https://doi.org/10.1371/journal.pone.0138921
https://doi.org/10.1016/C2009-0-64117-9
https://doi.org/10.1007/978-1-4842-3201-9_1
https://doi.org/10.1007/978-981-10-6280-3_2
https://doi.org/10.1515/9783110544138
https://doi.org/10.1068/v070821
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3758/s13428-011-0168-7
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Idrobo-Ávila et al. Data-Driven Approach to Sound Influence

79. Henninger F, Kieslich PJ, Hilbig BE. Psynteract: A flexible, cross-platform,
open framework for interactive experiments. Behav Res Methods. (2017)
49:1605–14. doi: 10.3758/s13428-016-0801-6

80. Mueller ST, Piper BJ. The psychology experiment building language
(PEBL) and PEBL test battery. J Neurosci Methods. (2014) 222:250–9.
doi: 10.1016/j.jneumeth.2013.10.024

81. Cohen J, MacWhinney B, Flatt M, Provost J. PsyScope: An interactive
graphic system for designing and controlling experiments in the psychology
laboratory using Macintosh computers. Behav Res Methods Instruments
Comput. (1993) 25:257–71. doi: 10.3758/BF03204507

82. Testable SRLT. Available online at: https://www.testable.org/ (accessed
March 10, 2020).

83. Anwyl-Irvine AL, Massonnié J, Flitton A, Kirkham N, Evershed JK. Gorilla
in our midst: an online behavioral experiment builder. Behav Res Methods.
(2020) 52:388–407. doi: 10.3758/s13428-019-01237-x

84. Stoet G. PsyToolkit: A software package for programming psychological
experiments using Linux. Behav Res Methods. (2010) 42:1096–104.
doi: 10.3758/BRM.42.4.1096

85. Yusuf F, Swanson DA, Martins JM. Methods of Demographic Analysis.
Netherlands: Springer (2014). doi: 10.1007/978-94-007-6784-3

86. Trappe H-J, Voit G. The cardiovascular effect of musical genres. Dtsch
Arztebl Int. (2016) 113:347–52. doi: 10.3238/arztebl.2016.0347

87. Cohen MX. Analyzing Neural Time Series data: Theory and Practice. (2014).
Available online at: https://mitpress.mit.edu/books/analyzing-neural-time-
series-data (accessed August 4, 2020).

88. Kołodziej M, Tarnowski P, Majkowski A, Rak RJ. Electrodermal activity
measurements for detection of emotional arousal. Bull Polish Acad Sci Tech
Sci. (2019) 67:813–26. doi: 10.24425/bpasts.2019.130190

89. Millán CA, Girón NA, Lopez DM. Analysis of relevant features from
photoplethysmographic signals for atrial fibrillation classification. Int J
Environ Res Public Health. (2020) 17:498. doi: 10.3390/ijerph17020498

90. El-Hajj C, Kyriacou PA. A review of machine learning techniques
in photoplethysmography for the non-invasive cuff-less measurement
of blood pressure. Biomed Signal Process Control. (2020) 58:101870.
doi: 10.1016/j.bspc.2020.101870

91. Weeks M. Digital Signal Processing Using Matlab and
Wavelets.Massachusetts: Infinity Science Press (2007).

92. Ingle VK, Proakis JG. Digital Signal Processing Using Matlab. Stamford, CT:
Cengage Learning (2012).

93. Banaee H, Ahmed UM, Loutfi A. Data mining for wearable sensors in health
monitoring systems: a review of recent trends and challenges. Sensors. (2013)
13:17472. doi: 10.3390/s131217472

94. Schuh G, Reinhart G, Prote JP, Sauermann F, Horsthofer J, Oppolzer F, et al.
Data mining definitions and applications for the management of production
complexity. In Procedia CIRP. Ljubljana. doi: 10.1016/j.procir.2019.03.217

95. Jatin B. Applications of Artificial Intelligence and Associated Technologies.
In Emerg Technol Eng BiomedManag Sci ETEBMS.New York, NY: McGraw-
Hill (2016) 5:18.1–18.30.

96. Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim H-C, et al. Artificial
intelligence for mental health and mental illnesses: an overview. Curr
Psychiatry Rep. (2019) 21:116. doi: 10.1007/s11920-019-1094-0

97. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in
healthcare: past, present and future. Stroke Vasc Neurol. (2017) 2:230–43.
doi: 10.1136/svn-2017-000101

98. Josefiok M, Krahn T, Sauer J. A survey on expert systems for
diagnosis support in the field of neurology BT - intelligent decision
technologies. In Neves-Silva R, Jain LC, Howlett RJ, editors. Cham: Springer
International Publishing.

99. Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial
intelligence in medicine. J Fam Med Prim care. (2019) 8:2328–31.
doi: 10.4103/jfmpc.jfmpc_440_19

100. Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Artificial intelligence
facilitates drug design in the big data era. Chemom Intell Lab Syst. (2019)
194:103850. doi: 10.1016/j.chemolab.2019.103850

101. Kayacan E, Khanesar MA. Type-2 fuzzy neural networks. Butterworth-
Heinemann (2012). doi: 10.1016/B978-0-12-802687-8.00004-9

102. Muthuswamy J. Biomedical signal analysis. Stand Handb Biomed Eng
Des. (2004).

103. Semmlow JL, Griffel B. Biosignal and Medical Image Processing, Third
Edition, Boca Raton, FL: CRC Press (2014).

104. Fasano A, Villani V. Baseline wander removal for bioelectrical signals
by quadratic variation reduction. Signal Process. (2014) 99:48–57.
doi: 10.1016/j.sigpro.2013.11.033

105. Sreekrishna RR, Nalband S, Amalin Prince A. Real time cascaded moving
average filter for detrending of electroencephalogram signals. In:Department
of Electrical and Electronics Engineering, Birla Institute of Technology and
Science Pilani. Goa: Institute of Electrical and Electronics Engineers Inc.
(2021). doi: 10.1109/ICCSP.2016.7754244

106. Luong DT, Thuan ND, Hoang CD, Trang N V, Due TQ. Study on
limitation of removal of baseline noise from electrocardiography signal in
measurement using wavelet analysis. In: Dept. of Biomedical Engineering,
Hanoi University of Science and Technology. Hanoi: Viet Nam (2013).
doi: 10.1109/ICUFN.2013.6614867

107. Fedotov AA, Akulova AS. Adaptive filter for eliminating baseline wander
of pulse wave signals. In: Samara State Aerospace University, Department
of Laser and Bioengineering Systems. Samara: Springer Verlag (2015).
doi: 10.1007/978-3-319-19387-8_248

108. Liu Y-L, Chang N-C, Hsu S-F, Lin D-L, Lin Y-D. An adaptive algorithm for
canceling power-line interference in biopotential measurement. Biomed Eng
- Appl Basis Commun. (2004) 16:350–4. doi: 10.4015/S1016237204000487

109. Satija U, Ramkumar B, Manikandan MS. A review of signal processing
techniques for electrocardiogram signal quality assessment. IEEE Rev Biomed
Eng. (2018) 11:36–52. doi: 10.1109/RBME.2018.2810957

110. Keshavamurthy TG, Eshwarappa MN. Review paper on denoising of
ECG signal. In: 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT). Coimbatore (2017).
doi: 10.1109/ICECCT.2017.8117941

111. Milchevski A, Gusev M. Performance evaluation of FIR and
IIR filtering of ECG signals. Int Conf. (2018) 665:103–12.
doi: 10.1007/978-3-319-68855-8_10

112. Troudi S, Ktata S, Fadhel Y Ben, Rahmani S, Ghommam J, Al-
Haddad K. Analysis and extraction characteristic parameters of ECG
signal in real-time for intelligent classification of cardiac arrhythmias.
In: 2016 17th International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (STA). Sousse (2017).
doi: 10.1109/STA.2016.7952071

113. Seena V, Yomas J. A review on feature extraction and denoising
of ECG signal using wavelet transform. In 2014 2nd International
Conference on Devices, Circuits and Systems (ICDCS). Coimbatore (2014).
doi: 10.1109/ICDCSyst.2014.6926190

114. Ozkaraca O, Guler I. Denoising and remote monitoring of ECG signal with
real-time extended Kalman filter in a wearable system. Biomed Eng - Appl
Basis Commun. (2015) 27:1550009. doi: 10.4015/S101623721550009X

115. Aiboud Y, Mhamdi JE, Jilbab A, Sbaa H. Review of ECG signal de-noising
techniques. In: 2015 Third World Conference on Complex Systems (WCCS).
Marrakech (2015). doi: 10.1109/ICoCS.2015.7483313

116. Hagmair S, Braunisch MC, Bachler M, Schmaderer C, Hasenau A-L, Bauer
A, et al. Implementation and verification of an enhanced algorithm for
the automatic computation of RR-interval series derived from 24 h 12-lead
ECGs. Physiol Meas. (2017) 38:1–14. doi: 10.1088/1361-6579/38/1/1

117. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans
Biomed Eng. (1985) 32:230–6. doi: 10.1109/TBME.1985.325532

118. Aspuru J, Ochoa-Brust A, Félix RA, Mata-López W, Mena LJ, Ostos R, et al.
Segmentation of the ECG signal by means of a linear regression algorithm.
Sensors. (2019) 19:40775. doi: 10.3390/s19040775

119. Kovács P, Böck C, Meier J, Huemer M. ECG segmentation using adaptive
hermite functions. In: Department of Numerical Analysis, Eötvös L.
Hungary: Institute of Electrical and Electronics Engineers Inc. (2018).
doi: 10.1109/ACSSC.2017.8335601

120. Appathurai A, Jerusalin Carol J, Raja C, Kumar SN, Daniel A V, Jasmine
Gnana Malar A, et al. A study on ECG signal characterization and practical
implementation of some ECG characterization techniques. Meas J Int Meas
Confed. (2019) 147:40. doi: 10.1016/j.measurement.2019.02.040

121. Moskalenko V, Zolotykh N, Osipov G. Deep learning for ECG segmentation.
Adv Neural Comput Mach Learn Cognit Res. (2020) 856:246–54.
doi: 10.1007/978-3-030-30425-6_29

Frontiers in Cardiovascular Medicine | www.frontiersin.org 17 August 2021 | Volume 8 | Article 699145

https://doi.org/10.3758/s13428-016-0801-6
https://doi.org/10.1016/j.jneumeth.2013.10.024
https://doi.org/10.3758/BF03204507
https://www.testable.org/
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/BRM.42.4.1096
https://doi.org/10.1007/978-94-007-6784-3
https://doi.org/10.3238/arztebl.2016.0347
https://mitpress.mit.edu/books/analyzing-neural-time-series-data
https://mitpress.mit.edu/books/analyzing-neural-time-series-data
https://doi.org/10.24425/bpasts.2019.130190
https://doi.org/10.3390/ijerph17020498
https://doi.org/10.1016/j.bspc.2020.101870
https://doi.org/10.3390/s131217472
https://doi.org/10.1016/j.procir.2019.03.217
https://doi.org/10.1007/s11920-019-1094-0
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.1016/j.chemolab.2019.103850
https://doi.org/10.1016/B978-0-12-802687-8.00004-9
https://doi.org/10.1016/j.sigpro.2013.11.033
https://doi.org/10.1109/ICCSP.2016.7754244
https://doi.org/10.1109/ICUFN.2013.6614867
https://doi.org/10.1007/978-3-319-19387-8_248
https://doi.org/10.4015/S1016237204000487
https://doi.org/10.1109/RBME.2018.2810957
https://doi.org/10.1109/ICECCT.2017.8117941
https://doi.org/10.1007/978-3-319-68855-8_10
https://doi.org/10.1109/STA.2016.7952071
https://doi.org/10.1109/ICDCSyst.2014.6926190
https://doi.org/10.4015/S101623721550009X
https://doi.org/10.1109/ICoCS.2015.7483313
https://doi.org/10.1088/1361-6579/38/1/1
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.3390/s19040775
https://doi.org/10.1109/ACSSC.2017.8335601
https://doi.org/10.1016/j.measurement.2019.02.040
https://doi.org/10.1007/978-3-030-30425-6_29
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Idrobo-Ávila et al. Data-Driven Approach to Sound Influence

122. Lee JS, Lee SJ, ChoiM, SeoM, Kim SW. QRS detectionmethod based on fully
convolutional networks for capacitive electrocardiogram. Expert Syst Appl.
(2019) 134:66–78. doi: 10.1016/j.eswa.2019.05.033

123. Poungponsri S, Yu X-H. An adaptive filtering approach for
electrocardiogram (ECG) signal noise reduction using neural networks.
Neurocomputing. (2013) 117:206–13. doi: 10.1016/j.neucom.2013.02.010
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188. Soliński M, Perka A, Rosiński J, Łepek M, Rymko J. Classification of
atrial fibrillation in short-term ECG recordings using a machine learning
approach and hybrid QRS Detection. In: Faculty of Physics, Warsaw
University of Technology. Koszykowa: IEEE Computer Society (2017).
doi: 10.22489/CinC.2017.337-201

189. Lyon A, Mincholé A, Martínez JP, Laguna P, Rodriguez B. Computational
techniques for ECG analysis and interpretation in light of their
contribution to medical advances. J R Soc Interface. (2018) 15:20170821.
doi: 10.1098/rsif.2017.0821

190. Saleh H, Bayasi N, Mohammad B, Ismail M. Self-powered SoC Platform for
Analysis and Prediction of Cardiac Arrhythmias. Cham: Springer. (2018)
doi: 10.1007/978-3-319-63973-4

191. Minchole A, Camps J, Lyon A, Rodriguez B. Machine learning
in the electrocardiogram. J Electrocardiol. (2019) 57S:S61–4.
doi: 10.1016/j.jelectrocard.2019.08.008

192. Zhang L, Wu H, Zhang X, Wei X, Hou F, Ma Y. Sleep heart rate variability
assists the automatic prediction of long-term cardiovascular outcomes. Sleep
Med. (2020) 67:217–24. doi: 10.1016/j.sleep.2019.11.1259

193. Rahman MJ, Nemati E, Rahman MM, Nathan V, Vatanparvar K,
Kuang J. Automated assessment of pulmonary patients using heart
rate variability from everyday wearables. Smart Heal. (2020) 15:100081.
doi: 10.1016/j.smhl.2019.100081

194. Yan X, Zhang L, Li J, Du D, Hou F. Entropy-based measures of hypnopompic
heart rate variability contribute to the automatic prediction of cardiovascular
events. Entropy. (2020) 22:20241. doi: 10.3390/e22020241

195. Katahira K, Fujimura T, Matsuda Y-T, Okanoya K, Okada M.
Individual differences in heart rate variability are associated with the
avoidance of negative emotional events. Biol Psychol. (2014) 103:322–31.
doi: 10.1016/j.biopsycho.2014.10.007

196. Park C, Took CC, Seong J-K. Machine learning in biomedical engineering.
Biomed Eng Lett. (2018) 3:58. doi: 10.1007/s13534-018-0058-3

197. Rim B, Sung N-J, Min S, Hong M. Deep learning in physiological signal data:
A survey. Sensors. (2020) 20:40969. doi: 10.3390/s20040969

198. Xia Y, Wulan N, Wang K, Zhang H. Detecting atrial fibrillation by
deep convolutional neural networks. Comput Biol Med. (2018) 93:84–92.
doi: 10.1016/j.compbiomed.2017.12.007

199. Al-Jebrni AH, Chwyl B, Wang XY, Wong A, Saab BJ. AI-enabled remote
and objective quantification of stress at scale. Biomed Signal Process Control.
(2020) 59:101929. doi: 10.1016/j.bspc.2020.101929

200. Oh S, Lee J-Y, KimDK. The design of CNN architectures for optimal six basic
emotion classification using multiple physiological signals. Sensors. (2020)
20:30866. doi: 10.3390/s20030866

Frontiers in Cardiovascular Medicine | www.frontiersin.org 19 August 2021 | Volume 8 | Article 699145

https://doi.org/10.1007/978-3-319-65981-7_14
https://doi.org/10.1007/s11042-017-5318-1
https://doi.org/10.1109/ECTICon.2017.8096272
https://doi.org/10.1109/ICMLA.2017.0-104
https://doi.org/10.2316/P.2017.852-029
https://doi.org/10.1109/CIC.1991.169016
https://doi.org/10.1109/SPAC.2017.8304293
https://doi.org/10.1109/ICEDSA.2016.7818547
https://doi.org/10.1007/978-981-10-4280-5_16
https://doi.org/10.1016/j.resuscitation.2016.01.015
https://doi.org/10.1260/2040-2295.4.4.465
https://doi.org/10.1109/RBME.2017.2757953
https://doi.org/10.1007/s13246-017-0605-8
https://doi.org/10.3390/s17102228
https://doi.org/10.1109/ICACCS.2013.6938735
https://doi.org/10.1109/CCAA.2015.7148561
https://doi.org/10.1016/j.cmpb.2018.04.005
https://doi.org/10.1007/s40846-018-0389-7
https://doi.org/10.1016/j.compbiomed.2018.03.016
https://doi.org/10.22266/ijies2018.0228.16
https://doi.org/10.1109/IJCNN.2017.7966413
https://doi.org/10.1142/S1469026816500218
https://doi.org/10.1504/IJBET.2018.089255
https://doi.org/10.1016/j.eswa.2018.03.038
https://doi.org/10.22489/CinC.2017.356-350
https://doi.org/10.22489/CinC.2017.337-201
https://doi.org/10.1098/rsif.2017.0821
https://doi.org/10.1007/978-3-319-63973-4
https://doi.org/10.1016/j.jelectrocard.2019.08.008
https://doi.org/10.1016/j.sleep.2019.11.1259
https://doi.org/10.1016/j.smhl.2019.100081
https://doi.org/10.3390/e22020241
https://doi.org/10.1016/j.biopsycho.2014.10.007
https://doi.org/10.1007/s13534-018-0058-3
https://doi.org/10.3390/s20040969
https://doi.org/10.1016/j.compbiomed.2017.12.007
https://doi.org/10.1016/j.bspc.2020.101929
https://doi.org/10.3390/s20030866
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Idrobo-Ávila et al. Data-Driven Approach to Sound Influence

201. Chen Z, Wu M, Wu J, Ding J, Zeng Z, Surmacz K, et al. A Deep
learning approach for sleep-wake detection from hrv and accelerometer
data. In: Institute for Infocomm Research, A STAR, 1 Fusionopolis Way #21-
01 Connexis, Singapore. Singapore: Institute of Electrical and Electronics
Engineers Inc. (2019). doi: 10.1109/BHI.2019.8834502

202. Wang L, Zhou X. Detection of congestive heart failure based on LSTM-
based deep network via short-term RR intervals. Sensors. (2019) 19:71502.
doi: 10.3390/s19071502

203. Miller DD. Machine intelligence in cardiovascular medicine. Cardiol Rev.
(2020) 28:53–64. doi: 10.1097/CRD.0000000000000294

204. Van Steenkiste G, van Loon G, Crevecoeur G. Transfer learning in
ECG classification from human to horse using a novel parallel neural
network architecture. Sci Rep. (2020) 10:186. doi: 10.1038/s41598-019-
57025-2

205. Li D, Li X, Zhao J, Bai X. Automatic staging model of heart failure
based on deep learning. Biomed Signal Process Control. (2019) 52:77–83.
doi: 10.1016/j.bspc.2019.03.009

206. Wang C, Yang S, Tang X, Li B. A 12-lead ECG Arrhythmia Classification
Method Based on 1D Densely Connected CNN. Cham: Springer (2019).

207. Nurmaini S, Darmawahyuni A, Mukti ANS, Rachmatullah MN,
Firdaus F, Tutuko B. Deep learning-based stacked denoising and
autoencoder for ECG heartbeat classification. Electron. (2020) 9:9010135.
doi: 10.3390/electronics9010135

208. Zheng J, Chu H, Struppa D, Zhang J, Yacoub SM, El-Askary H, et al. Optimal
multi-stage arrhythmia classification approach. Sci Rep. (2020) 10:59821.
doi: 10.1038/s41598-020-59821-7

209. Abdalla FYO, Wu L, Ullah H, Mkindu H, Nie Y, Zhao Y. ECG
arrhythmia discrimination using SVM and nonlinear and non-stationary
decomposition. In: School of Electronics and Information Engineering, Harbin
Institute of Technology. Harbin: Institute of Electrical and Electronics
Engineers Inc. (2019). doi: 10.1109/ISSPIT47144.2019.9001889

210. El_Rahman SA. Multimodal biometric systems based on different fusion
levels of ECG and fingerprint using different classifiers. Soft Comput. (2020)
24:12599–632. doi: 10.1007/s00500-020-04700-6

211. Sim J, Wright CC. The kappa statistic in reliability studies: use,
interpretation, and sample size requirements. Phys Ther. (2005) 85:257–68.
doi: 10.1093/ptj/85.3.257

212. Sharma M, Rajendra Acharya U. A new method to identify coronary artery
disease with ECG signals and time-Frequency concentrated antisymmetric
biorthogonal wavelet filter bank. Pattern Recognit Lett. (2019) 125:235–40.
doi: 10.1016/j.patrec.2019.04.014

213. Diez P, editor. Chapter 1 - Introduction. In: Smart Wheelchairs
and Brain-Computer Interfaces. Academic Press (2018). p. 1–21.
doi: 10.1016/B978-0-12-812892-3.00001-7

214. Song Q, Guo Y, Shepperd M. A comprehensive investigation of the role of
imbalanced learning for software defect prediction. IEEE Trans Softw Eng.
(2018) PP:1. doi: 10.1109/TSE.2018.2836442

215. Ben Ishak M. Toward New Evaluation Metrics for Relational Learning BT -
Advances in Integrations of Intelligent Methods: Post-workshop volume of
the 8th InternationalWorkshop CIMA 2018, Volos, Greece, November 2018.
In: conjunction with IEEE ICTAI 2018. Singapore: Springer Singapore (2018).
doi: 10.1007/978-981-15-1918-5_4

216. Kailkhura B, Gallagher B, Kim S, Hiszpanski A, Han TY-J. Reliable
and explainable machine-learning methods for accelerated material
discovery. NPJ Comput Mater. (2019) 5:108. doi: 10.1038/s41524-019-
0248-2

217. Rzadkowski G, Głazewska I, Sawińska K. The gompertz function
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