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Abstract

Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial
resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity
is known as the functional connectome. Connectivity is often compared between experimental groups and conditions.
Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across
the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster
based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise
error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based
methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal
statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC)
analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen
level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state
(induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in
connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection
level exhibited no significant changes in connectivity.
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Introduction

Functional connectivity MRI has become a widely used method

for investigating human brain networks in health and disease; its

potential in cognitive neuroscience and clinical research has been

demonstrated in a large number of neuroimaging studies [1,2].

Investigating the functional connectivity between all grey matter

voxels makes full use of the connectional information available in

the data. However, this approach results in a very large number of

connectivity values, as illustrated by the following example: The

total grey matter volume of the brain is approximately 675 ml [3].

Carrying out an fMRI scan at a typical spatial resolution of

36363 mm results in approximately N = 25,000 grey matter

voxels. Mapping the connectivity between all voxels gives rise to

an N6N matrix of connectivity values. For a undirectional

measure of functional connectivity, such as the widely used

Pearson product-moment correlation coefficient, the connectivity

matrix is symmetric and the number of unique elements is given

by N(N-1)/2. In the present example, this corresponds to

approximately 300 million connections. Functional connectivity

is typically compared between different experimental conditions or

groups of subjects. While the computational demands associated

with a statistical comparison across all connectivity values are

largely met by current high performance computer systems, there

is a statistical challenge associated with the number of tests carried

out. In the present example of 300 million unique connections, the

application of an uncorrected probability threshold of p = 0.001

would lead to 300,000 false positives. Standard methods used to

control the false positive rate (Type I error), such as the false

detection rate (FDR) or the family wise error rate (FWER),

perform well in the context of conventional task-related fMRI [4].

However, these methods are likely to result in insufficient statistical

power when applied to such a large number of multiple

comparisons [5].

A simple solution to address the multiple comparison problem is

to reduce the number of tests that are carried out. This can be

achieved by parcellating the cortex into anatomical regions of

interest (ROI) [6], termed nodes. Comparing connectivity between

cortical regions rather than individual voxels reduces the total

number of comparisons. However, even when correcting over a

smaller number of tests, standard type 1 error controlling

procedures such as Bonferroni and false discovery rate (FDR)

have been shown to be lacking in statistical power in this context

[5].

In most functional connectivity studies, the multiple comparison

problem is tackled by comparing univariate ‘connectivity maps’

consisting of N voxels, rather than connectivity matrices consisting

of N6N elements. This approach is formally equivalent to the

comparison of univariate parametric maps in task-based fMRI.

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e98697

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0098697&domain=pdf


Consequently, standard methods used to control the false positive

rate (e.g., FDR or FWER) can be applied [4].

Univariate connectivity maps can be produced in a number of

different ways. Seed-based connectivity mapping is one of the most

widely used methods [7]. Here, functional connectivity is

calculated between a reference voxel or region – also known as

a ‘seed’– and every other voxel in the brain. This results in a

univariate map, which is characterised by a single value per voxel.

A limitation of this approach is that changes between groups or

conditions can only be identified in relation to the seed. The

selection of a specific seed may bias the result.

Independent component analysis (ICA) [8,9] is another method

that is frequently used to produce univariate connectivity maps.

The advantage of ICA compared to the seed-based approach is

that it is data driven. However, changes in connectivity can only

be detected in relation to particular ICA components selected by

the researcher; the identification of ICA components that match

across conditions can be challenging.

In recent years, graph theoretical measures of functional

connectivity have become increasingly popular [1,10–12]. Graph

theoretical summary measures [13] can be used to generate voxel-

wise representations of whole brain connectivity. For example, the

weighted global connectivity of a voxel is defined as the mean of

that voxel’s connectivity with every other voxel under analysis. In

analogy to the seed-based approach or ICA, weighted global

connectivity can be mapped across the whole brain to produce

univariate connectivity maps. These maps can then be compared

between different groups or conditions. A general limitation of this

approach is the inherent reduction in information; a single value is

used to quantify the functional connectivity between a voxel and

the rest of the brain [14]. The resulting loss in information is a

limitation to many comparative analyses.

Recently proposed methods, such as the network based statistic

(NBS) [5] or spatial pairwise clustering (SPC) [15], rely on a

conceptually different approach to the multiple comparison

problem. In these methods, ‘clusters’ of connectivity changes are

considered in the statistical comparison of connectivity matrices.

These procedures utilise the same statistical framework as

conventional clustering methods in task-based fMRI [16–18].

Both methods involve an initial comparison between connectivity

matrices, giving a matrix of test statistics. However, instead of

assessing the significance of each test statistic, a cluster forming

threshold is applied across the matrix. If the connectivity change

between two brain areas exceeds this threshold, these regions form

a ‘cluster link’. Connectional clusters are defined from these links.

In contrast to task-based clustering procedures, which always

measure activation in some way, connectivity clustering methods

give very different information, depending on how clusters are

defined. NBS and SPC provide very different information on

connectivity change. This is similar to the way in which different

graph theoretical measures can quantify diverse aspects of network

topology [1]. In NBS, a cluster is defined as a set of brain regions

continuously connected by pairwise cluster links (see fig 1a). In

SPC, start and end points of links are grouped into clusters using a

spatial vicinity criterion (see fig 1b); using this definition,

connectivity can be considered to be altered between two specific

brain regions. Similar to conventional clustering methods in task-

based fMRI, permutation testing is used to obtain the statistical

significance of clusters at a family wise error corrected level [17].

NBS and SPC have been successfully applied in a number of

recent studies [19–23]. In cases where the contrast of interest leads

to the formation of connected network structures, NBS has been

demonstrated to provide an increase in statistical power compared

to connection-wise family wise error control [5].

A limitation of NBS is that connectivity changes are not

localisable to a particular region of the brain. Only the network as

a whole, rather than its individual components, can be considered

significant. Furthermore, the application of NBS on a voxel-by-

voxel level is suboptimal; NBS does not explicitly model the spatial

smoothness that is intrinsic to BOLD fMRI data. SPC does utilise

this smoothness. However, SPC requires a cluster search over an

enormous N(N-1)/26N(N-1)/2 matrix [24]. In the case of our

previous example, consisting of N = 25,000 voxels, a cluster search

over a matrix consisting of 1017 elements would be required. The

application of SPC on a voxel-by-voxel level is therefore

challenging from a computational point of view.

In the present investigation, we introduce two new cluster based

statistics to control for comparisons made over all connectivity

values. These statistics are termed the Cluster Size Statistic (CSS)

and the Cluster Mass Statistic (CMS). CSS is defined as the voxel-

wise extent of a spatially continuous cluster, where each voxel in

the cluster possesses at least one cluster-link with other voxels in

the brain. CMS is defined as the total number of cluster-links

between a spatially continuous cluster, and the rest of the brain

(see fig 1c). Both CSS and CMS are able to identify changes in

connectivity between a single region of the brain, and all other

voxels under analysis. These methods are closely related to

analyses involving the comparison of seed based connectivity

maps. CSS and CMS can be regarded as an extension of seed

based mapping to the whole brain. Any significant results obtained

from studies utilising CSS/CMS methods can be used to guide the

hypotheses of future seed-based investigations.

CSS and CMS measures have the advantage over NBS in that

connectivity changes can be localised to a particular region of the

brain. They also make full use of the spatial correlation that is

intrinsic to fMRI data. They have the advantage over SPC that a

cluster search over an N(N-1)/26N(N-1)/2 matrix is not required.

However, these analyses also provide information on connectivity

change that is fundamentally different from what is offered by SPC

or NBS. CSS and CMS statistics are designed to identify areas of

the brain that show significant global connectivity change between

groups or conditions. Clusters that are identified by CSS/CMS

will not be detected by SPC or NBS, and vice versa.

Following a description of the principles underlying these tests,

we demonstrate the performance of these methods in a simulation.

Figure 1. Connectivity clustering methods. Typical patterns of
connectivity change that the different clustering methods are sensitive
to. Here, squares represent voxels and lines represent thresholded
connectivity changes. (a) NBS cluster size is defined by the number of
thresholded connectivity changes forming continuously connected
components. The NBS cluster above has an extent of eight. (b) SPC
cluster size is defined by the number of thresholded connectivity
changes forming pairwise spatial clusters. The SPC cluster above has an
extent of eight. (c) CMS size is defined by the total number of
connectivity changes between a spatially distinct cluster, and the rest of
the brain. The CMS cluster above has an extent of eight. CSS size is
defined by the spatial extent of a cluster, where each voxel in the
cluster exhibits at least one connectivity change with another voxel in
the brain. The CSS cluster above has an extent of five.
doi:10.1371/journal.pone.0098697.g001
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The relative sensitivity of CSS and CMS methods is then tested on

a real dataset by comparing BOLD fMRI scans carried out under

normocapnic and hypercapnic conditions. The hypercapnic state

is known to alter BOLD based measures of functional connectivity

[25,26] and therefore provides a convenient tool for testing the

proposed CSS and CMS methods in the context of a repeated

measures design.

Theoretical Background

Conventional cluster size thresholding in fMRI
Cluster size thresholding was introduced to fMRI by Poline et al

[27], whose ideas were built upon by Forman et al [18]. This kind

of test was initially applied to fMRI activation studies using Monte

Carlo simulations. It was later adapted for use within a

permutation based framework [17]. The basic idea underlying

this kind of test is to use cluster size as the statistic of interest, in

place of a voxel-wise test statistic. In a permutation based

framework, any suitable statistic can be used to test for significance

[28].

In a task-based fMRI study, the test proceeds in the following

manner: For each permutation of the experimental labels, an

image of voxel-wise test statistics (e.g., t-statistics) quantifying

group activation is generated. This image is thresholded at a user-

defined, cluster-forming threshold. The size of the largest cluster of

voxels above this threshold is recorded. Voxels are considered to

be a part of the same cluster if they are connected by a ‘face’ or an

‘edge’ (this is known as 18-connectivity). This procedure is

repeated for many permutations of the experimental labelling.

In this way, a maximal cluster size distribution is constructed from

the data [17]. The experimental data is thresholded at the same t-

value as the permutation data. Any clusters above the 100(1-p)th

percentile of the maximum cluster size distribution are considered

statistically significant.

Cluster size statistic (CSS) and cluster mass statistic (CMS)
In this section, two novel cluster based statistics are described.

These methods can be regarded as an extension of conventional

cluster size testing. The following description is made with

reference to a comparison between experimental conditions

(repeated measures design); this is the experimental design used

in the present investigation. However, this theoretical framework

can also be applied to a comparison between two or more groups

(cross-sectional design).

The first stage of both CSS and CMS methods is to map the

functional connectivity between all voxel pairs in the brains’ grey

matter. Connectivity is mapped for all subjects, under both

conditions. T-statistics are calculated between connectivity values

taken under different experimental conditions. However, instead

of using the Student t-distribution to assess the significance of

connectivity changes, a cluster-forming threshold is applied across

all test statistics. This is similar to the way in which a cluster-

forming threshold is applied in conventional activation studies. T-

values exceeding the initial threshold are termed ‘cluster links’,

CSS and CMS statistics are defined from these cluster links. CSS is

defined as the size of a spatially distinct cluster, where each voxel

in the cluster possesses at least one cluster-link with other grey

matter voxels. CMS is defined as the total number of cluster-links

between voxels in a distinct cluster, and the rest of the brain (see

fig 1c).

The workflow these procedures follow is illustrated in fig. 2 and

described in detail below:

1. Connectivity matrices are calculated for each subject for

both experimental conditions A and B. 2. An initial test statistic

(e.g., t-statistic, f-statistic) is calculated for each matrix element to

give a matrix of test statistics. 3. In analogy to conventional cluster

size thresholding methods used in fMRI, a cluster-forming

threshold is applied to this matrix to create a binary matrix

(termed an adjacency matrix in graph theoretical parlance). Both

positive and negative cluster-forming thresholds are required when

both increases and decreases in connectivity are of interest. In this

case, steps 4-6 are carried out for each of two binary matrices

produced using positive and negative cluster forming thresholds.

Each column/row of the matrix is associated with a particular

voxel, the values in the column/row denote the connectivity of

that voxel with all other voxels under analysis. 4. The sum is taken

over each row of the binary matrix to produce an array of length

N, where N denotes the number of voxels under investigation.

Values in the array denote the number of connectivity changes a

voxel has with the rest of the brain, which exceed the cluster-

forming threshold. 5. This array is transformed back into image

space. This results in a univariate map where each voxel value

denotes the number of connections with other voxels in the brain

that exceed the cluster-forming threshold (cluster links). A voxel is

considered to be part of a cluster if it exhibits at least one cluster

link with another voxel in the brain. Clusters of connected voxels

are defined on the basis of an 18-connectivity criterion [29] this

means that they must share a face or an edge in image space (18-

connectivity). 6. In CSS, the cluster extent, characterised by the

number of voxels forming the cluster, acts as the statistic of interest

in determining a significant effect. In CMS, voxel intensity values

comprising spatially distinct clusters are summed to give the total

number of connectivity changes between a cluster, and the rest of

the brain. 7. Permutation testing [28] is used to identify clusters

that are statistically significant at a probability corrected for

family-wise errors. For each permutation of the experimental

labels, the largest cluster in the associated image space is recorded.

In this manner, a distribution of maximum cluster sizes is

generated. Maximum cluster size distributions for CSS and

CMS statistics are both generated in this way. For a one-sided

test, any CMS or CSS clusters in the experimental data with

cluster size values above the 100(1-p)th percentile of their

respective maximum distributions, are considered to be statistically

significant at a probability p [28]. When a two-sided test is carried

out, clusters exceeding the 100(1-p/2)th percentile of the

permutation distribution are considered statistically significant at

a probability p. The maximum cluster-size distribution is the same

for positive and negative cluster forming thresholds.

Pseudo-thresholding the correlation matrix
A general problem with cluster size testing (this includes NBS

and SPC) is the arbitrary nature of the cluster-forming threshold

[4,18]. Although results are valid for any initial threshold, its

choice can have a real effect on the sensitivity and spatial

specificity of the approach. Using a lower cluster-forming

threshold favours the identification of larger, spatially extended

clusters. Conversely, a high cluster-forming threshold supports the

identification of spatially restricted, focal changes. In conventional,

task based activation studies, threshold choice can be informed by

the results obtained from previous studies. As this is a novel

procedure, that is not possible here. In the present investigation,

we take a different approach to threshold selection.

Here, we take two extreme cases to illustrate how the sensitivity

and specificity of a cluster-based procedure can be affected by

initial threshold choice. In permutation-based cluster tests, an

initial threshold is set, and the permutation distribution is used to

obtain a critical cluster size that defines significance in the

experimental labelling. If the cluster-forming threshold is set very

Identifying Changes in Functional Connectivity
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low, the critical cluster size could encompass most of the brain; this

will severely limit the spatial specificity of the method. Conversely,

setting the initial threshold very high could result in a critical

cluster size smaller than the smoothing in the data. In the most

severe case, the critical cluster size could be the size of one voxel/

connection. In this situation, the ‘borrowing power’ of neighbour-

ing voxels is not utilised. This is likely to limit the statistical power

of the method: statistically, this would be very similar to a single

voxel/connection test. Neither of the cases described in the text

above is desirable.

Carrying out multiple tests to decide on an initial threshold post

hoc is not viable as it is associated with an increased risk of false

positives. Here, we describe a simple procedure to help guide the

initial threshold choice. Using this method, we obtain the critical

cluster size (CSS extent) associated with a particular cluster-

forming threshold, without ‘looking’ to determine whether there

are any significant clusters in the experimental labelling. Critical

cluster size is then plotted against cluster forming threshold in an

isocontour significance plot (this is similar to Friston et al [30]

where these plots were derived mathematically for use in

activation studies). In this way, it is possible to obtain information

on the cluster size associated with an initial threshold before the

data is tested. This procedure is not a solution to all of the

problems associated with cluster size thresholding. Rather, the

method offers a framework that can be used to obtain an initial

threshold, which avoids the two extremes given as examples above.

This is especially useful in situations where no previous studies

exist to guide the initial threshold choice. This procedure is

described in detail below:

1. Multiple permutation distributions are calculated from the data

for a range of initial threshold values. Each of these

distributions produces a critical cluster size. The critical cluster

size is the p,0.05 FWE corrected significance level associated

with a particular cluster-forming threshold. Clusters in the data

that are larger than this critical size can be declared significant

at a probability corrected for family wise errors. In order to

reduce computational complexity, a smaller subset of the

permutation distribution can be used in place of the full set

[17].

2. Each critical cluster size is then plotted against the cluster-

forming threshold associated with it; an example based on the

data from the present study is shown in fig. 3. The plot is fitted

with a spline curve.

3. This plot provides information on the cluster threshold and

extent combinations that are required for statistical significance

in the experimental labelling.

The curve in fig. 3 represents a constant (p.0.05, FWE

corrected) probability of significance as the cluster-forming

threshold is varied. Isocontour plots can be constructed for any

other significance level by plotting the initial threshold against the

appropriate critical cluster size.

Figure 2. CMS/CSS methods. Illustration of data processing workflow for CSS and CMS measures. Note: The matrices are limited in size and only
contain positive values for ease of exposition.
doi:10.1371/journal.pone.0098697.g002
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The choice of exactly what cluster-forming threshold to use is

still somewhat arbitrary. However, we argue that this procedure

allows the experimenter to make a more informed choice

regarding initial threshold selection. Using this procedure provides

the experimenter with information on what combination of threshold

and extent are required for clusters in the experimental labelling to

reach statistical significance. This information is similar to that

provided by Forman et al [18] for activation studies: Here,

statistically significant combinations of initial threshold and cluster

size were tabulated for other researchers to use (these tables

implicitly assume identical cluster distributions between studies).

This knowledge allows the threshold choice to be guided by

hypothesis to a greater extent: For example (with reference to

fig. 3), if focal effects are expected, or a high degree of spatial

specificity is required, a cluster threshold above nine should be

used. Conversely, if more diffuse clusters are expected, a lower

initial threshold should be applied. At the same time, it is possible

to avoid the two extreme cases given in the text above by avoiding

thresholds that are associated with clusters that take up a large part

of the brain, or are smaller than the smoothness in the data. The

issue of ‘double dipping’ [31] does not arise, as this procedure does

not give any information on the significance of clusters in the

experimental labelling.

This method utilises the spatial correlation that is intrinsic to the

data to guide the selection of the cluster-forming threshold. It is

therefore reasonable to use this threshold selection procedure for

both the CSS and CMS methods. However, it should be noted

that this cluster selection procedure is not an integral feature of

CSS or CMS and any initial threshold can be used with these

methods.

Simulation
Receiver operator characteristic (ROC) plots were constructed

from simulated data to test the efficacy of CSS and CMS methods.

The performance of these procedures was evaluated in the

detection of a known ‘ground truth’ contrast, corrupted by noise.

ROC curves are constructed by plotting the true positive rate

(TPR) against the false positive rate (FPR) of contrast detection,

across a range of discrimination thresholds. The discrimination

threshold determines whether a test is classified as ‘true’ or ‘false’.

In the present investigation, the discrimination threshold is defined

by CSS/CMS cluster size.

Standard ROC methodology is designed to deal with single

inferences (e.g. is a contrast present at a single voxel? yes/no). In

this framework, TPR and FPR both have straightforward

definitions: TPR is the proportion of true positives identified from

all actual positives; FPR is the proportion of false positives out of

all actual negatives. When multiple tests are carried out

simultaneously, a number of different TPR and FPR definitions

exist: free response receiver operator characteristic (FROC) [32]

curves are constructed by plotting the proportion of true and false

positive rates across all tests together. The alternative FROC

(AFROC) [33] uses a different FPR definition: the probability of a

false positive anywhere in the image. As CMS and CSS methods

aim to control the family-wise error rate (the chance of one or

more false positives anywhere in the image), the more stringent

AFROC procedure is more meaningful in the current context.

The true positive rate was calculated by comparing a pure noise

dataset with a dataset containing a known contrast. Calculating

the false positive rate from this comparison is problematic when

the test has a spatial aspect [34]: CSS and CMS control the family-

wise error rate at the cluster level. As spatial smoothing is applied

to the simulated data, the contrast is likely to blur into

neighbouring voxels/connections. This creates a problem in

determining what is ‘true’ background, which makes FPR

calculation problematic. Following the procedure proposed by

Smith and Nichols [34], the false positive rate was calculated here

by comparing two noise only datasets. Calculating the FPR from

this comparison provides exactly what is required in standard null

hypothesis testing: the probability of a false positive in the presence

of no real contrast.

The simulation presented here was carried out using a single

brain slice. A 2-D slice was used in place of the whole brain to

account for the computational demands posed by CSS and CMS

statistics: Using the full 3-D dataset, each individual simulation run

took over an hour on an Linux machine with 48 GB of memory

and eight cores, each with 2.56 GHz of processing power, this

time was decreased dramatically by reducing the simulation to two

dimensions (,2 minutes per run). A necessarily restricted 8-

connectivity scheme was used to define spatially distinct clusters.

All other aspects of the analysis remain the same using two in place

of three dimensions. As in Zalesky et al 2010 [5], the contrast

formed a pattern of connectivity change that the cluster methods

were specifically designed to identify (i.e. a change in connectivity

between a spatially restricted cluster, and the rest of the brain).

Note that it does not make sense to compare CSS/CMS methods

to the connection-wise test in this evaluation, as the single

connection test measures something fundamentally different from

what is quantified by CSS/CMS. The sensitivity of CSS and CMS

are compared to that of the single connection test in comparisons

made on real data, as this does not require the specification of a

contrast.

The pre-processing carried out on the simulated data was the

same as that used on the experimental data.

The process used to construct ROC curves is described in detail

below:

1. Two groups filled with Gaussian random noise were

constructed. Each group consisted of twelve ‘scans’. For each

subject, timecourses of Gaussian random noise were generated for

voxels in a single slice of the study grey matter mask; timecourses

were equal in length to the experimental normocapnia/hyper-

capnia scans. These two groups are subsequently referred to as

groups A and B.

Figure 3. Plot of initial t-threshold against critical cluster
extent. Plot of initial t-threshold (p,0.05 FWE corrected) against
critical cluster extent. A cubic spline curve was fitted to the calculated
data points.
doi:10.1371/journal.pone.0098697.g003

Identifying Changes in Functional Connectivity

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e98697



2. A contrast + noise group was also created. Here, a time-

varying sine curve was added to the timecourses of a subset of

‘contrast’ voxels in group A (see fig. 4). The sine-curve had a

frequency of 0.1 Hz, this is around the same frequency as BOLD

based signal change [35]. The contrast was added to a large

spatially restricted cluster: this group of voxels is termed the

‘primary cluster’. The contrast was also added to voxels scattered

throughout the rest of the slice (see fig. 1c, fig. 4). This group is

subsequently referred to as group C.

3. A temporal autocorrelation structure matching that of the

real data was added to voxel timecourses across subjects and

groups. Data was then spatially smoothed using an 868 mm

Gaussian kernel and low-pass filtered at a frequency of 0.1 Hz.

4. Both methods were used to calculate the true positive rate of

primary cluster detection between groups A and B. TPR was

calculated as |C > ĥ|/|C| where C is the set of voxels associated

with the primary cluster, and ĥ is the set of voxels which form

clusters above the discrimination threshold. The true positive rate

was calculated as a function of the discrimination threshold.

5. The FPR was calculated between groups B and C. FPR = 1 if

|ĥ|$1, FPR = 0 if | ĥ| = 0, where V denotes all voxels under

analysis. The false positive rate was calculated as a function of the

discrimination threshold.

6. Steps 1-5 were repeated a thousand times for each condition.

The mean TPR and FPR were calculated across trials for each

discrimination threshold. They were then plotted against one

another.

The performance of the CSS and CMS methods was evaluated

under different conditions by changing methodological parameters

and contrast properties. The efficacy of CSS and CMS were tested

as three contrast properties were varied: CN – the contrast to noise

(CN is given by the formula: A/sN where A is the amplitude of the

sine wave comprising the contrast, and sN is the standard

deviation of the noise [36]), R – the radius of the primary cluster

and CV – the number of contrast voxels outside of the primary

cluster, as a multiple of the number of voxels in the primary

cluster. The contrast properties that were varied are illustrated in

fig. 4. CMS and CSS performance was also assessed at several

initial threshold values. Performance was only evaluated for FPR

values ranging from 0 to 0.05. FPR values higher than 0.05 are not

generally of interest in neuroimaging studies.

Simulation results
Fig. 5a shows the performance of CSS/CMS methods as the

initial cluster threshold was varied. Initial thresholds of t = 3, t = 5

and t = 7 were applied to CSS and CMS methods. R, CV and CN

were held constant at 2, 2 and 0.4 respectively. Both CSS and

CMS were most effective when an initial threshold of t = 5 was

applied to the simulated data. It should be noted that this doesn’t

mean that a t-value of 5 is associated with the best CSS/CMS

performance generally. This t-value is only optimal under the very

specific circumstances considered here. It is also worth noting that

the simulation was carried out using 2-D data; it is likely that the

ideal threshold would be higher if 3-D data was used.

Fig. 5b shows the ability of the comparison methods to detect

the contrast as CN was varied. Realistic [36] CN values of 0.25,

0.4 and 0.5 were utilised. Other parameters were held constant at

R = 2, CV = 2 and t = 5. As expected, the performance of each of

the comparison procedures improved as the contrast amplitude

was increased.

Fig. 5c shows the efficacy of each method as the number of

contrast voxels outside of the primary cluster was altered. CV

values of 1, 2 and 3 were used. R, CN and t were held constant at

2, 2 and 5 respectively. The performance of both methods

improved as the number of contrast voxels outside of the primary

cluster was increased.

Fig. 5d shows the performance of each of the methods as the

size of the primary cluster was altered. Primary cluster radii of

R = 1, R = 2 and R = 3 were utilised. CN, t and CV were held

constant at 0.4, 5 and 2 respectively. As expected, method

performance improved as R was increased.

These results illustrate that the performance of CMS is generally

higher than that of CSS across the range of methodological and

contrast properties used.

Real Data, Materials and Methods

Ethics statement
The study was approved by the local ethics committee (College

Ethics Review Board, University of Aberdeen), ethical approval

was confirmed online. Written informed consent was obtained

from all participants.

MRI acquisition
Measurements were carried out on a Philips 3T Achieva

scanner (Philips Healhcare, Best, The Netherlands) using a 32-

channel phased-array receiver coil. Gradient-echo EPI was used

for the functional connectivity MRI (fcMRI). Imaging parameters

were TE = 30 ms, TR = 2 s, flip angle = 78u, matrix size = 96696,

field of view = 2406240 mm2, number of slices = 32, slice

thickness = 3.5 mm, parallel imaging method = SENSE, accelera-

Figure 4. A figure displaying contrast properties which were
altered during the simulation. ROC curves were calculated as the
contrast parameters illustrated above were varied. The performance of
methods was assessed as four parameters were varied: t – the initial
threshold, CN – the contrast to noise, R – the radius of the primary
cluster and CV – the number of contrast voxels outside of the primary
cluster, as a multiple of the number of voxels in the primary cluster.
doi:10.1371/journal.pone.0098697.g004
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tion factor = 2, number of dynamic scans = 540, number of

dummy scans = 4. In addition, a high-resolution T1-weighted

structural scan was obtained using fast 3D gradient echo imaging.

Scan parameters were TR = 8.2 s, TE = 3.8 ms, flip angle = 8u,
matrix size = 24062406125, field of view = 24062406160 mm3,

voxel size = 1.061.061.0 mm3, total acquisition time = 5 min

35 s.

Participants
Twelve healthy volunteers (seven male; mean age and

SD = 2464 years) with no medical history of migraine, anxiety

or any illnesses of the heart, brain, circulatory or respiratory

systems were recruited. Participants who had a family history of

subarachnoid aneurysm, subarachnoid haemorrhage, intracranial

aneurysm or arteriovenous malformation were excluded.

Inducing hypercapnia
Transient hypercapnia was induced by breathing a specialised

gas mixture consisting of 6% CO2, 21% O2 and 73% N2 (BOC

Healthcare, Manchester, UK). Subjects were positioned supine on

the patient table and wore an anaesthetic facemask (QuadraLite,

Intersurgical, Wokingham, UK). A specially designed unidirec-

tional breathing circuit (Intersurgical, Wokingham, UK; product

code: 2013014) was used to deliver either room air or the 6% CO2

mixture (this circuit is illustrated in fig. S1). This circuit included a

reservoir that was continuously replenished with gas throughout

the breathing cycle. CO2 gas was supplied from a cylinder

attached to the breathing circuit via a length of plastic tubing.

When switching from hypercapnia to normocapnia, the breathing

circuit was flushed with medical air (21% O2, 79% N2) to clear

out any residual CO2. The plastic tubing was then detached and

the subject breathed room air through the facemask and breathing

circuit. Subjects were asked to try on the facemask and breathing

circuit prior to the scan, none of the subjects reported any

discomfort or difficulty breathing. Physiological parameters (heart

rate and arterial oxygen saturation) were continuously monitored

using a pulse oximeter (Model 7500FO, Nonin Medical, Inc.,

Plymouth, Minnesota, USA). Respiratory CO2 concentration was

continuously monitored using a carbon dioxide analyser (Model

CD-3A, AEI Technologies, Pittsburgh, PA, USA). The analogue

output signal was digitised using a standard analogue to digital

converter and stored on a hard drive. The end-tidal concentration

was extracted from the recorded respiratory data using a routine

written in Matlab (The Mathworks, Natick, MA, USA).

Experimental paradigm
Each scan started with two minutes where the participant was

instructed to lie still and ‘think of nothing in particular’. This was

followed by six minutes where visual and motor tasks were carried

out. This task section was followed by two minutes where the

screen went blank and the subject was again asked to do ‘nothing

in particular’. The six minute task section was then repeated. Task

sections were carried out under normocapnia and hypercapnia,

the ordering of these sections was randomised across subjects to

avoid any effects introduced by subject habituation to the scan

environment. Functional connectivity was compared between the

two, six-minute task sections carried out under normocapnic and

hypercapnic conditions. These simple visual/motor tasks were

used to keep the participants’ attention focused during the scan.

Tasks requiring only low cognitive demand have been argued to

provide a more stable baseline in functional connectivity analyses,

compared to a pure resting state condition [14,37].

Data pre-processing
Standard fMRI pre-processing was carried out using the

Statistical Parametric Mapping software package SPM8 (http://

www.fil.ion.ucl.ac.uk/spm). Pre-processing steps included realign-

ment, slice-time correction, combined segmentation and spatial

normalisation, and spatial smoothing using a 8 mm FWHM

Gaussian kernel. Voxels in each volume were resampled from

26262 mm to 46464 mm to reduce computational complexity.

In order to further reduce computational complexity, a study

specific, binary grey matter mask was created and applied to the

data. This was achieved by averaging the individual, probabilistic

grey matter maps produced during segmentation, and applying a

probability threshold of 0.8 for inclusion within the mask. The

resulting binary mask consisted of 9,083 grey matter voxels. All

further analysis of the data was restricted to the grey matter voxels

defined by the binary mask. Voxel timecourses were low-pass

filtered (cut-off frequency = 0.1 Hz) and baseline corrected using a

2nd order cosine basis set to remove low-frequency signal drifts.

Realignment parameters were used as covariates of no interest in a

voxel-wise linear regression on each timecourse and the resulting

residual signal timecourses were used in all further analyses.

Functional connectivity analysis
Connectivity matrices – also known as similarity matrices – were

calculated using Pearson’s correlation coefficient for each partic-

ipant and condition (hypercapnia, normocapnia) from the

preprocessed timecourse data.

Statistics based on element-wise comparison
Comparisons were made between normocapnic and hypercap-

nic connectivity matrices using a non-parametric paired t-test, for

all 4096 permutations of the experimental labelling. As explained

in the theoretical background section, the full permutation

distribution can be calculated using half of all permutations of

the experimental labelling. Here, all permutations were used to

illustrate the symmetry of the labellings (see fig. 6).

Both maximum and minimum element-wise t-values were

recorded for each permutation, to produce distributions of

maximum/minimum t-statistics. Element-wise t-values in the

actual, experimental labelling were then compared to these

distributions. T-values in the top or bottom 2.5 percentiles of

the distribution can be declared significant at the 0.05 FWE

corrected level. Statistics in the top or bottom 2.5 percentile, rather

than the top or bottom 5 are considered significant as the test

carried out was two-sided.

Statistics based on CSS and CMS
The procedure described in the theoretical background section

was used to help guide the initial threshold choice. An initial

threshold associated with a critical cluster size of nineteen was

chosen based on the following consideration: Due to spatial

Figure 5. ROC curves for each of the comparison methods, plotted from simulations carried out under different experimental
conditions. ROC curves illustrating the performance of CSS and CMS methods as contrast and methodological properties were varied. 5a) shows
how varying the initial threshold can effect performance 5b)shows the effect of contrast to noise on method performance 5c) shows how varying the
number of contrast voxels changes performance 5d) illustrates how altering the primary cluster radius can effect performance. Green curves: CMS,
Blue curves: CSS.
doi:10.1371/journal.pone.0098697.g005
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smoothness in the data (voxel size 46464 mm; smoothing kernel

8 mm), each voxel under analysis will share a substantial amount

of information with its nearest neighbours. A critical cluster size of

nineteen was chosen as this number includes a voxel and its

nearest neighbours, connected by a face or an edge. Therefore,

any significant CSS clusters in the experimental data will utilise the

spatial correlation in the data, whilst maintaining a high degree of

spatial specificity. It should be noted that it is possible for

statistically significant CMS clusters in the experimental labelling

to have an extent smaller than nineteen voxels. However, this is

unlikely due to the spatial smoothness in the data.

Fig. 3 shows a plot of the initial t-threshold against the critical

cluster size. The plot was fitted with a cubic spline curve. A cluster-

forming t-threshold of 9.3 was interpolated from the curve as being

associated with a critical cluster extent of nineteen voxels. The

permutation distributions, which were used to calculate the critical

cluster sizes in the plot, used a thousand permutations of the

experimental labelling. The full permutation distribution was then

calculated for CSS and CMS statistics at this threshold, using the

procedure outlined in the theoretical background section. Clusters

in the experimental labelling were then compared to this

distribution to assess their FWE corrected significance.

Experimental Results

Inhalation of 6% CO2 increased the across subject mean end-

tidal-CO2 from 42.961.8 mm Hg to 5261.7 mm Hg. These

values were calculated by computing the mean Et-CO2 value

across normocapnia/hypercapnia sections, then across subjects.

All subjects tolerated this well; no side effects were reported by any

of the participants.

Fig. 6 shows the distribution of maximum and minimum t-

statistics calculated from the element-wise comparison of connec-

tivity matrices. The largest t-value across all matrix elements when

comparing between normocapnic and hypercapnic states was

14.35, the smallest was 212.27; these values are shown as dashed

lines in fig. 6. Neither of these changes was significant at the p,

0.05 FWE corrected level when compared to the distribution of

maximum/minimum t-statistics; the maximum and minimum t-

values corresponding to this level of significance are shown as solid

lines. As can be seen from fig. 6, the distribution of the maximum

t-statistic is symmetric with respect to positive and negative t-

values.

In contrast to the element-wise comparison, the methods

introduced in this paper (CSS, CMS) identified both significant

increases and decreases (p,0.05, FWE corrected) in functional

connectivity associated with the hypercapnic state. The results are

shown in figs. 7 and 8; the spatial location and statistical

significance of clusters are shown in tables 1 and 2. Both methods

detected decreases in functional connectivity in the posterior

cingulate cortex (BA 23). CSS detected an additional decrease in

connectivity in the primary visual cortex (BA 17). CSS also

detected an increase in connectivity in the supramarginal gyrus

(BA 40). CMS detected no increases in connectivity.

Each of the clusters of altered connectivity identified by CMS

and CSS is associated with pseudo thresholded changes across the

cortex. These changes can be displayed in image space. Fig. 9

shows the primary clusters (red) and the connected voxels which

contribute to these clusters (blue). In analogy to other cluster-based

methods, the FWE-corrected significance level applies to the

network component as a whole (i.e., red and blue voxels in fig. 9)

rather than to individual connections between pairs of voxels.

Running both of the whole brain comparison tests introduced in

this paper (CSS, CMS) required less than 22 hours of computation

time on an Linux machine with 48 GB of memory and eight cores,

each with 2.56 GHz of processing power. Most of this time was

spent in calculating the matrix of t-statistics for each permutation

of the experimental labels. Once this matrix was determined,

calculating each of the cluster based statistics from the matrix

required a negligible amount of computation time. For this reason,

running one of the two tests separately would have required

approximately the same amount of time as running them both

together.

Discussion

CSS and CMS methods
Both CSS and CMS detected changes in global connectivity

between experimental conditions, while the element-wise compar-

ison of connectivity matrices identified no significant changes

when corrected for multiple comparisons (p,0.05 FWE correct-

ed). Similar to conventional clustering methods in fMRI, CSS and

CMS make use of the spatial smoothness in the data to provide an

increase in statistical power. Spatial smoothness arises from

intrinsic factors such as the spatial extent of the BOLD signal

[38] and to a lesser degree, spectral leakage of the Fourier

transform during image reconstruction. Additional spatial smooth-

ing is often applied to fMRI data by means of spatial filtering in

order to improve the contrast-to-noise ratio and to reduce the

effects of imperfect inter-subject coregistration.

Overall, CSS detected three clusters of significant connectivity

change, whilst CMS detected one. Significance in CSS is

determined by spatial extent, this method is therefore sensitive

to spatially extended clusters. CSS detected two clusters of altered

connectivity that CMS was unable to recognize. These clusters

were large by volume but of low intensity, leading to lower CMS

significance values relative to CSS. CMS has the potential to

detect clusters that are smaller by volume but more focal in

intensity than the clusters identified by CSS. As can be seen from

the simulation results, CMS is generally more sensitive than CSS.

However, in the present investigation, CMS did not detect any

changes that CSS was unable to identify. Note that in this context,

‘intensity’ refers to the number of connectivity changes between a

voxel, and all other voxels in the brain (see Theoretical

Background).

Figure 6. Distribution of maximum/minimum t-statistics across
all permutations. Permutation distribution of maximum and mini-
mum t-statistics across all matrix elements in a comparison between
normocapnic and hypercapnic states. The solid lines represent p,0.05
FWE corrected significance thresholds. The dashed lines represent the
maximum and minimum t-statistics in the experimental labelling.
doi:10.1371/journal.pone.0098697.g006
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CSS and CMS are capable of identifying clusters of significantly

altered global connectivity. These clusters are associated with

pseudo thresholded connectivity changes across the brain (cluster-

links). Changes between a primary cluster and the rest of the brain

may be widely distributed across the cortex, or localised to just a

few areas. These different patterns of connectivity change can be

seen in fig. 9. The primary cluster in CSS1 (red) mainly shows

changes with one other area of the brain (blue). In contrast, the

primary cluster in CSS3 (red) shows changes that are widely

distributed across the brain (blue). Taken individually, these

changes cannot be considered significant: only weak control of the

family-wise error rate is maintained at the single connection level.

Only the cluster based network taken in its entirety can be

declared significantly altered between conditions.

In seed based connectivity mapping, connectivity is calculated

between a single cortical region, and the rest of the brain. When

connectivity maps are compared between groups or conditions, it

is possible to identify cortical regions where connectivity is

significantly altered with the seed used, with strong control over

connection-wise changes. CSS and CMS methods are closely

related to analyses involving the comparison of seed based

connectivity maps. In CSS and CMS, connectivity matrices are

compared between groups or conditions. Each column of the

connectivity matrix is equivalent to a seed based map, associated

with a distinct voxel ‘seed’. This initial comparison can be thought

of as a test between all possible connectivity maps in the brain.

CSS and CMS are defined from connectivity changes exceeding

the initial threshold in spatially contiguous voxels. Fig. 9 shows

patterns of connectivity change between a spatially distinct cluster,

and the rest of the cortex. As has been discussed, CSS and CMS

only provide weak control over the family-wise error rate at the

single connection level; when seed based connectivity maps are

compared, strong control over connection-wise changes is

maintained. CSS and CMS can be used as exploratory, data

driven methods to guide the hypotheses of future studies: Primary

clusters showing a significant change in connectivity can be used as

seeds in future analyses. A follow up seed based analysis has not

been carried out on the present data, as this would constitute

‘double dipping’ [31](Using the same data for both selection and

selective analysis) and is not statistically valid. To avoid this issue,

an independent dataset taken under identical conditions is

required to provide connection-wise control over the family-wise

error rate.

The Network based statistic (NBS) is sensitive to connectivity

changes that form altered network components. The main

problem with NBS is that connectivity changes cannot be localised

to a single area of the brain. Furthermore, NBS does not model

the intrinsic spatial smoothness of BOLD fMRI data, which makes

it less suitable for applications on a voxel-by-voxel level. The

methods introduced here are less complex and require less

computational time than spatial pairwise clustering (SPC). SPC

demands the initialisation of a very large (N2-N)/26(N2-N)/2

matrix [39], which in the present investigation would contain

approximately 1017 elements. SPC is sensitive to large, pairwise

Figure 7. Connectivity decreases. Significant decreases (p,0.05 FWE corrected) in functional connectivity between normocapnia and
hypercapnia, identified by the CSS and CMS statistics.
doi:10.1371/journal.pone.0098697.g007
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clusters of altered connectivity. As noted by Zalesky et al (2012),

smaller pairwise clusters may not be identified using this method

[24]. It is important to note that although there are general

advantages and disadvantages associated with all of the connec-

tivity clustering procedures discussed, these methods can be

regarded as complementary, as they measure completely different

kinds of connectivity change. This is similar to the way in which

different graph theoretical measures (e.g. centrality, path length)

quantify completely different aspects of network topology.

A challenge CSS and CMS share with other cluster-based

methods such as SPC and NBS, is the need to specify a cluster-

forming threshold. While this is not a problem from a statistical

point of view, the initial threshold choice will affect the sensitivity

and spatial specificity of the method. In this investigation, a

procedure was outlined that helps guide the initial threshold

choice. However, it is important to note that this procedure does

not circumvent all the problems associated with the initial

threshold choice. The somewhat arbitrary nature of this choice

remains an issue, as it does for all cluster-based methods.

Meskaldji et al have proposed an alternative framework for the

comparison of connectivity matrices; this procedure is termed

subnetwork based analysis (SNBA) [40]. In this method, the whole

brain network is divided into subnetworks, a meaningful summary

statistic is then calculated for each subnetwork. Type 1 error

control is carried out at the subnetwork level. It would be

interesting to see how the sensitivity of SNBA compares to that of

CSS/CMS.

In this investigation, maximum CSS and CMS statistics were

calculated for positive and negative cluster forming thresholds, at

each of the 4096 possible experimental permutations. Similarly,

Figure 8. Connectivity increases. Significant (p,0.05 FWE corrected) increases in functional connectivity between normocapnia and hypercapnia
identified by the CSS and CMS statistics.
doi:10.1371/journal.pone.0098697.g008

Table 1. Decreases in connectivity.

Method Cluster number Statistic size FWE corrected significance Brodmann area MNI co-ordinates

CSS CSS1 26 0.039 23 22 258 27

CSS2 24 0.041 17 211 292 22

CMS CMS1 46 0.042 23 22 258 27

MNI coordinates, statistic size and significance of all p,0.05 FWE corrected decreases in global connectivity between normocapnia and hypercapnia, identified by the
CSS and CMS statistics.
doi:10.1371/journal.pone.0098697.t001
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maximum and minimum t-values were calculated across all

connectivity values for each permutation of the experimental

labels. As noted in the theoretical background section, it is possible

to produce the full permutation distribution for each statistic from

half of all possible relabellings. Constructing the full permutation

distribution in this way would almost half the computation time

required by all methods.

CSS and CMS were applied to compare functional connectivity

between different experimental conditions (i.e., hypercapnia and

normocapnia). Both methods can easily be adapted to allow for a

comparison between multiple experimental conditions or between

different groups of subjects by replacing the paired t-statistic (see

Methods) with any other suitable statistic (e.g., two-sample t-

statistic for a comparison of two different groups of subjects). In the

implementation presented here, a non-parametric permutation

test was used for statistical significance testing. An advantage of

this approach is that is does not make any assumptions about the

nature of the underlying null distribution.

The connectivity analysis described here was based on BOLD

fMRI data. However, CSS and CMS methods could equally well

be applied to other modalities which are capable of producing

Table 2. Increases in connectivity.

Method Cluster number Statistic size FWE corrected significance Brodmann area MNI co-ordinates

CSS CSS7 22 0.049 40 40 235 47

MNI coordinates, statistic size and significance of all p,0.05 FWE corrected increases in global connectivity between normocapnia and hypercapnia, identified by the
CSS and CMS statistics.
doi:10.1371/journal.pone.0098697.t002

Figure 9. Networks of connectivity change. Altered functional connectivity identified by the CSS and CMS statistics (red) with the pseudo
thresholded changes that contribute to these clusters (blue). It should be noted here that only whole clusters, rather than individual connections, can
be deemed to be significant.
doi:10.1371/journal.pone.0098697.g009
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connectivity data, for example: electroencephalography or diffu-

sion tensor imaging.

Hypercapnia
The primary objective of using hypercapnia in this study was to

induce transient changes in functional connectivity in order to test

the sensitivity of the CSS and CMS methods, rather than to

investigate any specific effects of hypercapnia on functional

connectivity or to study the mechanisms underlying BOLD fMRI.

However, the findings presented here may have implications for

the experimental design of calibrated fMRI studies, and are

therefore discussed in more detail in this section.

The BOLD effect relies on the variation of magnetic

susceptibility in brain tissue caused by changes in blood

oxygenation. Because the BOLD effect is not a direct measure

of neuronal activity, the signal measured is subject to non-

neuronal, physiological confounds. Calibration methods utilising

the hypercapnic state are theoretically able to remove many of

these confounding effects [41–43]. However, calibrating the

BOLD signal in this way relies on the assumption that CO2 itself

does not effect neuronal activity. The accuracy of this presumption

is an area of long-standing contention, with the first study being

published in 1948 and the issue still unresolved [44,45].

The neural response to the hypercapnic challenge is difficult to

characterise using BOLD fMRI. CO2 is a potent vasodilator and

therefore has an effect on the BOLD signal that is at least partly

independent of any metabolic demands [46]. Global cerebral

blood flow and BOLD signal are increased during hypercapnia.

This means that, taken alone, changes in BOLD signal observed

during hypercapnia do not necessarily suggest a change in

neuronal activity. Despite the fact that CO2 can cause changes

in the BOLD signal, which are independent of any change in

neural function; some of the results obtained in the present

investigation are difficult to account for without invoking a

neuronal mechanism.

In this study, both increases and decreases in functional

connectivity were observed during hypercapnia (see Table 1). In

a connectivity analysis restricted to the primary motor areas,

Biswal et al. (1997) observed a reduction in functional connectivity

between left and right motor cortices under conditions of

moderate hypercapnia (induced through the inhalation of 5%

CO2 gas) [26]. Similarly, Xu et al [25] found that functional

connectivity was reduced between the posterior cingulate cortex

and other default mode network areas during moderate hyper-

capnia. This is consistent with the results obtained in the present

investigation. Clusters CSS1 and CMS1 are located in the

posterior cingulate cortex and showed a significant decrease in

connectivity with other default mode areas. This study also found

functional connectivity decreases in other brain areas (i.e., clusters

CSS2 and CSS3, see Table 1), which were not reported by Xu et

al. (2010). This is explained by the fact that the functional

connectivity analysis undertaken by Xu et al. (2010) was restricted

to the default mode network, whereas the analysis in this study

encompassed the whole brain.

Generally, a decrease in functional connectivity under hyper-

capnic conditions can be explained by a decrease in the relative

vascular response to metabolic demands as originally proposed by

Biswal et al. (1997). However, this mechanism cannot explain the

observed increases in functional connectivity during hypercapnia

(exhibited by cluster CSS3), unless the increase in functional

connectivity is driven by a reduction in anticorrelation. Further

analysis provided no evidence for decreases in anticorrelation, and

showed that the observed changes were genuine, absolute

increases in connectivity.

While the observed increases in functional connectivity may

suggest changes in neuronal activity, this hypothesis cannot be

proven on the basis of current data as this inference is indirect. In

this study, the hypercapnic state was induced through the

inhalation of a fixed concentration of CO2 gas. Wise et al have

shown that this method of inducing hypercapnia is associated with

a change in arterial O2; this leads to fluctuations in the BOLD

signal that are not accounted for [47]. Although this confound is

unlikely to have a significant impact on this group analysis, the

indirect nature of the modality makes interpretation difficult.

To help account for these problems, an interesting prospective

area of study would be a simultaneous EEG-fMRI resting state

investigation, taken under normal and hypercapnic conditions. A

study of this type would be able to take advantage of the superior

spatial resolution of fMRI whilst utilising EEG as a more direct

measure of neuronal activity. As the level of neuronal activity is

closely linked to the cerebral metabolic rate of oxygen (CMRO2), a

confirmation of altered neuronal activity during hypercapnia

would have direct implications for the experimental design of

calibrated fMRI studies [41-43], which rely on the assumption that

CMRO2 is unaffected during moderate hypercapnia.
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