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José M. Granadino-RoldánID
1*, Antonia S. J. S. Mey2, Juan J. Pérez González3,
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Abstract

Hit-to-lead virtual screening frequently relies on a cascade of computational methods that

starts with rapid calculations applied to a large number of compounds and ends with more

expensive computations restricted to a subset of compounds that passed initial filters. This

work focuses on set up protocols for alchemical free energy (AFE) scoring in the context of

a Docking–MM/PBSA–AFE cascade. A dataset of 15 congeneric inhibitors of the ACK1 pro-

tein was used to evaluate the performance of AFE set up protocols that varied in the steps

taken to prepare input files (using previously docked and best scored poses, manual selec-

tion of poses, manual placement of binding site water molecules). The main finding is that

use of knowledge derived from X-ray structures to model binding modes, together with the

manual placement of a bridging water molecule, improves the R2 from 0.45 ± 0.06 to 0.76 ±
0.02 and decreases the mean unsigned error from 2.11 ± 0.08 to 1.24 ± 0.04 kcal mol-1. By

contrast a brute force automated protocol that increased the sampling time ten-fold lead to

little improvements in accuracy. Besides, it is shown that for the present dataset hysteresis

can be used to flag poses that need further attention even without prior knowledge of experi-

mental binding affinities.

Introduction

There is continuous interest in computational methods to decrease time and costs of hit-to-

lead and lead optimization efforts in preclinical drug discovery [1]. A recurring topic in

computational chemistry is the use of virtual in silico screens to find ligands for proteins [2, 3].

Typically, the goal is to filter via a cascade of computational methods a large library to focus

experimental efforts on a small number of molecules. Usually inexpensive methodologies are

applied first to eliminate a large number of poorly suited molecules, with more expensive cal-

culations reserved to a subset of promising ligands. This approach may be applied in the
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context of hit discovery where the goal is to identify a few weak binders from a library of exist-

ing molecules; or for hit-to-lead efforts where the goal is to identify analogues of a hit structure

that could be prioritized for synthesis and assays. In both cases the main steps frequently

involve library screening, docking, initial scoring, and re-scoring with diverse molecular simu-

lation methods such as Molecular Mechanics Poisson Boltzmann (Generalized Born) Surface

Area (MM/PBSA) [4], Linear Interaction Energy (LIE) [5] or Free energy Perturbation (FEP)

[6] methods [7].

In a previous study a multistep docking and scoring protocol was benchmarked in the con-

text of re-scoring with the MM/PB(GB)SA method [8]. The set of ligands analysed in that

study belonged to the same scaffold and it was assumed that the core binding mode of the con-

served scaffold would not deviate from that of the experimentally X-ray resolved one. The

present study investigates the suitability of alchemical free energy (AFE) methods for improv-

ing on this multistep docking and scoring protocol by means of a further re-scoring of ligands.

AFE methods are increasingly used for predictions of free energies of binding in blinded com-

petitions such as SAMPL (Statistic Assessment of Modelling of Proteins and Ligands) and

D3R grand challenges [9–15]. Some AFE protocols have even achieved predictions of binding

energies with root mean square deviations (RMSD) under 1.5 kcal mol−1, and Pearson Corre-

lation coefficients (R) of around 0.7 or better [16–23]. Nevertheless, the performance varies

significantly between different AFE protocols and targets [24–26] and it is important to

explore further the robustness of these methodologies.

Specifically, this study aimed to explore the extent to which a setup protocol motivated by

previous domain knowledge may influence the accuracy of AFE calculations, and whether

issues such as binding poses selection or binding site water placement can be overcome via an

increase of the simulation time. This was investigated using a dataset of 15 congeneric inhibi-

tors of the protein activated Cdc42-associated kinase (ACK1) [27], a potential cancer target

[28, 29]. The compounds span a large range of activity (Ki values ranging from more than

10 μM to 0.0002 μM), as seen in Fig 1, and are typical of the structural modifications per-

formed in hit-to-lead programs. The 15 ligands were first docked into the ACK1 ATP-binding

site, and a set of docked poses obtained for each ligand was re-scored with a 4-step minimiza-

tion protocol followed by a single-snapshot MM/PBSA re-scoring. The best scored pose was

alchemically studied and the relative binding energy was compared to the experimental one.

The alchemical calculations were also repeated with a 10-fold increase in sampling time. The

role of a possible bridging water molecule in the binding pocket was also considered. Finally,

thermodynamic cycle closures were analyzed as a way to detect incorrectly predicted poses

without knowledge of the experimental relative binding energies.

Materials and methods

Dataset

The dataset consists of 15 ACK1 competitive inhibitors for which inhibition constants (Ki)

have been reported. The structure of only one protein-ligand complex (compound 35) was

determined by X-ray crystallography [27] (Fig 2). This dataset was further divided into two

subsets: batch 1 (6 ligands with Ki values ranging from >10 μM to 0.006 μM), and batch 2 (9

ligands with Ki values ranging from 0.013 to 0.0002 μM).

Protein and ligand setup

The ACK1 kinase domain structure was taken from the Protein Data Bank, code 4EWH [27],

using chain B of the crystal structure, which was protonated with MOE v2009.1 [30]. The

structure has no missing residues; Tyrosine 284 was dephosphorylated with MOE following
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Lougheed et al. observation that inhibitor binding is not expected to be sensitive to the phos-

phorylation state of this residue [31]. The protonation state of each ligand was predicted using

the SDwash program in MOE v2009.1. Batch 1 ligands were predicted to be neutral, whereas

batch 2 ligands were predicted to be positively charged.

Docking

Docking was performed with MOE v2009.1 [30]. The full docking process was done in three

steps. The first one was an exhaustive conformational search of the ligands using the System-
atic option of MOE together with the option Enforce chair conformations on. All other parame-

ters were set to the standard options. A maximum of 100 conformations by compound were

selected for the Placement step. In the second step the receptor was defined as those atoms

within 9.0 Å from the ligand. The Rotate Bonds option was activated and the Affinity dG func-
tion employed together with the Triangle Matcher method for placement. A maximum of 30

poses for each ligand were retained. Finally, the 500 best structures were submitted to the

Refinement step with the Force Field function and allowing the lateral chains of the pocket resi-

dues to move during the optimization without restriction. All other parameters were set to the

standard options. The five best structures obtained for each ligand, according to their pre-

dicted binding energies, were retained for minimization and re-scoring with MM/PBSA.

MM/PBSA

A four-step minimization protocol followed by a single snapshot MM/PBSA re-scoring was

performed with Amber 14 [32]. Ligands were prepared with Antechamber using the GAFF

force field [33] with AM1-BCC partial charges [34, 35], while the ff99SB [36] force field was

used for the protein. All systems were solvated in a rectangular box of TIP3P water molecules

[37]. Counterions were added as necessary to neutralize the systems [38]. Energy minimization

Fig 1. Ligands studied in this work, along with reported Ki values [27]. Compound numbering is the same as that used in reference 27.

https://doi.org/10.1371/journal.pone.0213217.g001
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was performed under periodic boundary conditions using the particle-mesh-Ewald method

for the treatment of the long-range electrostatic interactions [39]. A cut-off distance of 10 Å
was chosen to compute non-bonded interactions. The four-step minimization procedure was

as follows: 1) 5000 steepest descent (SD) steps applied to water molecule coordinates only; 2)

5000 SD steps applied also to protein atoms, with positional harmonic restraints (5 kcal mol-1

Å-2) applied to backbone atoms only; 3) 5000 SD steps as done previously with backbone atom

restraints set to 1 kcal mol-1 Å-2 and 4) 5000 SD steps with no restraints.

For each of the energy minimized structures, a binding free energy was estimated following

the MM/PBSA method using the MM/PBSA.py program [40]. No entropic contributions were

taken into account, while the variables cavity_surften and cavity_offset were assigned the values

Fig 2. (a-d) Superimposition of the X-ray diffraction derived structure of the ACK1 protein co-crystallized with ligand 35 (grey) (PDB code

4EWH). (a) with the best predicted MM/PBSA docked pose for ligand 6 (blue), (b) with ligand 7 (purple) exhibiting a different binding mode,

(c) with ligand 44 from MM/PBSA prediction using the best predicted binding mode and (d) with ligand 44 using the second-best binding

mode prediction. All carbon atoms of ligand 44 are colored in red. Hydrogens are omitted for clarity.

https://doi.org/10.1371/journal.pone.0213217.g002
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of 0.00542 kcal mol-2 Å-2 and -1.008, respectively, using the defaults for all remaining

variables.

Alchemical free energy calculations

Relative binding free energies were calculated using a single topology molecular dynamics

alchemical free energy approach [41]. Alchemical free energy calculations avoid direct compu-

tation of the free energy change associated with the reversible binding of a ligand to a protein

through an artificial morphing of a ligand X into another ligand Y by using a parameter λ
which defines the change from X to Y. Thus, the relative free energy of binding (ΔΔGX!Y) was

given by Eq 1 as:

DDGX!Y ¼ DGcomplex
X!Y � DG

free
X!Y ð1Þ

Where DGfree
X!Y is the free energy change for transforming ligand X into ligand Y in solution

whereas DGcomplex
X!Y is the free energy change for the same transformation in the protein binding

site. A relative free energy perturbation network for both batch 1 and batch 2 was designed (S5

Fig and S14 Fig). The top-scored MM/PBSA pose for each ACK1 ligand was used as input for

the subsequent alchemical free energy preparation protocol using the FESetup software pack-

age [42]. The protocol used by FESetup for the automated preparation of ligands, protein and

complexes was as follows:

Ligands. Atomic charges were assigned by using the Antechamber module in Amber-

Tools 14 [32], selecting the AM1-BCC method [34, 35], and the GAFF2 force field [33].

Ligands were solvated with TIP3P water molecules [37], with counterions added as necessary

to neutralize the system [38]. Each system was energy minimized for 100 SD cycles and equili-

brated at 300 K and 1 atm pressure for 105 molecular dynamics (MD) steps with a 2 fs timestep

using the module Sander [32], with a positional harmonic restraint (10 kcal mol-1 Å-2) applied

to ligand atoms. Bonds involving hydrogen atoms were constrained.

Protein. The protein was parametrized using the Amber ff14SB force field [43].

Complexes. Each ligand was combined back with the ACK1 protein model and the com-

plex was solvated with TIP3P water molecules [37]. .Counterions were also added to neutralize

the solution [38]. The system was afterwards equilibrated following the procedure already

described for ligands, using now 5000 MD steps.

All alchemical free energy calculations used 11 equidistant λ windows. For each λ value MD

trajectories were computed in the NPT ensemble with a pressure of 1 atm and temperature of

300 K using the software SOMD 2016.1.0 [25, 44]. SOMD has been used in several recent stud-

ies to model the binding energetics of enzyme inhibitors [26], carbohydrate ligands [24], and

host-guest systems [13]. Each λ window was sampled for 4 ns. Pressure was regulated using a

Monte Carlo barostat [45, 46] with an update frequency of 25 MD steps. Temperature was

kept constant using the Andersen thermostat [47], with a collision frequency of 10 ps-1. A 2 fs

time step was used with the leapfrog-Verlet integrator. All bonds involving hydrogens were

constrained to their equilibrium distances. Non-bonded interactions were evaluated setting a

cut-off distance of 12 Å. Long-range electrostatic interactions were calculated using the shifted

atom-based Barker-Watts reaction field [48], with the medium dielectric constant set to 82.0.

In order to avoid steric clashes at the beginning of each MD run due to modifications of the

ligand parameters associated with changes in λ, each structure was energy minimized for 1000

steps prior to MD simulation.

Each simulation was repeated at least twice using different initial assignments of velocities,

and both ΔΔGX!Y and ΔΔGY!X were calculated from independent simulations. In some

cases, when poor agreement was observed between duplicates a third run was performed.
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Ligand 38 was tested as a racemic mixture for consistency with the experimental condi-

tions. Calculations were carried out for each enantiomer and the binding energies relative to

this ligand were given with Eq 2:

DDG38!X ¼ � kTln 0:5 exp
� DDG38R!X

kT

� �

þ exp
� DDG38S!X

kT

� �� �� �

ð2Þ

Cycle closures were evaluated using free energy changes from both the forward (X!Y) and

reverse (Y!X) perturbations. The metrics used to evaluate the datasets were the determination

coefficient R2, linear regression slope and the mean unsigned error (MUE). Experimental

binding affinities were calculated from the corresponding inhibition constants [27] (Ki) using

DG ¼ RTln Ki
C0

� �
with C0 = 1 mol L-1. As no uncertainties have been reported for the Ki values,

an uncertainty of 0.4 kcal mol-1 was assumed [20, 49].

Relative free energies were estimated using the multistate Bennett’s acceptance ratio

(MBAR) method [50], as included in the software analyse_freenrg from the Sire software suite.

Relative free energies for complete datasets were evaluated using version 0.3.5 of the free-
nrgworkflows python module [https://github.com/michellab/freenrgworkflows], using ligand 3

as a reference, for which a Ki = 10 μM is used.

For more details, see Mey et al. [51]. All analysis scripts are available online at https://

github.com/michellab/ACK1_Data.

Alchemical free energy protocols. Five different alchemical free energy protocols were

followed. Protocol A uses for each ligand the best scored pose according to MM/PBSA. This

leads to a pose that differs from the X-ray crystallographic pose of 35 for several ligands (2, 4,

7, 8, 16, 44 and 45). Protocol B needs user intervention to select the pose most similar to the

experimental binding mode. Protocols C and D explore the effect of manually modelling a

water molecule inside the ACK1 ATP-binding site (see Fig 3). This reflects user knowledge

that in other high-resolution structures of ACK1 (e.g. the 1.31 Å resolution 4HZR structure

[52]) one additional binding site water molecule between the protein and ligand is apparent.

Protocol C uses the same ligand poses as Protocol A, while Protocol D uses the same poses as

Protocol B.

Finally, Protocol E is simply Protocol A with the per λ simulation time increased ten-fold.

This was done to evaluate whether the different binding mode and ATP-binding site water

rearrangements seen in Protocols A-D can be sampled with longer MD simulation protocols.

Protocol E is computationally expensive and was applied to batch 1 only (ca. 10 μs of simula-

tion time).

The stability of the ligand poses and protein structure for all protocols was assessed by plot-

ting the distribution of RMSD values across the dataset for the ligand and the protein back-

bone atoms (S1 and S2 Figs). The results indicate that the poses are generally stable

(RMSD< 2 Å for almost all poses), the protein structure is generally stable (mean RMSD ca.

1.5 Å), though in some instances large positional fluctuations of the distal N-terminal region

contribute to an increased RMSD.

Figures were rendered with VMD [53], while graphs were prepared with Origin [54] and

python using plotting libraries Matplotlib version 2.0.2 [55] and Seaborn version 0.7.1 [56].

Results

Batch 1

Protocol A renders (Table 1) modest results, with a R2 of 0.36±0.07 and a strong underestima-

tion of relative free energies, as shown by the slope of the regression line (0.3). Inspection of

Effect of protocols on alchemical free energy calculations

PLOS ONE | https://doi.org/10.1371/journal.pone.0213217 March 12, 2019 6 / 20

https://github.com/michellab/freenrgworkflows
https://github.com/michellab/ACK1_Data
https://github.com/michellab/ACK1_Data
https://doi.org/10.1371/journal.pone.0213217


Fig 4A and S3 Fig shows that ligands 2, 4 and 7 are clear outliers. These ligands have a pre-

dicted docked pose which differ more from the X-ray derived binding mode (see Fig 2B and

2C). Results for protocol B are shown in Table 1, and S3, S6 and S9 Figs. This protocol gives

Fig 3. Snapshot taken after 2 ns of MD for the λ = 0, run 1, 7!6 perturbation, showing the manually placed water

molecule inside the ATP-binding pocket.

https://doi.org/10.1371/journal.pone.0213217.g003

Table 1. R2, MUE (kcal mol-1) and slope metrics obtained from the comparison of experimental a and predicted

relative free energies of binding of batch 1.

Protocol R2 MUE Slope

A 0.36±0.07 1.55±0.06 0.3

B 0.67±0.03 1.29±0.03 0.4

C 0.5±0.2 1.53±0.07 0.2

D 0.84±0.03 1.29±0.03 0.5

E 0.33±0.08 1.73±0.08 0.3

a An upper bound of R2 = 0.97 ± 0.02 on achievable predictions may be estimated given assumed experimental

uncertainties of 0.4 kcal.mol-1

https://doi.org/10.1371/journal.pone.0213217.t001
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clearly better results, although the underestimation (slope 0.4) of relative binding free energies

remains high, and ligands 2, 4 and 7 are still ranked poorly.

An analysis of the relative binding energies calculated with protocols A and B (S3, S5 and S6

Figs), for ligands 2, 4 and 7, reveals that these ligands appear in the perturbations that show

the highest deviations between the experimental and calculated relative binding energies.

Thus, for protocol A deviations of more than 3.0 kcal mol-1 are observed for 2!3, 7!4, 7!6,

7!3 and 3!7, while for protocol B these deviations appear for perturbations 2!3, 4!7, 7!4,

7!3 and 3!7. An analysis of the docked structures of ligands 6 and 7 suggested that a possible

explanation for the inability of the protocol to reproduce the experimental relative binding

affinities is due to interactions of the extra nitrogen atom in the pyrimidine ring of ligand 7

that is missing in the pyridine ring of ligand 6 (see Fig 5). The extra N atom in the pyrimidine

ring could establish a hydrogen bond with THR205 (see Fig 3) if a bridging water was present.

Indeed, several water molecules are present inside the ATP-binding pocket of 4HZR [52]. That

possibility was explored in protocols C and D, where a water molecule was manually placed

inside the binding pocket between the nitrogen in position D of ligand 7 (see Fig 1) and

THR205. The final position of the water molecule is obtained after 100 steps of SD minimiza-

tion fixing all other atoms. Results for protocol C are shown in Table 1 and S10 Fig, while those

for protocol D appear in Table 1 and Figs 4B and 5. Protocol D clearly surpass all others, with a

R2 of 0.84±0.03 and an improvement in the underestimation of relative binding energies

(slope = 0.5). A comparison of the calculated relative binding energies for ligands 3 and 4

allows to conclude that using a different pose for ligand 4 does not seem to affect the results

(both protocols A and B for example, give an average ΔΔG3!4 of 1.3 kcal mol-1). Inspection of

the calculated trajectories show that ligand 4 rapidly converts from its initial docked pose (pro-
tocols A and C) to one similar to that used as input for protocols B and D. The computed trajec-

tories were visualized to assess the stability of the active site water molecule. The water

molecule showed little drift from its initial position in most cases, with the exception of pertur-

bations involving compound 6 in protocol C, where the water frequently diffused away from

the binding site.

The possibility of resolving ambiguities in binding poses and binding site water content

without user intervention was next tested by increasing the simulation sampling time to 40 ns

for each λ window. The expectation was this would allow the ligand to find the correct pose

and to allow water molecules diffuse in the ATP-binding site (see Fig 3). Results are shown in

Table 1 and S3 and S11 Figs. The increased simulation time does not translate into any

improvement of the results. The R2, slope and MUE values are as poor or poorer as those for

protocol A, while the outliers remain the same. The MD trajectories show that, even with the

increased simulation time, ligand 7 is not able to change its docking pose, while ligand 4 needs

under 4 ns to adopt a pose that resembles the X-ray pose of 35. Besides, a water molecule enters

and remains in the ATP-binding site in 7 out of 22 MD trajectories only.

Analysis of the complete dataset

The robustness of the results obtained for batch 1 was tested by processing batch 2 and re-ana-

lyzing the full dataset. Ligands in batch 2 are positively charged in the assay conditions,

whereas batch 1 ligands are neutral. Relative free energy calculations that involve a net charge

change are still technically challenging for simulations carried out with a reaction-field cut-off.

Fig 4. (a) and (b) Comparison of experimental and predicted relative free energies of binding of batch 1 for protocols A and

D, respectively. Free energies of binding are relative to ligand 3. The linear regression line (dashed line) and a line with slope

unity (solid line) are also presented.

https://doi.org/10.1371/journal.pone.0213217.g004
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Thus, the perturbations between ligands 8 and 15 were carried out assuming 15 is neutral.

This is of course a significant simplification. Results for individual perturbations in batch 2 are

shown in S4 and S14 to S18 Figs.

Protocol A, as expected given the results obtained for batch 1, gives modest results, as can be

seen in Table 2 and Fig 6A (R2 = 0.45±0.06 and slope of 0.5). The slope has improved from 0.3 to

0.5 because the relative free energies of compounds in batch 2 are not as under predicted as those

from batch 1 (see S1 Table). Ligands 16, 44 and 45 need further inspection. S14 Fig shows that,

while the experimental ΔΔG45!44 is -0.1 kcal mol-1, the calculated ΔΔG45!44 are 1.8/1.5 (run 1/

run 2) kcal mol-1 (the reverse perturbation was calculated as -2.0/-1.9 kcal mol-1). Similarly, while

the experimental ΔΔG16!45 is 1.2 kcal mol-1, the calculated results are ΔΔG16!45−0.8/-1.6 (run

1/run 2) kcal mol-1 and ΔΔG45!16−2.2/-2.4 /run 1/run 2) kcal mol-1.

Fig 5. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for all the perturbations run in batch 1 with protocol D. The

calculated values correspond to independent repeats.

https://doi.org/10.1371/journal.pone.0213217.g005

Table 2. R2, MUE (kcal mol-1) and slope metrics obtained from the comparison of experimentala and predicted

relative free energies of binding of the whole set.

Protocol R2 MUE Slope

A 0.45±0.06 2.11±0.08 0.5

B 0.59±0.04 2.12±0.04 0.5

C 0.55±0.05 1.82±0.06 0.5

D 0.76±0.02 1.24±0.04 0.8

a An upper bound of R2 = 0.96 ± 0.02 on achievable predictions may be estimated given assumed experimental

uncertainties of 0.4 kcal.mol-1

https://doi.org/10.1371/journal.pone.0213217.t002
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Interestingly, the dihedral angle defining the relative orientation of the NH group that links

the pyrimidine and the cyclopentanol rings changes values rather quickly during the simula-

tion. Fig 7A shows an example for the first repeat of the perturbation 44!45 at λ = 0. For the

simulations involving ligand 44 an intramolecular H-bond between its aniline NH group and

its cyclopentyl hydroxyl group is established (see Fig 7C). That conformation is precisely the

second-best MM/PBSA docked one (see Fig 2C), which features that intramolecular hydrogen

bond. Thus, batch 2 protocol B includes the second-best scored MM/PBSA poses for ligands 8,

16 and 44. In the case of ligands 8 and 16, this implies using a pose that resembles the most the

X-ray binding mode, while for ligand 44 the second-best scored MM/PBSA pose differs from

the best-scored one in the aniline NH dihedral angle (see Fig 2C). The improvement, as shown

in Table 2 and S12 Fig, for protocol B as compared with protocol A, is quite modest. Results are

clearly better for the 16!45 and 45!16 perturbations, with the disagreement between experi-

mental and calculated relative binding energy decreasing from 3.5 to 0.3 kcal mol-1 (compare

S14 and S15 Figs), but ligand 44 is still an outlier. Although the experimental relative binding

energy for the 45! 44 perturbation is just -0.1 kcal mol-1, ligand 45 is predicted to bind much

more strongly to ACK1 (calculated ΔΔG45!44 are –2.0/-1.9 and -1.2/-1.6 kcal mol-1 for proto-
cols A and B, respectively) than 44. This suggests possible deficiencies in the force field used

for 44 in this study.

Protocols C and D, follow the same trends already explained for batch 1, pointing to an

improvement in the results when a water molecule is included in the ATP-binding pocket

(Table 2). An encouraging R2 of 0.76 ± 0.02 and an improvement in the underestimation of

relative binding energies (slope 0.8) is obtained, though there is still room for improvements

for affinity predictions for 44 and 16.

Thermodynamic cycle closures analysis

Hysteresis, being defined as the difference in binding energy between the forward and reverse

perturbation [44, 57, 58], has been proposed as useful metric to identify problematic perturba-

tions [59, 60]. Cycle closures for both batch 1 and batch 2 were computed to determine

whether incorrectly predicted binding poses could be detected in the absence of experimental

binding affinity data. Results are shown in Table 3.

As could be expected, similar conclusions can be obtained when analyzing ring cycle

closures or comparing forward and reverse perturbations, although there are some cases

with high deviations between experimental and calculated relative binding energies,

while exhibiting almost null hysteresis for the forward and reverse perturbations (i.e. the

perturbations between ligands 2 and 5 in batch 1 and those between ligands 44 and 45 in

batch 2).

Overall it appears that a threshold of ± 0.8 kcal mol-1 for cycle closure errors is useful to flag

poses that need further attention even without prior knowledge of the experimental binding

affinities. Thus, for protocol A, 3-4-7-6, 3-4-6, 3-4-7, 4-6-7, 2-6-5 and 45-16-44 thermody-

namic cycle closures are indicative of problematic ligands. According to this metric, a signifi-

cant improvement when using protocol B (only one thermodynamic cycle closure above the

threshold) is seen, while a comparison between protocols A (6 cycles with hysteresis above the

threshold) and C (4 cycles) suggest a modest improvement. Results for batch 2 clearly indicate

Fig 6. (a) and (b) Comparison of experimental and predicted relative free energies of binding of the whole set for

protocols A and D, respectively. Free energies of binding are relative to ligand 3. The linear regression line (dashed line)

and a line with slope 1 (solid line) are also presented.

https://doi.org/10.1371/journal.pone.0213217.g006
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that ligands 44, 45 and 16 (hysteresis of -2 ± 1 kcal mol-1 in their thermodynamic cycle for pro-
tocol A) are much more problematic than ligands 35, 36, 38 and 39 (hysteresis of 0.2 ± 0.3 kcal

mol-1 for protocol A). The best performing protocol D is unable to improve the hysteresis for

the 45-16-44 thermodynamic cycle.

Discussion

This work has explored the viability of using alchemical free energy methods as a final filter in

a cascade of computational methods for hit-to-lead virtual screens in the context of a dataset of

ACK1 inhibitors. The two major limitations of AFE methods are the quality of the potential

energy function used, and the extent to which the configurational sampling performed has

captured relevant protein-ligand conformations [59, 60] In principle sufficient long simula-

tions will relax a protein-ligand complex to the ligand pose and protein conformation pre-

ferred by the force field used. However, because computing time is limited in practical

scenarios, AFE simulations typically afford only a few ns per window, which can make the cal-

culated binding affinities sensitive to the selection of the starting conformations. This work

indicates that use of experimental data to bias the selection of poses and setup of binding site

water content could lead to significant performance improvements. While the dataset studied

here is small, the lessons from this study are likely applicable to other binding sites. Of course,

as illustrated with ligand 4, even in cases where the MD simulations relax a previously mod-

elled binding pose to one that closely resembles a pose inferred from X-ray data, the free

energy calculations may still fail to reproduce the experimental binding affinities.

Careful analysis of literature structural data [52, 61, 62] was key to identify a conserved

hydration site that was not modelled in the prior docking calculations. This knowledge was

important to realize upon inspection of putative poses for some ligands in batch 1 the feasibil-

ity of a hydrogen bonding interaction via a bridging water molecule. Gratifyingly modelling of

this hydration site leads to significant accuracy improvements for several perturbations.

Fig 7. (a) 4 ns trajectory monitoring dihedral angle of ligand 44 (blue circles) and 45 (purple crosses) as indicated in (b) and

(c) as well as probability distribution of dihedrals over the trajectory. (b) Snapshot of the conformation of ligand 44 taken

from a λ = 0 trajectory at t = 0 ns indicating dihedral conformation monitored in (a) highlighted by spheres. (c) Snapshot of

the conformation of ligand 44 taken from the same trajectory after 3 ns, showing an intramolecular hydrogen bond.

https://doi.org/10.1371/journal.pone.0213217.g007

Table 3. Calculated thermodynamic cycle closures. Cycle closures that exceed or equal a threshold of 0.8 kcal mol-1 are highlighted in bold.

Cycle closure (kcal mol-1)

Protocol A B C D E

Cycle 3-2-5-6 0.6 ± 0.3 0.0 ± 0.3 0.6 ± 0.6 0.2 ± 0.4 0.8 ± 0.3

3-2-5 0.2 ± 0.2 -0.4 ± 0.2 0.7 ± 0.5 0.0 ± 0.1 0.5 ± 0.3

2-6-5 -0.8 ± 0.4 0.0 ± 0.3 0.0 ± 0.3 -0.2 ± 0.3 -0.7 ± 0.8

3-5-6 0.4 ± 0.2 0.4 ± 0.2 -0.1 ± 0.4 0.2 ± 0.4 0.4 ± 0.1

3-6-2 0.2 ± 0.4 0.1 ± 0.3 -0.6 ± 0.5 0.0 ± 0.2 -0.1 ± 0.9

3-4-7-6 1.0 ± 0.4 0.3 ± 0.4 1.6 ± 0.4 0.2 ± 0.4 0.3 ± 0.7

3-7-6 0.2 ± 0.4 0.1 ± 0.3 0.9 ± 0.7 0.2 ± 0.3 -0.2 ± 0.9

4-6-7 0.9 ± 0.6 0.0 ± 0.3 -1.1 ± 0.5 0.2 ± 0.3 -0.2 ± 0.8

3-4-7 0.8 ± 0.4 0.2 ± 0.4 0.7 ± 0.7 0.0 ± 0.2 0.5 ± 0.5

3-4-6 1.9 ± 0.4 0.3 ± 0.2 0.5 ± 0.5 0.2 ± 0.4 0.1 ± 0.4

45-16-44 -2 ± 1 -3 ± 1 -2 ± 1 -1.8 ± 0.9 N/A

38-39-35-36 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.3 0.2 ± 0.3 N/A

https://doi.org/10.1371/journal.pone.0213217.t003
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In principle, assuming an accurate potential energy function, these sampling issues could

be dealt with by simply increasing the sampling time of the MD simulations. For the present

dataset, we find that a one order of magnitude increase in sampling time was insufficient to

bring about improvements in binding poses accuracy and binding site water content. Thus, at

present it seems wise to pay attention to the starting conditions of the free energy calculations

to maximize cost effectiveness. Where experimental data is lacking, a number of molecular

modelling protocols have been proposed to determine location and energetics of important

binding site water molecules [63–72].

Supporting information

S1 Fig. Distribution of ligand RMSDs.

(TIF)

S2 Fig. Distribution of protein backbone RMSDs.

(TIF)

S3 Fig. Calculated and experimental relative binding affinities for all protocols essayed in

batch 1. The minus sign used to label run (-1), run (-2) and run (-3) indicates that, in order to

easily compare forward and reverse perturbations, the sign of the relative binding affinity has

been changed.

(TIF)

S4 Fig. Calculated and experimental relative binding affinities for all protocols essayed in

batch 2. The minus sign used to label run (-1), run (-2) and run (-3) indicates that, in order to

easily compare forward and reverse perturbations, the sign of the relative binding affinity has

been changed.

(TIF)

S5 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for

all the perturbations essayed in batch 1, protocol A. The drawing tries to reflect the different

conformations adopted by ligands 2, 4 and 7. The calculated values correspond to independent

repeats.

(TIF)

S6 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for

all the perturbations essayed in batch 1, protocol B. The calculated values correspond to

independent repeats.

(TIF)

S7 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for

all the perturbations essayed in batch 1, protocol C. The drawing tries to reflect the different

conformations adopted by ligands 2, 4 and 7. The calculated values correspond to independent

repeats.

(TIF)

S8 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for

all the perturbations essayed in batch 1, protocol E. The drawing tries to reflect the different

conformations adopted by ligands 2, 4 and 7. The calculated values correspond to independent

repeats.

(TIF)

S9 Fig. Comparison of experimental and predicted relative free energies of binding of

batch 1 for protocol B. Free energies of binding are relative to ligand 3. The linear regression
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line (dashed line) and a line with slope 1 (solid line) are also presented.

(TIF)

S10 Fig. Comparison of experimental and predicted relative free energies of binding of

batch 1 for protocol C. Free energies of binding are relative to ligand 3. The linear regression

line (dashed line) and a line with slope 1 (solid line) are also presented.

(TIF)

S11 Fig. Comparison of experimental and predicted relative free energies of binding of

batch 1 for protocol E. Free energies of binding are relative to ligand 3. The linear regression

line (dashed line) and a line with slope 1 (solid line) are also presented.

(TIF)

S12 Fig. Comparison of experimental and predicted relative free energies of binding of the

whole set for protocol B. Free energies of binding are relative to ligand 3. The linear regression

line (dashed line) and a line with slope 1 (solid line) are also presented.

(TIF)

S13 Fig. Comparison of experimental and predicted relative free energies of binding of the

whole set for protocol C. Free energies of binding are relative to ligand 3. The linear regression

line (dashed line) and a line with slope 1 (solid line) are also presented.

(TIF)

S14 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1)

for all the perturbations essayed in batch 2, protocol A. The drawing tries to reflect the differ-

ent conformations adopted by ligands 44 and 16. The calculated values correspond to inde-

pendent repeats.

(TIF)

S15 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1)

for all the perturbations essayed in batch 2, protocol B. The calculated values correspond to

independent repeats.

(TIF)

S16 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1)

for all the perturbations essayed in batch 2, protocol C. The drawing tries to reflect the differ-

ent conformations adopted by ligands 44 and 16. The calculated values correspond to inde-

pendent repeats.

(TIF)

S17 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1)

for all the perturbations essayed in batch 2, protocol D. The calculated values correspond to

independent repeats.

(TIF)

S18 Fig. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1)

for the perturbations used to link batch 1 and batch 2 with protocols A, B, C and D. The cal-

culated values correspond to independent repeats.

(TIF)

S1 Table. R2, MUE (kcal mol-1) and slope obtained from the comparison of experimentala

and predicted relative free energies of binding of batch 2.

(DOCX)
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