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ABSTRACT: Liver X receptors (LXRs) are members of the
nuclear receptor family. Activators of LXRs are of high
pharmacological interest as LXRs regulate cholesterol, fatty
acid, and carbohydrate metabolism as well as inflammatory
processes. On the basis of different X-ray crystal structures, we
established a virtual screening workflow for the identification
of novel LXR modulators. A two-step screening concept to
identify active compounds included 3D-pharmacophore filters
and rescoring by shape alignment. Eighteen virtual hits were
tested in vitro applying a reporter gene assay, where
concentration-dependent activity was proven for four novel lead structures. The most active compound 10, a 1,4-
naphthochinone, has an estimated EC50 of around 5 μM.

■ INTRODUCTION
Liver X receptors (LXRs) are members of the nuclear receptor
family. The two subtypes α and β are classified in a homology-
based nomenclature system as NR1H3 and NR1H2,
respectively.1 As lipid-activated nuclear receptors, they are
composed of a highly conserved DNA binding domain (DBD)
and a ligand binding domain (LBD), which can be targeted by
endogenous ligands (oxidized cholesterol derivates),2 as well as
by synthetic ligands.3 The regulatory impact of nuclear
receptors on gene expression is linked with a conformational
rearrangement of the LBD upon ligand binding, the
dissociation of assembled corepressors or the recruitment of
coactivators, and induced transcription effected by the DBD of
the nuclear receptors. Enhanced transrepression of associated
genes via LXR activation needs further studies, though already
some insights in the complex inflammation related signaling
pathways could be gained, as reviewed by Bensinger et al.4,5

The physiological impact of LXR is associated with the
communicative interface of lipid metabolism and inflamma-
tion.6,3 Therefore, the LXRs were identified as a promising drug
target for indications such as hypercholesterolemia, athero-
sclerosis, and cardiovascular diseases.7,4 Identification of first
potent LXR agonists8 and convenient results in vivo, such as
promising experiments with atherosclerotic mice9 motivated
medicinal chemistry campaigns. Accelerated by insights into the

molecular structure of the LXR LBD, various LXR-modulating
scaffolds were identified and reviewed in refs 10 and 11. A
striking setback on the road to the clinical application of LXR
agonists is the increase of triglyceride levels in animal studies.5

Strategies to overcome this side effect related with LXRα
activation is the development of LXRβ-selective activators12−14

or tissue-specific LXR modulators.15 Detailed investigations
revealed that the complex regulation processes in lipid
metabolism might be considered as critical with regard to
further potential side effects.16 Nevertheless, potential uses as
drug target remain attractive and the development of LXR
modulators also including antagonists is an attractive research
field.17 Recently, LXR signaling was linked with acquired
immune response,18 proliferation control,5 and antitumor
response.19 Furthermore, Alzheimer’s disease20,21 and diabe-
tes22 were added to the potential application fields of LXR
modulators.
For the nuclear receptors LXRα and β 10 Brookhaven

Protein Data Bank (PDB) entries were deposited from 2003 up
to 2009 (Table 1).23,24 The secondary structure of nuclear
receptor ligand binding domains, dominated by 12 α-helices
forming a mainly hydrophobic binding pocket, is highly
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conserved for the LXR structure of both subtypes. The PDB
entry 1pq9 was excluded from this investigation as the ligand
was destroyed during X-ray treatment of the crystal.25 Full
chains for the LBD are found in 1pq6, 1pqc, and 3fc6,25,26 while
the other crystal structures miss the 3D coordinates for several
residues related to the flexibility of the protein. The PDB
entries differ in resolution, cocrystallized proteins (monomers,
homodimers, and physiological heterodimers with retinoid X
receptor (RXR)), and the complexed ligands (Figure 1).
Compound 1, epoxycholesterol, is an endogenous LXR
activator with weaker affinity than some published synthetic
nonsteroid ligands. The hexaflouropropanol moiety in the
sulfonamide T-0901317, compound 2,3 was optimized to
compound 3 during structure guided design of the amide series

by GSK.27 Pharmacokinetic improvement efforts on compound
5, GW3965,8 led to the indol substituted compound 6.26 The
maleimide structure of compound 4 represents a further
scaffold and was identified by HTS.28

The published structural insights are a suitable basis for
structure-based virtual screening (VS) strategies. The applica-
tion of an approved computational high throughput screening
(HTS) can be a faster and less expensive approach than
classical experimental HTS in order to identify new scaffolds for
LXR modulators. VS approaches have already been successfully
applied on LXR. For instance, the identification of 2-aryl-N-acyl
indole as LXR agonist, such as compound 6, was guided by
docking experiments.29 The same working group published a
successful docking campaign applying the program GLIDE to
identify a further LXR modulating scaffold.30 Two recent
studies,31,32 published during the preparation of this manu-
script, also used 3D-pharmacophores to establish a VS protocol.
Zhao et al. developed a ligand-based quantitative model for
LXR agonists and validated their findings by docking.32 The
study of Ghemtio et al. has a similar methodological approach
as the study we present here.31 The authors compared a
combination of 3D-pharmacophores and volume restrictions as
prefilter for exhaustive docking.33 However, our study goes a
step further, as we included experimental testing of predicted
virtual hits and thereby provide evidence for the model’s
validity.

■ RESULTS

Study Design. Crystallographic data from LXR LBD in
complex with bioactive ligands, as found in the freely accessible
PDB,23,24 provided structural insights into the molecular
interactions. In the concept of structure-based 3D-pharmaco-
phores, the interacting features and their geometric relations are
derived from the X-ray structures and translated into a

Table 1. Structural Data Available from PDB Deposits
2003−2009

PDB
entry ligand

resolution
[Å] subtype

gene
source

crystal
composition refs

1p8d 1 2.80 β human homodimer,
synthetic
coactivator

39

1pq9 2a 2.10 β human homodimer 25
1pq6 5 2.40 β human homodimer 25
1pqc 2 2.80 β human homodimer 25
1upv 2 2.10 β human monomer 63
1upw 2 2.40 β human monomer 63
1uhl 2 2.90 α human dimer with RXRβ 64
2acl 4 2.80 α mouse dimer with

RXRα
28

3fal 3 2.36 α mouse dimer with
RXRα

27

3fc6 6 2.06 α mouse dimer with
RXRα

26

aLigand artifact from X-ray experiment.

Figure 1. LXR modulators cocrystallized in PDB crystal structures.
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pharmacophore model, which can be applied for screening of
virtual compound databases reviewed in refs 34 and 35. In our
study, we first included the 10 X-ray structures published up to
2009 covering LXR α as well as β, as the biological assay we
applied is not suitable to distinguish subtype selectivity (Table
1). The pharmacophores, generated with LigandScout 2.3,36

were manually modified and theoretically validated before
seven pharmacophores derived from different PDB entries were
selected for the VS. Applying multiple pharmacophores, we
could cover different binding modes related with conforma-
tional changes in the binding pocket. The second step of VS
was a reranking of the screening hit lists with the
TanimotoCombo scoring function of ROCS, a method for
fast alignment and comparison to the bioactive ligand
conformation as query molecule.37,38 The two-step in silico
strategy was applied for screening of the National Cancer
Institute (NCI) Database (250 761 compounds). Eighteen
highly ranked compounds were selected from the hit list by
aspects of availability, chemical diversity, and drug-like
character for an in vitro transactivation assay, which verified
LXR activation for four compounds. The work flow and key
data are visualized in Figure 2.

LXR Ligand Binding Pocket. The binding sites of the
LXRs are mainly hydrophobic and composed of two to three
cavities and a tunnel directing to the solvent-exposed residues
(C2) (Figure 3). In the C1 cavity, interaction with His435
(His421 in LXRα) is crucial and a hydrogen bond to this
residue is supposed to stabilize the stacking of His435 to
Trp457 (Trp443 in LXRα) in the C-terminal α-helix (known as
helix 12), which favors the association of coactivators next to
helix 12.39 The epoxide oxygen of the endogenous ligand 1
forms this interaction as well as the synthetic compounds.10

Although the hydrogen bond was described as critical, LXR
modulators are known which do not establish a hydrogen bond
to His435.40 Small ligands, like compound 2, fill the C1 and C2
region. The benzylsulfonate moiety extends a little into a wide
tunnel, which is also present in the binding pocket with bound
endogenous ligand. For comparison, larger molecules show
another binding mode, where a third subpocket (C3) can open
and accommodate branched hydrophobic substituents. This
C3-cavity is formed by three phenylalanine residues. It is
opened by an altered side chain conformation of Phe340. The

typical features of the binding pocket are reflected in the
pharmacophore features.

Pharmacophore Models. The nine pharmacophore
models generated based on PDB entries were composed of
four to seven features describing ligand−receptor interactions
and excluded volumes (Xvols) on protein atoms to line the
binding pocket.36 Initial pharmacophore generation was
automated using the LigandScout algorithm and was followed
by manual modification of the pharmacophore models. The
optimization process aimed at improved enrichment factors,
which describes the ratio of found active compounds versus hits
from a decoy database (calculated according to the
Experimental Section). To achieve a higher yield of active
hits in the test set, selected features were deleted or modified.
Further manipulations affected the spatial restriction for the
pharmacophore models: While the standard approach placed
single excluded volumes according to a residue-dependent
algorithm (applied for the models 1p8d, 1pqc, 1uhl, 1upv,
1upw, 2acl, and 3fal), an alternative approach composed a coat
of excluded volumes with a 0.8 Å tolerance on each heavy atom
of the protein in the binding site (applied for the models 1pqc
and 3fal). Composition of the nine pharmacophores is depicted

Figure 2. Workflow for finding novel LXR modulators.

Figure 3. Binding pocket of compound 2 in 1pqc (A) and compound
5 in 1pq6 (B) with pharmacophore features of the models and
highlighted cavity C1 (red), binding tunnel C2 (green), and subpocket
C3 (blue); for the benefit of clear arrangement Xvols are hidden.
His435, Trp443, and Phe340 are shown in ball and stick style. In part
B, Phe340 changes its conformation and opens up the hydrophobic
cavity C3 in order to accommodate the larger ligand compound 5.
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in Figure 4, and their validation performance is summarized in
Table 1. All pharmacophores besides model 3fc6 have
hydrogen bond acceptors (HBA) which describe the
interaction to His435. Central hydrophobic features (HF) in
the binding site represent the hydrophobic character of the
binding site. In model 3fal the additional C3 interaction is
represented by a HF; in 3fc6, by a hydrophobic aromatic
feature (HAF). In the model 1pq6, a more restrictive aromatic
ring feature (AR) takes into account the orientation of the
aromatic plane as further criterion for feature mapping as the
ligand’s phenyl moiety interacts via aromatic π-stacking to
Phe340 (Figure 3). Pharmacophore model 2acl stands out with
a very unfavorable enrichment factor. This is related to the
distinct chemical scaffold of compound 6 and the fact that 1H-

pyrrole-2,5-diones and related compounds were underrepre-
sented in the test set.
The pharmacophores on PDB 1p8d and 1upw were excluded

from the application phase of the screening system. With this
study focusing on the identification of new nonsteroidal
scaffolds, we decided to neglect the model 1p8d based on an
endogenous ligand, which produced hit lists dominated by
steroids during the validation screening. The enrichment factor
of 6.2 for the model 1upw is typical for a crude filter, which
could be useful for prescreening when followed by further
filters for hit list reduction. In this study, the pharmacophore
model 1upw is considered to be inappropriate as the
pharmacophores are the only cutoff delimiter. Additionally,
the 1upw model produced hits with high overlap to the model
1pqc during validation: only three test set hits of 1upw were

Figure 4. Pharmacophore models generated for LXR modulators. Chemical features are color-coded: hydrogen bond acceptor (HBA) red, hydrogen
bond donor (HBD) green, hydrophobic (HF) yellow, aromatic ring feature (AR) blue, hydrophobic aromatic feature (HAF) blue and yellow, shape
(sh), and exclusion volumes (Xvols) gray.

Table 2. Pharmacophore Characteristics

model code 1p8da 1pq6 1pqc 1upv 1upwa 1uhl 2acl 3fal 3fc6 all all w/o 1p8d 1upw

test set (41) 7 23 9 2 16 7 5 6 9 30 29
decoy set WDI (67050) 464 1699 2370 17 4338 1392 4916 1283 94 11318 9352
EF 24.9 22.4 6.3 176.6 6.2 8.4 1.7 7.8 146.6 4.4 5.2

a1p8d and 1upw were not used for subsequent virtual screening.

Table 3. Virtual and Biological Screening Results

model 1pq6 1pqc 1upv 1uhl 2acl 3fal 3fc6 combined

no. of hits from NCI (250 761) 4193 8078 56 2984 1875 5275 244
no. of hits shape alignment 4116 7917 53 2906 1832 5183 243 19769
no. of selected compounds 7 7 2 9 5 6 1 18
no. of active compounds 1 2 1 4 2 1 0 4
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not matched by the model of 1pqc. Two of those test set
compounds were covered by the models 1upv and 2acl.
Therefore, exclusion of the model 1upw only had a minor effect
on found actives from the test set, but resulted in a major
reduction of the number of found decoys. The seven
pharmacophore models used for subsequent screening matched
29 out of 41 active compounds in the test set and showed a
combined enrichment factor of 5.2 in the validation screening.
Pharmacophore Screening. The parallel pharmacophore

filtering of the NCI database resulted in seven virtual hit lists,
one for each pharmacophore. The hit lists were composed of
the compounds matching the pharmacophore model’s chemical
and geometrical restraints. The number of hits found by each
model is displayed in Table 2. Mismatch between the NCI hit
lists and the corresponding conformational hit lists is due to
molecules failing the conformer generation algorithm of
Openeye’s Omega software, e.g. metal-containing compounds.
The nonredundant, combined hit lists comprised 19 769
compounds corresponding to a filtering rate of 7.6%.
Shape Alignment. A subsequent ranking of the hit lists

produced by pharmacophore screening was performed with
shape based alignment applying Openeye’s software ROCS.
Bioactive conformations extracted from the crystal structures
served as query molecules for alignment. A combination of
shape overlap and chemical feature similarity between reference
and the molecules from the hit lists (TanimotoCombo score)
were applied for ranking. On the basis of this ranking, we
selected 18 compounds for validation tests (Supporting
Information, Table S1). The selection included highly ranked
hits with conclusive alignment poses, low molecular weight
(except one <500 g/mol), and chemical diversity. Three
compounds contained a central sulfonamide and four
compounds showed an aniline substructure, similar to the
query compounds and other known LXR modulators. Never-
theless, the tested compounds also included new scaffolds, e.g.,
two acridine scaffolds and a 2,3-substituted naphthochinone.
LXR Reporter Assay. For 18 compounds the relative

induction of the LXR-driven luciferase reporter gene was
determined (Supporting Information, Table S2). Four
compounds (7, 8, 9, and 10, Figure 5, Table 4) showed a
significant transactivation relative to the induction of ABCA1
transcription by the known LXR modulator 2. Four compounds
classified as active were reanalyzed at different compound
concentrations (Figure 6). Compound 8 (NSC130822; 6-
((benzyl((8-hydroxy-6-quinolinyl)methyl)amino)methyl)-8-
quinolinol) and compound 10 (NSC618463; 2-(4-methyl-1Δ5-
pyridin-1-yl)-3-(3-(trifluoromethyl)anilino)naphthoquinone)
induced ABCA1 transcription comparable to the known LXR
activators 2 and 5, but in higher concentrations. Compound 7
(NSC130101; 2-((diethylamino)methyl)-4-((4-methoxy-9-
acridinyl)amino)phenol) and compound 9 (NSC131747; 4-
(3-hydroxy-4-methoxybenzyl)-7-methoxy-8-isoquinolinol) even
need concentrations of 50 μM to observe transactivation
effects. Compound 9 showed the lowest absolute induction of
ABCA1, what is in agreement with the results from relative
induction experiments, where compound 9 at 25 μM showed
49.2% of induction compared to 1 μM of compound 2
(Supporting Information, Table S2).

■ DISCUSSION
The four identified LXR modulators were derived from a VS
concept combining pharmacophore screening and rescoring
with shape-based alignment.

With regard to the methodological aspects, this study joins a
list of other screening approaches, which were already
successful for other inflammatory targets and led to the
identification of novel compounds targeting inflammation.41−44

As far as we know, this is the first pharmacophore-based virtual
screening published for the target LXR including biological
confirmation. Nevertheless, the here presented screening
concept for LXR is comparable to the structure based filtering
strategies by Ghemtio et al.31 The authors of the latter primarily
focused on the comparative performance of the filters and
finally proposed a consensus strategy for LXRβ. In contrast, our
study is initially designed with a hierarchically condensation of
two methods for VS and included LXRα and LXRβ.

Figure 5. Newly identified LXR agonists and their shape alignment
with the query compounds. (A) 7 with query compound 2 of 1upv.
(B) 8 with query compound 5 of 1pq6. (C) 9 with query compound 3
of 3fal. (D) 10 with query compound 4 of 2acl.

Table 4. Newly Identified LXR Agonists

compound hitlist, rank (shape-based)

rel induction ± SDa [%]
1 μM
25 μM

7 1pqc, 3471 13.6 ± 1.4*
1upv, 5 90.9 ± 9.9*
1uhl, 106
2acl, 601

8 1pqc, 2837 44.9 ± 8.8
1pq6, 42 76.7 ± 24.1
3fal, 96

9 3fal, 10 6.6 ± 2.7
49.2 ± 10.5*

10 2acl, 55 53.4 ± 17.6
109.7 ± 5.7*

aSD: standard deviation of three experiments.
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Additionally, our study integrated a biological testing for
verification. Despite of these differences, we agree in many
conceptual and methodological aspects. Similar to our
approach, Ghemtio et al. applied parallel pharmacophores
and shape filtering based on different crystal structures. The
parallel conception is a convenient approach to overcome the
challenges of a flexible drug target when multiple different
crystal structures are available, as it is the case for LXR.45,46

Pharmacophore filtering and shape alignment, two virtual
screening tools known for fast performance, are combined here.
To show the synergy by the subsequent use of the two methods
within this study, independent performance of both pharma-
cophore screening and shape alignment were analyzed
retrospectively (Supporting Information Table S2 and S3).
The four active compounds, 7, 8, 9, and 10 are not ranked
within the first 25% of the pharmacophore hit lists with the
exception of compound 7 matching the model 1uhl with a good
fit value. In respect, shape alignment alone without prefiltering
by pharmacophores would not result in a top-ranking (top 500)
for the active compounds. Top-ranked hits from both methods
applied independently might still be active as no testing was
performed to evaluate them as truly negative. However, we can
state that neither pharmacophore nor shape alignment alone
would have resulted in a selection of the four active compounds
identified here. We conclude that the hierarchical combination
of pharmacophore screening in a first step and shape alignment
in a second one was crucial for the identification of the active
LXR modulators.
A principle advantage of the parallel screening approach is

that the modular conception allows for easily extending and
adapting the approach to new insights. During manuscript
preparation a further ligand-bound LXRβ structure was released
in the PDB representing the binding mode of 4-(3-aryloxyaryl)-
quinolines.47 An additional pharmacophore model based on
this new X-ray structure showed a hydrogen bond interaction
with Leu330 (Supporting Information, Figure S2). This feature
was not yet covered within the set of nine pharmacophore
models. This hydrogen bond was suggested for LigandScout’s
automated pharmacophore generation in 3fc6 modeling but
manually deleted in the model 3fc6 during model optimization.
The new model 3kfc is characterized by a good hit rate in the
test set (23/41) and partially complements the set of seven
used pharmacophores by covering six additional test set
compounds. Nevertheless, it shows also a high hit rate within

the decoys, and because of this low restrictivity, we suggest not
to include this new pharmacophore model 3kfc in further
applications of the virtual screening approach.
Regarding the biological results, we could identify com-

pounds 8 and 10 with EC50 around 5 μM and the weaker LXR
activators 7 and 9. Three of the active compounds show a
molecular weight over 400 g/mol. The smallest compound (9,
molecular weight 311.3 g/mol) being the weakest LXR
activator in this study is a suitable candidate for lead
optimization, as the small scaffold allows the addition of
substituents targeting further interaction points within the
spacious binding pocket. Compounds 7 and 8 showed more
extended structures with four or more aromatic rings. Although
the bulky acridine in compound 7 might be a steric challenge, 7
is matched by four pharmacophore models and the alignment
within the structure 2acl complex predicts a convenient
interaction pattern (Figure 7). Compound 8 showed no top-

ranking in the alignment. Motivation to test compound 8 was
the frequent occurrence of quinolin-8-ol substructures within
the hit lists, and therefore, compound 8 with two quinolin-8-ol
moieties and fair ranking within three hit lists was selected.
Compound 10 is of special interest, not only because of the

highest activity found in this study but also for its interesting
scaffold. The 2,3-substituted naphthochinone is different from
known LXR modulators, and it is not surprising, that it was
only found by the pharmacophore model 2acl, showing a
distinct interaction pattern.28 Alignment with the maleimide 4
showed perfect overlap for the aromatic substitute (Figure 5D),
while the permanent charge of the pyridinyl substructure links
to the basic function of other LXR activator classes, e.g. the
tertiary amines as present in 3, 5, and 6.

■ CONCLUSION
We presented a VS approach for the metabolic and
immunological target LXR. Here the subsequent use of
pharmacophore screening and shape alignment has been
successful. The four novel compounds 7, 8, 9, and 10 are
identified as activators of LXR induced ABCA transactivation
with low micromolar EC50 values and transactivation induction
in levels comparable to known LXR activators. All four hits can
serve as inspiration for lead optimization. Thus, the screening
approach was evaluated positively and larger scale application is
planned.

Figure 6. ABCA1 induction by compounds 7, 8, 9, and 10 at different
concentrations. The control includes ABCA1 induction of compound
2 at 1 μM (light gray) and compound 5 at 1 μM (anthracite) as well as
unstimulated control with DMSO (gray) and without DMSO (black).

Figure 7. Alignment of compound 7 in the LXR crystal structure
(PDB code 2acl). Five hydrophobic interactions and a hydrogen bond
with Ser278 (LXRβ numbering) were identified with LigandScout.
His435, Trp443, and Ser278 are shown in ball and stick style.
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■ EXPERIMENTAL SECTION

Software Specification. The following software programs
were used for this study: Inte:ligand’s LigandScout 3.0 and
Openeye’s VIDA for visualization of 3D figures. Inte:ligand’s
LigandScout 2.3 for pharmacophore generation, Accelrys’
Catalyst 4.11 for screening and calculation of multiconformer
databases, Openeye’s ROCS 2.4.2 for shape based alignment,
and OMEGA 2.3.2 for calculation of multiconformer databases.
Compound Data Sets. Three compound databases were

screened during this study. While a set of 41 LXR ligands (test
set, Supporting Information, Figure S1) and a decoy set of
drug-like compounds, the Derwent World Drug Index 2005
(WDI), were screened for pharmacophore validation, the third
database was used for productive virtual screening (NCI
database).
Forty-one ligands covering 12 scaffolds composed a

validation data set, the so-called test set. The ligand structures
and activity information were extracted from literature. We
draw on a review by Bennett10 and references therein,
collecting LXR modulators published up to March 2007.
Endogenous ligands and more recently published synthetic
l i g and s comp l e t ed our s e l e c t i on fo r the t e s t
set.3,8,12−14,26,30,48−55 Compounds’ 3D structures were prepared
with CORINA 3.056 and the multiconformer database was
calculated using Accelrys’ Catalyst 4.1157 (catConf settings:
maximum number of conformers = 250/molecule, generation
type = best quality, max. energy 20 kcal/mol above the
calculated energy minimum). The WDI is a commercially
available database with 67 050 drugs and biologically active
compounds.58 Here, we used this data set for selectivity check
of the pharmacophores and considered these compounds as
inactive decoys for the screening. The NCI database is the
compound collection provided by the Developmental Ther-
apeutic Program of the National Cancer Institute,59 and a part
of the compounds are provided for experimental research. The
NCI data set, release 3, 2003 including 260 071 entries was
downloaded and calculated as a multiconformational database
using Catalyst for pharmacophore screening resulting in a 250
761 compound library (catconf settings: maximum number of
conformers =100/molecule, generation type = fast). The hit
lists as well as the NCI Database were calculated as
multiconformational databases using OMEGA version 2.3.2
with the default setting to provide a format compatible with
ROCS.
Pharmacophore Modeling, Screening, and Validation.

The pharmacophores were generated applying LigandScout2.3
with default settings for the detection of protein−ligand
interactions.36 These primary pharmacophores were submitted
to manual manipulation to exclude interactions with water
molecules. The number of features for the primary
pharmacophore models was reduced to make them more
suitable for scaffold hopping during validation. VS was
performed with the search engine of Accelrys’ Catalyst 4.11
using the best flexible search option.57

To validate the models we screened the WDI as a collection
of decoys and our test set including 41 LXR modulators.
Calculating the enrichment factor (EF) helps to quantify the
models discriminatory power:

= n A NEF (TP/ )/( / )

where TP is the number of active LXR modulators matched by
the model, n is the sum of LXR modulators and decoys

matched by the model, A is the number of active LXR
modulators within the test set, and N is the number of all
compounds in the validation data sets.60

Shape Alignment. The command line application ROCS
2.4.2 performs automated alignment of investigated compounds
to a query molecule optimizing the overlap of the shape, which
is characterized by a sum of continuous Gaussian functions.38

ROCS optimizes the shape overlap and produces a scoring
function according to the Tanimoto equation,

= + −O I I OTanimoto /( )f,g f,g f g f,g

where I terms are the self-volume overlaps for the query
molecule f and a compared molecule g and the overlap Of,g, was
maximized during alignment.
A further ROCS score is the ColorTanimoto, which

calculates the overlap of the six chemical features (hydrogen-
bond donors, hydrogen-bond acceptors, hydrophobes, anions,
cations, and rings), defined with the ImplicitMillsDean force
field.61 The TanimotoCombo, which simply adds the two
scores ShapeTanimoto and ColorTanimoto, was used for the
ranking of the pharmacophore-based hit lists. It can take values
between 0 and 2. We used the conformations of cocrystallized
LXR activators from the PDB entries as query molecules for the
alignment of the hit lists produced by the pharmacophores
derived from the same PDB entry

LXR Reporter Assay. A bioluminescence assay using the
luciferase reporter construct driven by ABCA1 gene promoter
was used to quantify the activity of potential LXR modulators.
All experimental conditions were exactly as described by us
recently,62 except for overexpressing human LXRβ and using
ABCA1 promoter-driven reporter. The induction relative to
compound 2 (100%) was determined for all 18 compounds
performing three repeats for each experiment at 1 and 25 μM
concentration, respectively. Two experiments at 25 μM were
not possible due to solubility problems. For four active
compounds, additional dose-dependency experiments were
performed at five concentrations, and these experiments were
evaluated for EC50 estimations.
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