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The therapeutic strategy of Ewing sarcoma (EWS) remains largely unchanged over the past
few decades. Hypoxia is reported to have an impact on tumor cell progression and is
regarded as a novel potential therapeutic target in tumor treatment. This study aimed at
developing a prognostic gene signature based on hypoxia-related genes (HRGs). EWS
patients from GSE17674 in the GEO database were analyzed as a training cohort, and
differently expressed HRGs between tumor and normal samples were identified. The
univariate Cox regression, Least Absolute Shrinkage and Selection Operator (LASSO) and
multivariate Cox regression analyses were used in this study. A total of 57 EWS patients
from the International Cancer Genome Consortium (ICGC) database were set as the
validation cohort. A total of 506 differently expressed HRGs between tumor and normal
tissues were identified, among which 52 were associated with the prognoses of EWS
patients. Based on 52 HRGs, EWS patients were divided into two molecular subgroups
with different survival statuses. In addition, a prognostic signature based on 4 HRGs
(WSB1, RXYLT1, GLCE and RORA) was constructed, dividing EWS patients into low- and
high-risk groups. The 2-, 3- and 5-years area under the receiver operator characteristic
curve of this signature was 0.913, 0.97 and 0.985, respectively. It was found that the
survival rates of patients in the high-risk group were significantly lower than those in the
low-risk group (p < 0.001). The risk level based on the risk score could serve as an
independent clinical factor for predicting the survival probabilities of EWS patients.
Additionally, antigen-presenting cell (APC) related pathways and T cell co-inhibition
were differently activated in two risk groups, which may result in different prognoses.
CTLA4 may be an effective immune checkpoint inhibitor to treat EWS patients. All results
were verified in the validation cohort. This study constructed 4-HRGs as a novel prognostic
marker for predicting survival in EWS patients.
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INTRODUCTION

Ewing sarcoma (EWS) is a group of poorly differentiated small
round cell tumors, and 85–90%of them embrace the classic t (11; 22)
EWS/FLI1 translocation (Rodríguez-Galindo et al., 2008; Arshi et al.,
2017). As the second most common primary bone tumor, EWS
usually occurs among children and adolescents with an incidence of
1 per 1.5million population, andmost commonly involves the pelvis
and proximal long bones (GrüNewald et al., 2018). Due to the
improvement of multidisciplinary treatments, the 5-years overall
survival (OS) rate of EWS patients increased from 44% in the 1970s
to 68% in the 1990s for localized disease, and from 16 to 39% for
metastatic disease (Esiashvili et al., 2008). Most current studies
predicted the prognosis of EWS mainly based on the clinical
information (Wan et al., 2017; Zhou et al., 2019; Jiang et al.,
2021b), and few used gene models, although gene models have
been used to evaluate the prognosis and provide novel therapeutic
targets in many other cancer types. Therefore, identification of novel
biomarkers and customization of therapeutic strategies are urgently
demanded to improve the prognosis of EWS patients.

Hypoxia is a common micro-environmental feature in most
solid tumors owing to the imbalance between the rate of tumor
cell proliferation and vascular nutrient supply (Hanahan and
Weinberg, 2011). Previous studies have demonstrated that
hypoxia plays a key role in tumor cell proliferation,
differentiation and apoptosis, tumor angiogenesis, and even
drug resistance (Wouters and Koritzinsky, 2008; Wilson and
Hay, 2011). In many tumors, prognostic signatures based on
hypoxia-related genes (HRGs) were developed to serve as
independent prognostic factors and provided new strategies
for cancer treatment (Yang et al., 2017; Zhang et al., 2020;
Abou Khouzam et al., 2021; Sun et al., 2021). Interestingly,
some studies concerning the relationship between hypoxia and
EWS demonstrated that hypoxia could stimulate the
transcriptional signature of EWS-FLI1 and enhance the
malignant properties of EWS(Aryee et al., 2010; Knowles
et al., 2010), suggesting that targeted therapy focusing on
HRGsmay be a novel potential method for the treatment of EWS.

In this study, we systematically analyzed the characteristics of
HRGs in EWS by utilizing high-throughput sequencing data and
bioinformatics analyses. We not only firstly constructed an HRG-
based prognosis model for EWS patients but found that HRGs
could be used to distinguish EWS patients based on clinical and
molecular features.

MATERIALS AND METHODS

Data Collection
The transcriptome profiling (RNA-seq) data and corresponding
clinical information obtained from GSE17674 in the GEO
database were used as the training cohort, which contained 44
tumor tissues and 18 normal tissues (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE17674). In addition, a total of 57
EWS patients with RNA sequencing results downloaded from the
International Cancer Genome Consortium (ICGC; https://icgc.
org) were used as the validation cohort. As the data from

GSE17674 were microarray chip data and the data from the
ICGC database were mRNA sequencing data, the normalization
methods in the two cohorts were different. We used
“normalizeBetweenArrays” in R package “limma” to deal with
the data in training cohort, while fragments per kilobase of
transcript per million fragments mapped (FPKM) were used in
validation cohort. The characteristics of patients in two cohorts
were shown in Table 1.

Identification of Differentially Expressed
HRGs
The HRG set was collected from the Molecular Signatures
Database V7.4 (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp) by searching the keyword “hypoxia”. Using the
“limma” R package, differentially expressed HRGs between
tumor and normal tissues were identified, with the cutoff
criterion set to |Log2FC| ≥2 and use of an adjusted p value of
<0.05.

Tumor Classification Based on Differentially
Expressed HRGs
The association between the differentially expressed HRGs and
OS was analyzed by univariate Cox regression using the R
package “survival,” and genes with p value <0.01 were used for
tumor classification using the non-negative matrix factorization
(NMF) method.

Construction and Validation of the HRG
Prognostic Model
Next, HRGs for tumor classification were included in the Least
Absolute Shrinkage and Selection Operator (LASSO) regression,
and the results were subjected to multivariate Cox regression
analysis to establish a prognostic signature. Receiver-operator
characteristic (ROC) curves were used to assess the performance
of the prognostic signature by areas under the ROC curves
(AUC). The risk score was calculated for each EWS patient
based on the formula: Risk score = CoefHRGs1 × ExpHRGs1
+ CoefHRGs2 × ExpHRGs2 + . . .CoefHRGs(n) × ExpHRGs(n).
According to the optimal cutoff value of the risk score, EWS
patients in the training cohort were divided into a low-risk group
and a high-risk group. The Kaplan-Meier (KM) survival curve by
the log-rank test was applied for comparing the prognosis
between the two groups. A risk curve, survival state-related
scatterplot and heatmap of HRGs were plotted after reordering
individuals based on the risk scores. Using the same formula, the
stability and reliability of this signature in the validation cohort
were verified by similar methods using the “glmnet,” “survival,”
“survminer,” “survivalROC” and “pheatmap” R packages.

Independent Prognostic Analysis of the
Risk Group
After constructing the risk model, we extracted the clinical
information of patients in the training cohort, including age,
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sex and tumor status. Then, these variables were analyzed in
combination with the risk level based on the risk model by
univariate and multivariable Cox regression models. In
addition, decision curve analysis (DCA) was used to test the
independent prognostic value of risk levels. The same analyses
were also performed in the validation cohort.

Functional Enrichment Analysis Between
High- and Low-Risk Groups
To compare the different gene expression profiles between high-
and low-risk groups, we set the specific criteria (|Log2FC| ≥1 and
adjusted p value <0.05) to select DEGs and perform Gene
Ontology (GO) analysis on them to determine the biological
processes (BPs), molecular functions (MFs), and cellular
components (CCs) related to the HRG signature by using the
R package “clusterProfiler”. The same procedure was performed
in the validation cohort.

Assessment of Immune Cell Infiltration
Analysis
Hypoxia was highly associated with tumor immunity and
immune environment. We used CIBERSORT to perform a
correlation analysis between risk groups and infiltration
abundances of 22 immune cells (Newman et al., 2015), and
evaluated the activity of 13 immune-related pathways in high-
and low-risk groups by employing single-sample gene set
enrichment analysis (ssGSEA) in “GSVA” R package. In
addition, immune checkpoints analysis was also employed to
explore potential therapeutic targets for EWS patients in the two
groups. Immune cell infiltration was also tested in the validation
cohort.

Statistical Analysis
All statistical analyses were performed by using R version 4.0.1 or
SPSS (Version 25.0). The student’s t-test was used to compare
gene expression between tumor and normal tissues. Wilcoxon
test was used to compare the ssGSEA scores of immune-related
pathways and immune checkpoints between the high- and low-
risk groups. For each statistical analysis, two-tailed p < 0.05 was
regarded as statistically significant.

RESULTS

Algorithm to Classify EWS by Using
Differentially-Expressed HRGs
The flowchart of this study is shown in Figure 1A. A total of
1829 DEGs, including 1,328 up-regulated genes and 501 down-
regulated genes (Supplementary Table S1), were identified
between 44 tumor and 18 normal tissues (Figure 1B), which
contained 506 differentially expressed HRGs (Figure 1C).
Univariate Cox regression analysis of the above 506
differentially expressed HRGs showed that 52 HRGs were
significantly associated with the prognosis of EWS (p <
0.01, Supplementary Figure S1A).

To further explore the relationship between the expression
of the 52 HRGs and the EWS subtype, NMF analysis was
performed in the 44 tumor tissue samples. Using the NMF
method, the potential features of gene expression profiling
were identified by decomposing the original matrix into two
non-negative matrices, and the optimal k value was
determined by comprehensive correlation coefficient
analysis (Brunet et al., 2004). By increasing the clustering
variable (k) from 2 to 6 (Supplementary Figure S1B,C), we
found that when k = 2, a clear and sharp boundary was shown
in the consensus matrix heat map, indicating that the 44 tumor
samples could be divided into two clusters by adopting this
cutoff (Figure 1D). The gene expression profiles of the 52
HRGs between the two clusters are illustrated in a heatmap by
merging the clinical features (age, sex and tumor status) in
Figure 1E. In addition, a very significant difference in
prognosis was observed between the two clusters (p <
0.0001) (Figure 1F).

Establishment of a Prognostic Signature in
the Training Cohort
According to the optimal λ value of LASSO regression (Figures
2A,B), eight (DDB2, WSB1, RXYLT1, TXNIP, IFIT3, GLCE,
NAB1 and RORA) of the 52 HRGs screened above were
subjected into multivariate Cox regression analysis to
develop an HRG prognostic signature, and the results are
shown in Figure 2C, including 3 protective HRGs (WSB1,
GLCE and RORA) and 1 risk HRG (RXYLT1). The risk score

TABLE 1 | Clinical characteristics of patients in the training and validation cohort.

Clinical factors Training
cohort (n = 44)

Clinical factors Validation
cohort (n = 57)

Age (years old, n, %) — Age (years old, n, %) —

≤24 28 (63.7%) ≤24 45 (78.9%)
>24 16 (36.3%) >24 12 (21.1%)
Sex (n, %) — Sex (n, %) —

Male 2/8 (63.7%) Male 31 (54.4%)
Female 16 (36.3%) Female 26 (45.6%)
Tumor status (n, %) — Tumor status (n, %) —

Localized 32 (72.7%) Non-metastatic 38 (66.7%)
Recurrence or Metastasis 12 (27.3%) Metastatic 18 (31.6%)
— — NA 1 (1.7%)
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formula is as follows: Risk score = -1.011*WSB1 expression
+1.160 * RXYLT1 expression - 0.9707* GLCE expression -
0.7172* RORA expression. Patients in the training cohort were
stratified into a low-risk group (n = 26) and a high-risk group
(n = 18) based on the optimal cutoff value of risk score. It was
found that patients with high-risk scores were associated with
a higher probability of death than those with low-risk scores
(Figures 3A,B), and the enrichment status of 4 HRGs in the

two subgroups is shown in Figure 3C. The KM curve indicated
that patients in the high-risk group had a significantly lower
OS rate than those in the low-risk group (p < 0.0001)
(Figure 3D). In addition, the AUC of 2-, 3- and 5-years
ROC curves of this signature were 0.913, 0.97 and 0.985,
respectively (Figure 3E). The KM curves of four HRGs to
construct the signature are shown in Supplementary
Figure S2.

FIGURE 1 | Tumor classification based on the differently expressed HRGs. (A) Flow chart of data analysis. (B) Volcano plot of DEGs between tumor and normal
tissues. (C) Veen plot of DEGs and HRGs set. (D) All EWS patients were divided into two clusters by NMF cluster based on 52 HRGs (k = 2). (E) Heatmap shows the
association of risk and clinicopathologic characters in two clusters. (F) KM curves of the two clusters.

FIGURE 2 | Identification of protective or risk HRGs by LASSO and multivariate Cox regression analysis in the training cohort. (A) LASSO regression of the 52
HRGs. (B) Cross-validation for tuning parameter selection in the LASSO regression. (C) Candidate HRGs to construct gene signature by multivariate Cox regression
analysis. LASSO = least absolute shrinkage and selection operator.
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Validation of the Prognostic Signature in the
ICGC Database
The robustness of this HRG prognostic signature was assessed in
EWS samples from the ICGC database. A total of 57 samples were
enrolled in the external validation cohort. According to the
algorithm developed in the training cohort, 57 EWS patients
were also separated into a low-risk and a high-risk group. Figures
4A–D depict the different survival statuses and differentially
expressed HRGs in the two groups, showing the same
tendency as the training cohort, suggesting that patients in the
high-risk group had poorer prognoses. The 2-, 3- and 5-years
ROC curves of the prognostic signature in the validation cohort
are shown in Figure 4E, AUC being 0.68, 0.708 and 0.66,
respectively. All these results indicate that our predictive
model was reliable.

The Independent Prognostic Value of the
Risk Score
Univariate and multivariate Cox regression analyses were further
performed among the variables available to determine whether
the risk score (as a factor together with clinical features) was an
independent prognostic predictor for EWS. The results of
multivariate Cox regression analysis showed that only the risk
level was significantly associated with the prognosis of EWS

patients in both training and validation cohorts (HR = 44.120,
95% CI = 8.677–224.341, p < 0.001; HR = 2.217, 95% CI =
1.040–4.726, p = 0.039, respectively) (Tables 2, 3). The DCA also
demonstrated that the risk level was a good independent
prognostic factor for EWS patients in both training and
validation cohorts (Supplementary Figure S3).

GO Enrichment Analysis of the Training and
Validation Cohorts
In the training cohort, a total of 119 DEGs were identified
between the high- and low-risk groups (Supplementary Table
S2), and most MFs were related to hypoxia, including
neuropeptide Y receptor activity and oxidoreductase activity,
oxidizing metal ions, NAD or NADP as acceptor (Figure 5A).
Similarly, a total of 362 DEGs were found between the high- and
low-risk groups in the validation cohort (Supplementary Table
S3), and MFs had a relationship with hypoxia, including
phosphatidylinositol 3-kinase binding, neuropeptide Y receptor
activity and RAGE receptor binding (Figure 5B).

Relationship Between Hypoxia and Immune
Cell Infiltration
To further understand the association between hypoxia and
immune infiltration, we compared the enrichment scores of

FIGURE 3 | Construction of prognostic signature in the GEO cohort. (A) Distribution of each EWS patient according to the risk score. (B) Survival state-related
scatterplot of EWS patients. (C) Heatmap of 4 HRGs expressions in two risk groups. (D) KM curves of low- and high-risk groups. (E) Evaluation of the prognostic
signature by ROC curves.
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22 types of immune cells, 13 types of immune-related
pathways and immune checkpoints between the two
subgroups in both the training and validation cohorts by

employing CIBERSORT and ssGSEA. In the training cohort,
macrophage was the major immune cell in both low- and
high-risk groups (Figures 5C,E), which was also detected in

FIGURE 4 | Validation of the risk model in the ICGC cohort. (A) Distribution of EWS patients in ICGC cohort based on the risk score formula. (B) Survival status of
each EWS patient. (C) Heatmap of 4 HRGs expressions in two risk groups. (D) KM curves for comparison of the overall survival in two risk groups. (E) ROC curves
showed the predictive efficiency of the risk model.

TABLE 2 | Univariate and multivariate cox regression analysis of clinical information for EWS patients in the training cohort.

Factors n Univariate cox regression analysis Multivariate cox regression analysis

HR (95% CI) p value HR (95% CI) p value

Age: ≤20/ > 20 years 28/16 1.197 (0.537–2.671) 0.660 1.585 (0.674–3.728) 0.291
Sex: Male/Female 28/16 1.046 (0.472–2.317) 0.912 1.076 (0.452–2.565) 0.868
Tumor status: Localized/Recurrence or Metastasis 32/12 1.415 (0.639–3.133) 0.392 0.660 (0.263–1.659) 0.377
Risk level: low risk/high risk 26/18 33.791 (7.379–154.748) <0.001 44.120 (8.677–224.341) <0.001

Yrs, years old; CI, confidence interval.

TABLE 3 | Univariate and multivariate cox regression analysis of clinical information for EWS patients in the validation cohort.

Factors N Univariate cox regression analysis Multivariate cox regression analysis

HR (95% CI) p value HR (95% CI) p value

Age: ≤20/ > 20 years 45/12 0.327 (0.099–1.087) 0.068 0.284 (0.067–1.216) 0.090
Sex: Male/Female 31/26 1.039 (0.500–2.160) 0.919 0.955 (0.448–2.036) 0.905
Tumor status: Non-metastatic/Metastatic/NA 38/18/1 1.752 (0.805–3.697) 0.161 1.459 (0.640–3.326) 0.369
Risk level: low risk/high risk 32/25 2.525 (1.202–5.301) 0.014 2.217 (1.040–4.726) 0.039

Yrs, years old; CI, confidence interval.
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the validation cohort (Figures 5D,F). Only two immune-
related pathways, APC co-stimulation and T cell co-
inhibition pathways, showed significance between the low-
and high-risk groups in the training cohort (Figure 6A), but
one of them (T cell co-inhibition pathway) also had

significance between two risk groups in the validation
cohort (Figure 6B). In addition, some immune checkpoint
inhibitors including LAIR1, TNFRSF25 and CTLA4 were
significantly identical between the training and validation
cohorts (Figures 6C–F).

FIGURE 5 | Functional analysis and immune cell component between two risk groups in both GEO and ICGC cohort. (A,C,E)GO enrichment analysis and immune
cells proportion in the GEO cohort. (B,D,F) GO enrichment analysis and immune cells proportion in the ICGC cohort.

FIGURE 6 | Difference of immune-related pathways and immune checkpoints between low- and high-risk groups in both GEO and ICGC cohort. (A,C,E)
Comparison of immune-related pathways and immune checkpoints between two risk groups in the GEO cohort. (B,D,F) Comparison of immune-related pathways and
immune checkpoints between two risk groups in the ICGC cohort.
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DISCUSSION

EWS is an aggressive bone and soft-tissue tumor, accounting for
about 2% of cancers in children (Riggi et al., 2021). Currently, the
main therapeutic strategy for EWS is the combination of
cytotoxic chemotherapy with surgery and/or radiation.
Although it has dramatically increased the OS rate of EWS
patients, treatment-associated morbidities occur now and then
(Goss and Gordon, 2016). Despite the advent of multiple
therapeutic targets including EWS-FLI1, FOXO1, Gli and
some immunotherapeutic targets (Guo et al., 2006; Yang et al.,
2010; Sankar et al., 2014), none of them have been practically
employed in clinical practice. Most cancer tissues suffer more
hypoxia than normal tissues, and hypoxia has been demonstrated
to play a key role in cancer progression and therapy resistance,
compromising survival outcomes of distinct cancers (Wilson and
Hay, 2011). Therefore, hypoxia is regarded as a novel potential
therapeutic target by many oncologists.

It was found in our study that the differentially-expressed
HRGs identified between tumor and normal tissues were
associated with the prognosis for EWS patients.
Intriguingly, almost all protective and risk HRGs were
enriched in different groups, indicating different survival
outcomes in the two subtypes. These findings suggest that
different HRGs may contribute to a different survival status in
EWS patients. To further evaluate the prognostic value of these
HRGs, a four-gene prognostic model was developed via
LASSO regression analysis and multivariate Cox analysis,
comprising 3 protective HRGs (WSB1, GLCE and RORA)
and 1 risk HRG (RXYLT1). To the best of our knowledge,
this is the first gene signature based on HRGs to predict the
prognoses of EWS patients.

WSB1 is a member of the WD-protein subfamily which
encodes WD repeat and SOCS box-containing protein and
joined ubiquitination and degradation of homeodomain-
interacting protein kinase 2. Chen et al. (2006) reported that
the high expression of WSB1 could help neuroblastoma patients
gain a good prognosis, which is consistent with our findings in the
EWS patients. Another protective gene GLCE was proposed to
exert a protective effect on EWS and could function as a
prognostic biomarker to predict prognosis (Jiang et al., 2021a;
Zhou et al., 2021). Although RORA has not yet been found as a
hallmarker of hypoxia in EWS, previous studies revealed that it
could inhibit the proliferation and tumorigenesis of glioma and
breast cancer cells (Du and Xu, 2012; Jiang et al., 2020). More
experiments are required to confirm whether RORA participates
in the process of tumor suppression of EWS. RXYLT1, also
known as TMEM5, is a transmembrane protein that can
induce skeletal muscle diseases (Astrea et al., 2016; Manya
et al., 2016; Nishihara et al., 2018). Although there is no
sufficient evidence to confirm the relationship between EWS
and RXYLT1, we figure that RXYLT1 may affect the
occurrence of EWS in that EWS is a bone and soft tissue
tumor. Above all, although these genes could be used to
construct a signature for prognostic prediction of EWS
patients, further studies are required to gain more insights
into the specific functions of these genes in EWS.

Based on the prognostic model, we stratified the EWS patients
into a low- and high-risk group to discriminate the clinical
outcomes. Protective HRGs were majorly expressed in the
low-risk group, while risk HRGs were predominantly enriched
in the high-risk group. The KM curve showed that EWS patients
in the low-risk group lived a significantly longer time, and the
ROC curves indicated the robustness and reliability of this
prognostic signature. These results were validated in another
mRNA sequencing dataset of EWS from the ICGC database. In
addition, we demonstrated that the risk level based on the risk
score was an independent prognostic factor in both cohorts. DCA
curves also indicated the accuracy of the risk level as a powerful
independent prognostic indicator. To sum up, we believe that the
signature based on HRGs for EWS patients in this study could
serve as a convincible prognostic algorithm in clinical practice.

Additionally, we analyzed the DEGs between the two different
risk groups and found that the molecular function related to
hypoxia was involved. Neuropeptide Y, which has high
endogenous synthesis and release in EWS, was found to be
highly associated with tumor biology as a sympathetic
neurotransmitter with pleiotropic actions. Interestingly,
hypoxia could induce upregulation of Y2R/Y5R expression to
trigger the NPY/Y2R/Y5R axis, which stimulated tumor cell
proliferation, survival, migration and angiogenesis in EWS
(Tilan and Kitlinska, 2016). Previous studies reported that
hypoxia could modulate VEGF induction in tumor cells by
activating the stress inducible phosphatidylinositol 3-kinase
pathway, thus facilitating the development of new blood
vessels in solid tumors (Mazure et al., 1997). Advanced
Glycation End Products (AGE) are the final products
generated during glycation, and they often function by
combining with their receptors (Khan et al., 2018). Activation
of the AGE-RAGE axis plays a pivotal part in tumor growth and
metastasis through the binding of RAGEwith AGE, the process of
which could be driven under the hypoxic condition (Ganapathy-
Kanniappan and Geschwind, 2013; Yamagishi et al., 2015). The
above evidence suggests that hypoxia could commonly occur in
high-risk patients, resulting in worse survival outcomes. Hypoxia
may also play a critical role in the progression and metastasis
of EWS.

Although the mechanism of hypoxia has been explored in
diverse cancer types in the past few decades, the potential
modulation between tumor immunity and hypoxia remains
elusive. The immune system is often inhibited in hypoxia as a
major component of the tumor microenvironment (Wigerup
et al., 2016). Tumor-associated antigens on EWS cells with
low expression of human leukocyte antigen (HLA)-A, B,C,
failed to be recognized by antigen presenting cells and effector
T cells, and high expression of HLA- G actively suppressed
tumor-specific T cells (Morales et al., 2020). HLA-G, as a non-
classical major histocompatibility complex (MHC) class I
molecule, often directly inhibited natural killer (NK) and
tumor-specific T cells, and expressed in up to 34% EWS
samples (Spurny et al., 2018). In this study, the functional
score of HLA and MHC class I was the top 2 in the
13 immune-related pathways, even though there is little
difference between the low- and high-risk groups. However,
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pathways related to HLA and MHC class I such as T cell co-
inhibition were significantly different between the two risk
groups, and much higher in the high-risk group, indicating
that EWS tumor cell growth may be enhanced by
undermining effective antitumor immune responses. In
addition, immune checkpoint inhibitors such as PD-1 and
PD-L1 have shown their clinical value in a variety of solid
tumors, but showed no significant clinical activity in EWS
(Tawbi et al., 2017). Our study found that the expression of
CTLA-4 was different between the low- and high-risk groups. In
EWS cells, CTLA-4 binding of CD80 on APCs led to T cell anergy
by preventing CD80− CD28 costimulation of T cells (Morales
et al., 2020), which may be responsible for the stronger activity of
T cell co-inhibition in the high-risk group. Studies reported that
the polymorphism of CTLA-4 was a risk factor affecting the
prognosis of EWS(Yang et al., 2012). We assume that CTLA-4
may be a useful immunotherapeutic target to assist EWS patients,
and further in vivo and clinical trials on immune checkpoint
inhibitors are required to explore the benefits in EWS.

As this is the first study to use HRGs to build up a prognostic
gene model in EWS patients, limitations are unavoidable. Firstly,
both constructed and validated prognostic signatures were based
on the retrospective data from public database, and the cohort
size was relatively small which was probably owing to the low
incidence of EWS and a lack of studies. In addition, the specific
mechanisms of WSB1, GLCE, RORA and RXYLT1 in EWS
remain unclear, and more prospective studies should be
designed to validate the results and conclusions of the
present study.

CONCLUSION

Hypoxia-related genes could be utilized to classify EWS patients
based on different clinical and molecular features. In addition, we

constructed and validated a novel signature of 4 HRGs, which
proved to be independently associated with the OS of EWS
patients. CTLA4 may be an effective therapeutic target in
treating EWS. The underlying mechanisms between HRGs and
tumor immunity in EWS warrant further investigation.
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