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Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a
strong genetic basis. The role of de novo mutations in ASD has been well established,
but the set of genes implicated to date is still far from complete. The current
study employs a machine learning-based approach to predict ASD risk genes using
features from spatiotemporal gene expression patterns in human brain, gene-level
constraint metrics, and other gene variation features. The genes identified through
our prediction model were enriched for independent sets of ASD risk genes, and
tended to be down-expressed in ASD brains, especially in frontal and parietal cortex.
The highest-ranked genes not only included those with strong prior evidence for
involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated
potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in
protein ubiquitination. We also showed that our method outperformed state-of-the-art
scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment
analysis of our predicted risk genes revealed biological processes clearly relevant to
ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also
highlighted other potential mechanisms that might underlie ASD, such as regulation of
RNA alternative splicing and ubiquitination pathway related to protein degradation. Our
study demonstrates that human brain spatiotemporal gene expression patterns and
gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system
provides a useful resource for prioritizing ASD candidate genes.

Keywords: autism, de novo mutation, gene expression, constraint, machine learning

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired
social interaction and communication, as well as repetitive behavior. While its etiology is complex,
ASD has a strong genetic basis (Hallmayer et al., 2011; Jeste and Geschwind, 2014; Colvert et al.,
2015). The role of de novo mutations in ASD has been firmly established through candidate
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gene (Wang et al., 2016; Stessman et al., 2017), whole exome
(Iossifov et al., 2012, 2014; Sanders et al., 2012; Ronemus et al.,
2014), and whole genome sequencing studies (Ryan et al., 2017;
Turner et al., 2017). Although the list of risk genes implicated
by de novo mutations is growing, it is still very likely far from
complete, with an estimated full set of ASD genes ranging
from several hundred to more than 1,000 (Iossifov et al., 2014).
In the search for additional de novo mutations, sequencing
studies continue to be an important approach, but the current
sequencing cost is still very high, especially for large samples.
As an alternative strategy, advanced analytical approaches, which
leverage previously implicated genes and prior knowledge, have
the potential to enhance risk gene discovery in an efficient and
cost-effective manner (Asif et al., 2018; Gök, 2018; Brueggeman
et al., 2020).

One approach is based on the concept of guilt-by-association,
i.e., assuming that genes that confer risk for ASD are likely to be
functionally related, and that they thus converge on molecular
networks and biological pathways implicated in disease (Gandhi
et al., 2006; Xu and Li, 2006). For example, one study showed
that ASD genes with de novo mutations converged on pathways
related to chromatin remodeling and synaptic function (Krumm
et al., 2014). To leverage these functional relationships, several
studies have explored integrating known risk genes using a
protein-protein interaction (PPI) network to identify novel
genes involved in ASD (Gilman et al., 2011; Li et al., 2014;
Hormozdiari et al., 2015; Liu et al., 2015). However, a PPI
network is built upon general PPIs without reference to tissue
or cell type specificity, and this approach may not fully capture
the brain-centric functional relationships among ASD genes.
Accordingly, a brain-specific network-based approach, which
considered relationships within the context of the brain, was
proposed to predict ASD genes (Krishnan et al., 2016; Duda
et al., 2018). Studies employing this paradigm, however, did
not consider the dynamic patterns of gene relationships during
brain development, thereby limiting their potential for discovery,
given the possibility that genes might only be functionally related
within a specific developmental stage. Evidence for this comes
from Willsey et al. (2013) who showed, using spatiotemporal gene
expression data from human brain, that co-expression patterns
of ASD risk genes varied by spatiotemporal windows, with the
strongest co-expression patterns observed in the prefrontal and
primary motor–somatosensory cortical regions during midfetal
development, suggesting an important convergence of risk gene
activity in particular places at a particular time.

In addition to having functional relationships, ASD genes
affected by de novo mutations tend to be intolerant of variations
(Samocha et al., 2014; Iossifov et al., 2015). With the availability of
sequencing data from large samples, recent work has developed
measures to quantify the sensitivity of genes to disruptive
functional variations (Petrovski et al., 2013; Lek et al., 2016).
Utilizing exome data on more than 60,000 individuals from the
Exome Aggregation Consortium (ExAC), a gene-level constraint
metric–the probability of being loss-of-function (LoF) intolerant
(pLI)–was created, which separates genes into LoF intolerant or
LoF tolerant (Lek et al., 2016). Kosmicki et al. (2017) further
demonstrated that the excess of de novo mutations in ASD

individuals was primarily driven by LoF-intolerant genes, but not
LoF-tolerant genes.

We reasoned that ASD risk genes show expression patterns
that are clustered in specific brain regions and developmental
stages critical to disease development, and that high resolution
spatiotemporal gene expression patterns in human brain can
help distinguish genes that cause disease from those that do
not. In addition, because ASD genes affected by de novo
mutations are sensitive to mutational changes, we reasoned
that gene-level constraint metrics can further differentiate
ASD genes from normal ones. The objective of this study
was to employ a machine learning-based approach to predict
ASD risk genes using human brain spatiotemporal gene
expression signatures, gene-level constraint metrics, and other
gene variation features. We compared the performance of our
method with five other state-of-the-art scoring systems for
ranking ASD candidate genes, and evaluated the risk genes from
our prediction model using independent sets of risk genes and
differential gene expression (DGE) evidence. Gene Ontology
(GO) enrichment analysis was also performed to understand the
biology underlying ASD risk genes.

MATERIALS AND METHODS

Gene Set
To train the gene prediction model, we used labeled genes curated
by Duda et al. (2018) as described in detail elsewhere. Briefly, the
labeled genes contained 143 true positive genes and 1,145 true
negative ones. The true positives came from the high confidence
genes in the Simons Foundation Autism Research Initiative
(SFARI) resource1 (Category 1, Category 2, and syndromic genes)
and the 65 reported genes in Sanders et al. (2015). The true
negative genes were selected from the non-ASD gene list created
by Krishnan et al. (2016), which were genes associated with
non-mental health diseases, as annotated in OMIM. Among
these genes we focused on those that had both gene expression
data from the BrainSpan atlas and gene-level constraint metrics
available, so that our final training gene set included 121 true
positive genes and 963 true negatives.

Prediction Feature Sets
The feature sets in our prediction task included spatiotemporal
gene expression patterns in human brain, network features,
gene-level constraint metrics, and other gene variation features.
Supplementary Table S1 provides a summary of all features. We
provide details below for each feature set.

Spatiotemporal Gene Expression
We downloaded RNA-Seq data (version 10), summarized
to Gencode v20 gene-level reads per kilobase per million
mapped reads (RPKM) values, from the BrainSpan website2.
Detailed information on tissue processing, experimental and
bioinformatics procedures related to the RNA-Seq data is

1https://www.sfari.org/resource/sfari-gene/
2http://www.brainspan.org/
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available at the BrainSpan website. The BrainSpan dataset
includes 524 gene-level expression features for each gene across
13 developmental stages in 31 brain regions from 524 brain
samples spanning a variety of developmental stages and brain
regions. Gene expression values were log-transformed (log2
[RPKM + 1]) and were used to predict autism genes.

To capture the functional relationships among genes,
we built a weighted network for genes with both gene
co-expression and PPI evidence from InWeb (Rossin et al.,
2011). Specifically, the co-expression level between a gene
pair was assessed by the Fischer z-transformed Pearson
correlation between their spatiotemporal gene expression values.
The genes with PPIs were connected and their edges were
weighted by their co-expression levels. We extracted a set
of network features that characterized the network topologies
using igraph package in R. Specifically, we measured the node
centralities using node degrees, clones centralities, betweenness
centralities, Bonacich power centralities, eigenvector centralities,
and alpha centralities (Bonacich, 1987). We captured the
modules in functional relationship networks using the principle
component decomposition and K-core decomposition (Batagelj
and Zaversnik, 2003). The loading of the 1st principle
component, hub score and coreness were obtained for each
node. The importance of each node was further measured
using the PageRank algorithm (Brin and Page, 1998), which
counts the number and weight of links to each node. In
total, 10 network features were extracted from the weighted
gene network and were used for autism risk gene prediction.
For genes appeared in BrainSpan but not in PPI network,
we imputed their network features using the k-Nearest
Neighbor algorithm.

Gene-Level Constraint Metrics and Other
Gene Variation Features
We used gene-level constraint metrics developed from the
exome data of more than 60,000 individuals from the ExAC
to quantify the sensitivity of genes to variations (25). We
considered six gene-level constraint metrics, including Z scores
for synonymous (syn_z), missense (mis_z), and LoF variants
(lof_z), the pLI, the probability of being intolerant of homozygous
but not heterozygous LoF variants (pRec), and the probability
of being tolerant of both heterozygous and homozygous LoF
variants (pNull). A higher Z score or pLI indicates that the
gene is more intolerant of variation (more constrained). We
also included 10 general gene features, including the number
of coding base pairs (bp), probabilities of mutations across
the transcript for synonymous (mu_syn), missense (mu_mis),
and LoF variants (mu_lof), number of rare variants (n_syn,
n_mis, n_lof), and depth adjusted number of expected rare
variants (exp_syn, exp_mis, exp_lof). Gene-level constraint
metrics and general gene features were downloaded from the
ExAC website3. Wilcoxon rank sum test was used to compare
the group differences in above features between known ASD risk
and non-risk genes.

3ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_
constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt

Autism Risk Gene Prediction
We used machine learning methods to predict autism risk
genes from their spatiotemporal expression signatures, network
topology features, gene-level constraint metrics, and other
general gene features. We applied four machine learning methods
ranging from ones that are regression based [logistic regression
and support vector machines (SVM) with Gaussian kernel] to
others that are tree based (random forest and gradient boosted
trees). The gradient boosted trees model ensembles a set of trees
for prediction bias reduction and was trained in the XGBoost
package (Chen et al., 2015). The optimal tuning parameters in
each model were selected by a nested grid-search, and model
performances were evaluated by five-fold cross validation (CV)
on training data. The prediction accuracy was measured by
the area under the receiver-operator curve (AUC-ROC) on the
hold-out set for each fold of the CV. As the training data is
unbalanced with small number of autism risk genes, we further
considered the area under precision-recall curve (AUC-PRC) to
measure the prediction accuracy.

Based on the average prediction accuracy over five folds,
the gradient boosted trees model (BTree) was selected as the
optimal algorithm. The final prediction model was built by
applying the gradient boosted trees algorithm (with optimally
tuned parameters) on all training genes and stored to predict
over 17,000 unlabeled genes. For each labeled gene, the risk score
was computed by prediction model that left the gene in the
hold-out set in each CV.

Autism Risk Gene Validation Using
Differential Gene Expression Evidence
Based on our gene ranking system, we classified genes into
risk and non-risk genes using a threshold of risk score of 0.22
(resulting in 1,109 predicted ASD genes). We chose the risk
score threshold of 0.22 because it gave the highest prediction
accuracy (F1 score = 0.59) on training data. Genes with a
risk score higher than the threshold were predicted as risk
genes and the remaining genes were predicted as non-risk
genes. We validated the classification performance by examining
whether our predicted risk genes show DGE evidence for
ASD. Specifically, we obtained DGE summary statistics (beta
and p-values) for ASD from RNA-Seq datasets for four major
cortical lobes (frontal, temporal, parietal, and occipital) and
their average from Supplementary Table S1 of a previous study
(Gandal et al., 2018), as well as the summary statistics for a
non-psychiatric disorder inflammatory bowel disease (IBD) and
two psychiatric disorders (bipolar disorder and schizophrenia)
that we employed as negative controls from the same study
(Gandal et al., 2018). The DGE summary statistics for IBD was
derived using a linear mixed-effect model from meta-analysis
of two published gene-expression microarray studies. The DGE
summary statistics for ASD, bipolar disorder and schizophrenia
were calculated using limma (Ritchie et al., 2015) with empiric
Bayes moderated t-statistics from RNA-Seq analyses of post-
mortem brain samples. The details for each datasets and DGE
analyses were provided in the original study (Gandal et al., 2018).
We used simulation-based approach to estimate the enrichment
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statistics of predicted risk genes in DGE evidence. We first
generated a background distribution from 100,000 random gene
sets, while matching for gene size found in predicted risk genes.
The enrichment fold was estimated by the ratio of the observed
number of risk genes with DGE evidence (p < 0.05) to the
average number of that from random gene sets. The p-value
for enrichment was then the proportion of random gene sets
with the same or a greater number of genes with DGE evidence,
as compared to the number found for predicted risk genes. To
investigate whether the enrichment of DGE evidence was specific
to ASD, we also performed the same enrichment analysis for IBD,
bipolar disorder, and schizophrenia.

Autism Risk Gene Validation in
Independent Sequencing Studies
We further evaluated our gene ranking system utilizing genes
targeted by de novo LoF mutations from two studies, including
one that performed whole exome sequencing of 2,517 families
in the Simons Simplex Collection (SSC) cohort (Iossifov et al.,
2014) and another that performed whole genome sequencing of
the MSSNG cohort (Ryan et al., 2017). To get independent lists of
genes for validation, we excluded candidate genes from the two
validation cohorts that overlapped the true positive genes in the
training sample. For the SSC cohort, after excluding genes not
included in BrainSpan, we compiled a list of 346 singleton LoF de
novo mutations in probands, and 170 LoF de novo mutations in
the unaffected siblings as negative controls. From the study of the
MSSNG cohort, we created a list of 212 de novo LoF mutations
in probands, 58 statistically significant de novo LoF or missense
mutations, and 18 statistically significant de novo LoF or missense
mutations that were not previously reported. For each of the
five gene lists, we tested whether a larger proportion of genes
were observed in the first decile of our gene ranking system than
expected using a binomial test. The expected proportion (0.166)
was determined using the percentage of genes with synonymous
de novo mutations in the unaffected siblings of the SSC cohort.

Comparison With Other Ranking
Systems
We compared our predictions with five autism gene prediction
scores, including the ExAC score (pLI) (Lek et al., 2016), Iossifov
probability score (Iossifov et al., 2015), Krishnan probability
score (Krishnan et al., 2016), Zhang D score (Zhang and
Shen, 2017), and Duda score (Duda et al., 2018). The former
two (Iossifov et al., 2015; Lek et al., 2016) were based on
measures of gene intolerance to disruptive variations, and the
later three (Krishnan et al., 2016; Zhang and Shen, 2017;
Duda et al., 2018) were based on machine learning methods
that utilize brain-specific network features or cell-type specific
gene expression signatures from mouse. Different gene scoring
systems were compared in terms of ranking 173 curated
candidate genes, including 130 genes with suggestive evidence
from the SFARI Gene database (Category 3) and 43 recurrent
de novo LoF genes discovered in recent studies (Wang et al.,
2016; Li et al., 2017; Ryan et al., 2017; Stessman et al., 2017). We
compared the overall ranking of candidate risk genes for different

gene scoring systems, with a higher ranking (smaller number)
indicating a greater likelihood of being ASD risk genes. We also
compared the enrichment of candidate genes in the first decile of
different gene scoring systems.

Gene Ontology Enrichment Analysis
We performed GO enrichment analysis to examine whether
predicted risk genes were clustered into specific biological
processes. Fisher’s exact test was used to test the enrichment
of risk genes in GO terms compared to non-risk genes. GO
terms were chosen from the GO ontology of biological processes
in MSigDB (v5.2) (Subramanian et al., 2005). To facilitate
interpretation of the results, we included 2,758 GO terms
that overlapped at least 20, but not more than 2,000 genes
with our tested genes. Bonferroni correction was applied for
multiple testing correction. Because GO terms were often highly
overlapping in genes, we used hierarchical clustering to group
significant gene sets into clusters based on similarity of their
gene profiles (Chen et al., 2014). We first defined a gene
overlapping matrix by counting the number of overlapping
genes for each pair of gene sets. The Pearson correlation
coefficient R was then calculated for each pair of gene sets based
on their overlap profiles. The distance matrix for hierarchical
clustering was then 1 - R. Hierarchical clustering was performed
using the “ward” method implemented in the R function
“hclust.” The dendrogram and heatmap were plotted using the
R function “heatmap.2.”

RESULTS

An Overview of Study
An overview of study is provided in Figure 1. The basic premise
is that ASD risk genes tend to show distinguishing features,
including spatial-temporal gene expression patterns in human
brain, gene network features, and gene-level constraint metrics.
We reason that machine learning models utilizing those features
can differentiate ASD genes from normal ones. To evaluate the
performance of our prediction model, we examined if predicted
ASD genes were enriched for DGE evidence and independent
sets of ASD risk genes. We further performed GO enrichment
analysis to understand the biology of predicted ASD genes.

Genome-Wide Prediction of Autism Risk
Genes
We visualized gene expression patterns for 1,084 training genes
across various regions and developmental stages of human brain
(Supplementary Figure S1). There was a trend for known
autism risk genes (left gene panel, red rows) to have higher
expression levels than non-risk genes (left gene panel, blue
rows). We further tested expression level differences between
known risk and non-risk genes for each specific brain region and
developmental stage (Supplementary Figure S2). The known
autism risk genes showed significantly higher expression levels
on average than non-risk genes for all tested brain regions and
developmental stages (p < 0.05). Of note, the difference was
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FIGURE 1 | Overview of study design. We first collected training data of labeled genes (121 true positive genes and 963 true negatives) and their associated features
(spatiotemporal gene expression values from BrainSpan, network features, and gene-level constraint metrics). We then applied four machine learning algorithms to
predict ASD genes, including logistic regression, support vector machine, random forest, and boosted trees. The boosted trees achieved the best prediction
performance and was employed to predict ASD risk genes across the genome. We further evaluated predicted risk genes through enrichment analyses.

stronger for early to middle prenatal stages, ranging from 12 to
21 postconceptional weeks (pcw).

We compared known autism risk and non-risk genes in
their sensitivity to mutational changes and other gene variation
features. As shown in Supplementary Figure S3, compared
to non-risk genes, autism risk genes were more intolerant of
missense (mis_z, p = 7 × 10−16) and LoF mutations (lof_z,
p = 2 × 10−23; pLI, p = 2 × 10−20), were less likely intolerant
of homozygous, but not heterozygous LoF variants (pRec,
p = 5 × 10−21), and had a lower probability of being tolerant
of both heterozygous and homozygous LoF variants (pNull,
p = 3 × 10−24). Autism risk genes had longer coding base pairs
(p = 4 × 10−29), a higher probability of mutation across the
transcript (mu_syn, p = 1 × 10−16; mu_mis, p = 2 × 10−18;
mu_lof, p = 4 × 10−19), and a larger number of rare synonymous
or missense variants (n_syn, p = 4 × 10−16; n_mis, p = 1 × 10−6),
but less number of LoF variants (n_lof, p = 3 × 10−4).

We compared the prediction accuracy of four machine
learning algorithms across five-fold CV. The gradient boosted
trees (BTree) model achieved the best prediction accuracy for
autism risk genes with AUC-ROC value of 0.86 and AUC-PRC
value of 0.55 (Figure 2). The effects of different features on the
boosted trees model were further explored by comparing the
prediction accuracy under different feature sets (Supplementary
Figure S4). We found that using the spatiotemporal gene
expression features alone achieved an AUC-ROC (AUC-PRC)
greater than 0.8 (0.4), and that the prediction accuracy was
further improved by including either gene network features or
gene-level constraint metrics, with the highest accuracy observed

when all feature sets were included. We further evaluated the
importance of individual features in the optimal BTree model.
The feature importance was quantified as the average gain, i.e.,
improvement in node purity, of the feature when it was used in
trees. Supplementary Figure S5 illustrates the top 30 important
features, including 28 spatiotemporal expression features and two
gene-level constraint metrics (pLI and pNull). It was notable that
pLI was the most predictive feature among all features used.

Autism Risk Gene Validation Using
Differential Gene Expression Evidence
We predicted 1,109 risk genes using our gene ranking system
under the threshold of risk score > 0.22, which generates the
highest prediction accuracy measured by F1 score on training
data. We then examined whether those predicted risk genes
were enriched for DGE evidence for ASD. We found that the
predicted risk genes tended to be down-expressed in ASD brains,
especially in frontal (fold = 1.7, p < 1.0 × 10−5) and parietal
cortex (fold = 1.7, p < 1.0 × 10−5) (Figure 3). We did not see
any significant enrichment of DGE evidence for IBD, bipolar
disorder and schizophrenia, suggesting that the enriched DGE in
our predicted genes was specific to ASD.

Autism Risk Gene Validation in
Sequencing Studies
We further evaluated our gene ranking system using two
sequencing studies (Figure 4). For the risk genes identified from
the SSC cohort, our top decile genes were significantly enriched
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FIGURE 2 | Performance of four machine learning algorithms across five-fold cross validation. The left was measured by the area under receiver operating
characteristic curve (ROC), and the right was measured by the area under precision-recall curve (PRC).

with de novo LoF mutations in probands. Specifically, genes in
the first decile of our ranking system included 32% (88 of 273,
p = 6.8 × 10−9) of de novo LOF mutations in probands. In
contrast, we did not observe significant enrichment of genes with
de novo LOF mutations in the unaffected siblings (p = 0.65).
Similarly, for risk genes identified from the MSSNG cohort, we
found significant enrichment for all three gene lists, including
the de novo LOF mutations in probands (29%, p = 2 × 10−4),
the 25 genes that reached genome-wide significance (72%,
p = 4.4 × 10−9), and the 18 novel genes (67%, p = 6.6 × 10−6).

Comparison With Other Ranking
Systems
We compared the performance of our ranking system (BTree)
with five other gene scoring systems in their ability to rank
curated candidate genes. When we examined the rank of an
independent set of 173 autism candidate genes, our method
outperformed other methods, because our method had the
smallest median ranking (indicating the greatest likelihood of the
set containing autism risk genes) (Supplementary Figure S6).
We further compared the enrichment of 173 candidate genes
in the first decile of each gene ranking system (Supplementary
Figure S7). We observed the highest proportion of candidate
genes in the first decile of our ranking system (52%), which was
higher than the Duda score (40%), ExAC score (44%), Iossifov
probability score (23%), Krishnan probability score (38%), and
Zhang D score (30%). The superior performance of our method
might be attributable to the human brain spatiotemporal gene
expression features that were not considered in other methods.

Gene Ontology Enrichment Analysis
We conducted GO enrichment analysis to examine whether
predicted 1,109 risk genes (score > 0.22) were clustered into

specific biological processes. The full results of this analysis
are shown in Supplementary Table S2. There were 179 GO
terms that remained significant after Bonferroni correction
(pcorrected < 0.05). Significant GO terms were grouped into
five major clusters using hierarchical clustering (Supplementary
Figure S8). These clusters included GO terms related to neuronal
signaling (orange), neurogenesis (blue and black), chromatin
remodeling (green), and transcriptional regulation (red). Table 1
shows details for the top 10 enriched GO terms in enrichment
fold that were particularly interesting, as they included GO
terms involved in ionotropic glutamate receptor signaling, motor
neuron axon guidance, and regulation of histone methylation.

DISCUSSION

A number of methods have been developed for inferring
ASD risk genes. Although they employ differing computational
methodologies, most methods were built upon the concept of
guilt-by-association, using the assumption that risk genes are
functionally related. Theoretically, ASD risk genes should exert
their effects at specific developmental stages in specific brain
tissues or cell types that are critical to disease development.
However, most existing methods have not considered the
spatial and temporal patterns of gene relationships during brain
development. In addition, gene-level constraint metrics, such as
loss of function intolerance, have been used to prioritize ASD
candidate genes, but no studies have quantitatively examined
their potential for predicting ASD genes. Employing a supervised
machine learning algorithm, we have shown that a combination
of human brain spatiotemporal gene expression patterns and
the gene-level constraint metric features predict ASD risk genes.
We further demonstrated the validity of our method through
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FIGURE 3 | Enrichment analysis of differential expression evidence for predicted ASD risk genes. The histogram shows the distribution for the number of genes with
DGE evidence (p < 0.05) from random gene sets. The vertical dotted red line indicates the number of genes with DGE evidence from predicted ASD risk genes.
Predicted risk genes tended to be down-expressed in brains of ASD, but not for disorders of negative control (IBD, bipolar disorder, and schizophrenia).

validations using DGE evidence and independent sets of risk
genes. We have further shown the superior performance of
our ranking system over several other state-of-the-art ranking
systems in ranking curated candidate genes.

We explored the potential role of the top ranked genes in
ASD risk. The gene NBEA, which encodes neurobeachin that
is a brain-specific kinase-anchoring protein implicated synaptic
structure and function, was assigned the highest probability for
conferring ASD risk (score = 0.97). Indeed, mutations in NBEA
have been identified in ASD (Castermans et al., 2003; Wise et al.,
2015) and neurodevelopmental disorders (Mulhern et al., 2018).
Another notable gene in our top list was HERC1 (ranked third,
score = 0.94), which encodes a protein that is a probable E3
ubiquitin-protein ligase. Multiple lines of evidence indicate a role
for HERC1 in ASD: (1) it was reported that HERC1 mutations
caused intellectual disability and facial dysmorphism in two
Colombian siblings (Ortega-Recalde et al., 2015); (2) A nonsense
variant in HERC1 was associated with intellectual disability,

megalencephaly, thick corpus callosum and cerebellar atrophy
(Nguyen et al., 2016); (3) importantly, mutations in HERC1 were
reported to be associated with ASD in an exome sequencing study
(Hashimoto et al., 2016). Our ranking system also successfully
predicted another two ASD candidate genes TCF20 (ranked
26th, score = 0.87) and FBXO11 (ranked 19th, score = 0.88).
Intriguingly, TCF20 was one of the highest ranking candidate
autism risk genes (category 2) according to the most recent
version of the SFARI Gene resource. Mutations in TCF20 were
also implicated in Phelan-McDermid syndrome (Upadia et al.,
2018), developmental disorders (Deciphering Developmental
Disorders Study, 2017), and schizophrenia (Smeland et al., 2017).
FBXO11 was prioritized as a strong ASD candidate gene (Ji et al.,
2016), and was recently reported to be associated with a variable
neurodevelopmental disorder (Gregor et al., 2018).

Our ranking system also highlighted some potential novel
candidate genes that may deserve further investigation.
Four genes, ZYG11B, HECTD1, CAND1, and MYCBP2,
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FIGURE 4 | Decile enrichment of de novo mutations from two independent cohorts in our gene ranking system.

TABLE 1 | Top ten enriched GO terms in predicted ASD risk genes.

GO terms OR 95%_CI_L 95%_CI_U p padj

GO_CENTRAL_NERVOUS_SYSTEM_PROJECTION_NEURON_AXONOGENESIS 27.0 10.0 80.1 1.7E-11 4.7E-08

GO_IONOTROPIC_GLUTAMATE_RECEPTOR_SIGNALING_PATHWAY 17.5 6.9 45.3 1.9E-09 5.1E-06

GO_CENTRAL_NERVOUS_SYSTEM_NEURON_AXONOGENESIS 17.2 7.1 42.5 4.3E-10 1.2E-06

GO_DENDRITE_MORPHOGENESIS 13.0 6.2 27.0 6.5E-11 1.8E-07

GO_MOTOR_NEURON_AXON_GUIDANCE 11.2 4.4 27.6 6.7E-07 0.0018

GO_POSITIVE_REGULATION_OF_HISTONE_METHYLATION 11.1 5.0 24.4 1.4E-08 4.0E-05

GO_GLUTAMATE_RECEPTOR_SIGNALING_PATHWAY 11.1 5.4 22.4 3.1E-10 8.7E-07

GO_EXCITATORY_POSTSYNAPTIC_POTENTIAL 10.4 4.1 25.2 1.1E-06 0.003

GO_REGULATION_OF_HISTONE_H3_K4_METHYLATION 10.4 4.1 25.2 1.1E-06 0.003

GO_MODULATION_OF_EXCITATORY_POSTSYNAPTIC_POTENTIAL 9.3 3.6 23.2 7.1E-06 0.019

OR: odds ratio; 95%_CI_L: OR 95% confidence interval lower bound; 95%_CI_U: OR 95% confidence interval upper bound.

ranked second, fourth, seventh and tenth, are all involved in
protein ubiquitination, which has been implicated in neuronal
function and brain disorders, including ASD (Mabb and Ehlers,
2010). To our knowledge, direct genetic links between these
genes with ASD have not been found. Of note, CAND1 encodes
an essential regulator of Cullin-RING ubiquitin ligases that play
a critical role in ubiquitination and protein degradation (Zheng
et al., 2002); MYCBP2 encodes an E3 ubiquitin-protein ligase
that plays a role in axon guidance and synapse formation in the
developing nervous system. We have provided the whole list of
ranked genes with their probability scores in Supplementary
Table S3. Researchers can further explore the top-ranked genes
or genes of their own interest.

Our study not only provides hundreds of new ASD
candidate genes with evidence for involvement in ASD, but
also shows that the predicted risk genes are biologically
meaningful and are clustered around biological processes
relevant to ASD. GO enrichment analysis demonstrated that
the predicted risk genes were enriched in GO terms related to
neuronal signaling, neurogenesis, chromatin remodeling, and
histone modification, all of which are important biological
processes implicated in ASD. In addition, among our top
10 ranked genes, we found that five were related to the
protein ubiquitination pathway (HERC1, CAND1, ZYG11B,
HECTD1, and MYCBP2), which is consistent with the significant
enrichment of protein ubiquitination process in our GO
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enrichment analysis (GO_PROTEIN_UBIQUITINATION,
OR = 2.3, pcorrected = 1.9 × 10−6), supporting the merging
role of ubiquitin signaling in ASD (Mabb and Ehlers,
2010; Cheon et al., 2018). Our analyses also highlighted
other biological mechanisms that may underlie ASD. For
example, there is evidence for roles of RNA alternative splicing
(Parikshak et al., 2016) in ASD, which was represented in
our top enriched GO terms (GO_RNA_SPLICING, OR = 3.5,
pcorrected = 8.0 × 10−12).

Our study also sheds light on when and where ASD
genes may exert their effects during brain development. Of
the 28 gene expression features from the top 30 important
features in the BTree model, 15 referred to brain regions in
the early to mid-prenatal stage (≤24 pcw), reinforcing the
important role of early prenatal development in ASD. The
involved brain regions include the posteroventral (inferior)
parietal cortex (IPC), primary motor cortex (area M1,
area 4) (M1C), posterior (caudal) superior temporal cortex
(area 22c) (STC), inferolateral temporal cortex (area TEv,
area 20) (ITC), medial prefrontal cortex (MFC), cerebellum
(CB), dorsolateral prefrontal cortex (DFC), and ventrolateral
prefrontal cortex (VFC).

This work should be viewed in light of several limitations.
First, our method was trained on genes implicated in ASD by
de novo mutations. It was not clear how our gene ranking
system was relevant to genes affected by other type of variants.
Second, our gene ranking system was validated using enrichment
analyses of DGE evidence in ASD brain and independent lists of
candidate genes. However, a more solid validation should be a
replication study for top ranked genes in independent samples
through sequencing, but it is beyond the scope of current study.
Third, given the strong evidence of clinical and genetic overlap
between ASD and other types of neurodevelopmental disorders
(Mullin et al., 2013; Srivastava and Schwartz, 2014), further work
is needed to investigate whether our gene ranking system is
specific to ASD.

In summary, our study has demonstrated that human
brain spatiotemporal gene expression patterns and gene-level
constraint metrics predict ASD risk genes. Our gene ranking
system provides a useful resource for prioritizing ASD
candidate genes.
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FIGURE S1 | Heatmap view of spatiotemporal gene expression in human brain.
Each cell in the heat map corresponds to the expression level of a gene (row) in a
specific brain region and development stage (column). The ASD risk and non-risk
genes are denoted by red and blue rows, respectively. Brain regions are
represented by the 31 colors in Color Key of Brain Regions. The ASD risk genes
tend to be expressed in a higher level compared to non-risk genes across
developmental stages and brain regions. The intensity of the color in each cell
represents the log2-transformed expression level. Full names of each brain region:
CBC, cerebellar cortex; CB, cerebellum; VFC, ventrolateral prefrontal cortex; M1C,
primary motor cortex (area M1, area 4); M1C-S1C, primary motor-sensory cortex
(samples); IPC, posteroventral (inferior) parietal cortex; PCx, parietal neocortex;
HIP, hippocampus (hippocampal formation); DTH, dorsal thalamus; TCx, temporal
neocortex; S1C, primary somatosensory cortex (area S1, areas 3,1,2); MD,
mediodorsal nucleus of thalamus; A1C, primary auditory cortex (core); AMY,
amygdaloid complex; STR, striatum; URL, upper (rostral) rhombic lip; OFC, orbital
frontal cortex; Ocx, occipital neocortex; MGE, medial ganglionic eminence; CGE,
caudal ganglionic eminence; LGE, lateral ganglionic eminence; STC, posterior
(caudal) superior temporal cortex (area 22c); MFC, anterior (rostral) cingulate
(medial prefrontal) cortex; V1C, primary visual cortex (striate cortex, area V1/17);
ITC, inferolateral temporal cortex (area TEv, area 20); DFC, dorsolateral
prefrontal cortex.

FIGURE S2 | Gene expression difference between ASD risk and non-risk genes in
the spatiotemporal development of human brain. Each cell in the heat map
represents the expression level difference (t-test) in a specific brain region (column)
and development stage (row). The intensity of color represents the
log-transformed p-value from a t-test. The brain regions and stages without gene
expression data are marked as black.

FIGURE S3 | Boxplot of gene-level constraint metrics and other gene variation
features for true positive (TP) and true negative (TN) genes.

FIGURE S4 | Boxplot of AUCs under different feature sets for BTree model. The
left was measured by the area under receiver operating curve (ROC), and the right
was measured by the area under precision-recall curve (PRC).

FIGURE S5 | Top 30 important features in the BTree model.

FIGURE S6 | Comparison of our gene ranking system (BTree) with five other gene
ranking systems on overall rankings of 173 independent candidate genes.

FIGURE S7 | Decile enrichment of 173 independent candidate genes for each
gene ranking system. The number on the top of each panel represents the
number of 173 curated candidate genes appeared in the first decile of
each ranking system.
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FIGURE S8 | Hierarchical clustering of significant GO terms.

TABLE S1 | Feature sets included in prediction model.

TABLE S2 | GO enrichment analysis for predicted ASD risk genes.

TABLE S3 | Gene risk score predicted from Boosted tree model.
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