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Abstract

Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted
clusters and high-gamma power responses in human auditory cortex. Intracranial
electrophysiological recordings were used to measure responses to a random chord
sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit
recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other
response signals such as local field potentials. We present an extension to recently
advanced methods for estimating STRFs from generalized linear models (GLM). A new var-
iant of regression using regularization that penalizes non-zero coefficients is described,
which results in a sparse solution. The frequency-time structure of the STRF tends toward
grouping in different areas of frequency-time and we demonstrate that group sparsity-induc-
ing penalties applied to GLM estimates of STRFs reduces the background noise while pre-
serving the complex internal structure. The contribution of local spiking activity to the high-
gamma power signal was factored out of the STRF using the GLM method, and this contri-
bution was significant in 85 percent of the cases. Although the GLM methods have been
used to estimate STRFs in animals, this study examines the detailed structure directly from
auditory cortex in the awake human brain. We used this approach to identify an abrupt
change in the best frequency of estimated STRFs along posteromedial-to-anterolateral
recording locations along the long axis of Heschl’s gyrus. This change correlates well with a
proposed transition from core to non-core auditory fields previously identified using the tem-
poral response properties of Heschl’s gyrus recordings elicited by click-train stimuli.

Introduction

Human auditory cortex is composed of multiple fields distributed both on the exposed lateral
surface of the superior temporal gyrus (Fig 1A) and in areas on the supratemporal plane buried
within the Sylvian fissure (for review see: [1-4]). The hidden supratemporal plane can be
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visualized on the surface that results from an oblique horizontal sectioning, perpendicular to
the lateral hemisphere (Fig 1B). Chronically implanted electrodes in human subjects [5] have
been used to identify a portion of Heschl’s gyrus (Fig 1B and 1C) on the supratemporal plane
that is consistent with it being the primary and primary-like (core) auditory cortex [6-9].

Responses recorded simultaneously from Heschl’s gyrus and other auditory responsive cor-
tical sites differ in a number of response criteria; including sensitivity to general anesthesia,
phase-locking capacity, response latency, and spectral tuning (for review see: [3, 10, 11].) Neu-
ral spectral tuning has been considered one mechanism by which both communication and
non-communication sounds are discriminated, and auditory cortex has been considered a
place where the requisite neurons are located. Single neurons in Heschl’s gyrus of human sub-
jects recorded with implanted electrodes have been found that are extraordinarily narrowly
tuned (“ultra sharp”), and their frequency selectivity may account for a listeners threshold of
frequency discrimination as measured psychophysically [12]. Frequency tuning curves similar
to those recorded in auditory cortex of laboratory animals have also been recorded in human
Heschl’s gyrus, and their distribution has confirmed the presence of at least one tonotopic field
in Heschl’s gyrus core [13]. Estimates of spectral tuning are commonly obtained with stimulus
sets composed of pure tones or complex sounds (e.g. narrow-band noise). In animal studies,
features derived from spectral tuning estimates have proven of great value in describing func-
tional organizations, patterns of connectivity, sound localization behaviors, and communica-
tion sound processing (for review see: [14]). As such, improvements in such estimates continue
to be of importance to neurophysiologic studies. Here, we present a contemporary approach to
estimating frequency and temporal tuning, which addresses low signal-to-noise data that is
commonly recorded from human Heschl’s gyrus.

Spectro-Temporal Receptive Field (STRF) derivations represent an advancement in charac-
terizing both frequency and temporal tuning. STRFs of single neurons have traditionally been
derived by estimating a transfer-function between a white-noise input stimulus and resulting
neural action potentials. This approach is generally known as a spike-triggered average (STA)
or reverse-correlation. Reverse-correlation was originally developed to estimate filter charac-
teristics of auditory peripheral afferents [15], although continued advances made in the stimu-
lus structure have provided STRF estimates at many sites along the central auditory pathway
including neocortex [16-21]. Natural stimuli have also been used to derive STRFs, which
required a normalization to accommodate the statistically non-white auditory stimulus [22].
This was accomplished by scaling the STA by the inverse of the stimulus autocorrelation
matrix. In general, STA-based models require a large amount of data to average out the noise
(i.e. non-stimulus related responses). More recently, the parametric Generalized Linear Model
(GLM) was used to estimate STRFs based on point-process encoding models [23-25]. Given
that the number of covariates (i.e. predictors) is typically large, most GLM parameter estimates
require some form of regularization or sparse constraint that tends to drive the covariate coeffi-
cients to zero. A large amount of multi-disciplinary research has gone into the development of
sparse models [26]. The basic idea is to represent the data with a transformation using as few
variables as necessary, and thereby, as parsimoniously as possible.

The frequency-time structure of the STRF tends toward grouping or non-uniformity in dif-
ferent areas of frequency-time combinations. One approach to preserving this structure has
been to formulate Bayesian priors for locality and smoothness as shown by Park and Pillow
[25]. The locality constraint is the most similar and relevant to the approach used in the pres-
ent study. Although this approach encourages the emergence of local filters, it would tend to
discourage the emergence of multimodal filters, unless the modes are truly periodic in fre-
quency in time (locality in Fourier domain). Here we present an alternative approach that
extends sparse GLM from action on single covariates to groups of covariates that encourage
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Fig 1. Locations of electrode recording sites within the superior temporal plane. (A) MRI lateral-view rendering of a typical human left hemisphere. The
Sylvian fissure is not visible from the cortical surface. The superior temporal plane was revealed along a section oriented at an oblique horizontal plane (solid
red line with razor blade inset). (B) MRI rendering of superior temporal plane viewed from superior aspect. Light blue shading denotes the location of the
obliquely oriented Heschl’s gyrus. The estimated locations of four recording sites selected from three different subjects (S140, S151, and S178) were
projected to the surface of this illustrative brain and marked with filled red circles. MRI cross-sectional images containing the recording sites were obtained
from sections oriented at an oblique frontal plane (solid green lines with razor blade inset), approximately perpendicular to the long axis of Heschl's gyrus. (C)
Line drawings of MRI cross sections show the position of the recording sites within the grey matter of Heschl’s gyrus for individual subjects.

doi:10.1371/journal.pone.0137915.g001
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local filtering in frequency and time [27]. We demonstrate a form of group sparsity applied to
GLM estimates of STRFs that reduces noise while maintaining the structure within well-cir-
cumscribed boundaries. Although the GLM methods have been used to estimate STRFs in vari-
ous species, this study is the first to apply these techniques to intracranial recordings in the
awake human brain. We found a mixture of narrow, broad, and complex spectral and temporal
tuning in Heschl’s gyrus, that appears to be in contrast to an earlier finding of predominantly
narrow tuning in human Heschl’s gyrus [12].

A number of studies have now shown that spiking activity often covaries with LFP power in
the high-gamma (High-y) range of frequencies (70-200 Hz) [28-31]. High-y power changes
have been observed in human electrocortiograms (ECoG) under a wide variety of behaviors,
including auditory and speech related tasks [32-37]. Here we are interested in how well the
GLM derived STRF from High-y power compares to that of the STRF based on spiking activity.
In contrast to the STA or cross-correlation methods, the GLM also allows for the introduction
of covariates related to the history of neural activity, and therefore factors-out the intrinsic
activity from that of the extrinsic stimulus. We found that in the majority of recording sites,
multi-unit firing-rate history contributed significantly to the observed High-y power during
STRF estimation, which suggests an association between these two signals.

Materials and Methods
Ethics Statement

Human subjects in this study were neurosurgical patient volunteers that had medically refrac-
tory epilepsy and were undergoing chronic invasive ECoG monitoring to identify potentially
resectable seizure foci. All subjects were native English speakers and underwent audiometric
evaluation and none were found to have a hearing deficit. Intracranial recordings revealed that
the auditory cortical areas on the superior temporal plane were not epileptic foci. The Univer-
sity of Iowa and University of Wisconsin-Madison Institutional Review Boards (IRB) approved
the study over the course of data collection and analysis. Informed consent was obtained from
each patient after the nature and possible consequences of the studies were explained to them.
Patients provided their written informed consent to participate in this study. The original IRB
approved, signed Informed Consent Document was placed in our research files. A copy of the
signed Informed Consent Document was given to the patient, and a copy of the signed Record
of Consent form was placed in the patient’s electronic medical record. Patients did not incur
additional risks by participating in this study. The decision to implant the electrodes, as well as
their location, was driven solely by medical considerations.

Neurophysiological Recordings

Details of electrode implantation and data collection have been described previously [9, 11,
38]. In neurosurgical patients undergoing chronic electrophysiological monitoring for medi-
cally refractory epilepsy, a multi-contact electrode can be placed along the long axis of Heschl’s
gyrus to allow clinical electrocorticographic (ECoG) monitoring of the dorsal surface of the
temporal lobe. When hybrid clinical-research depth electrodes are placed within the gyrus it is
also feasible to obtain microelectrode recordings from multiple locations along Heschl’s gyrus.
Simultaneous ECoG recordings were obtained from 14 microwire contacts distributed along
the length of a hybrid-depth electrode, stereotactically implanted into Heschl’s gyrus, and
roughly parallel to its long axis [13, 39]. ECoG signals were amplified, filtered (2.2-7500 Hz,
3dB-corners, 6 dB/octave rolloff), digitized at a sampling rate of 12,207 Samples/sec, and stored
for subsequent offline processing that included action potential sorting [40, 41] and extraction
of continuous High-y band power. The hybrid-depth electrode remained in place up to two
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weeks during continuous clinical ECoG monitoring. Experiments were carried out in a dedi-
cated electrically-shielded suite in The University of Iowa General Clinical Research Center.
The room was quiet, with lights dimmed. Subjects were awake and reclining in a hospital bed
or an armchair. Stimuli were presented in a passive listening paradigm.

Anatomical Localization

Reconstruction of the anatomical locations of the microwire recording sites in the superior
temporal plane, together with their detailed positions within the cortical gray matter, was per-
formed using software developed in house [8, 9, 42]. The surface of the hidden supratemporal
plane can be visualized by digitally removing the frontal and parietal lobe brain regions overly-
ing the fissure. This provides a surface view of Heschl’s gyrus which is oriented obliquely
within the supratemporal plane, with the most superficial portion terminating in the anterior
portion of lateral superior temporal gyrus. In brief, recording site locations were first manually
identified using post-implantation magnetic resonance (MR) images, and subsequently
mapped onto preoperative MR scans using non-linear warping (Catmull-Rom spline interpo-
lant). Both the trajectory of the depth electrode and the locations of microwire recording sites
were then projected onto an MR rendering of the superior temporal plane as viewed within the
Sylvian fissure (Fig 1B). Serial MR cross-sectional images (oblique coronal plane, perpendicular
to the long axis of Heschl’s gyrus) containing each of the recording sites were also obtained and
outline drawings of these sections indicated each contact’s location within the cortical depth
(Fig 1C).

Stimulus Generation and Delivery

The term gammatone was introduced by Aertson and Johannasma [43] originally inspired by
vocalizations of the grassfrog. A similar function was used to parametrically describe the
impulse response of the auditory nerve single-units in cat [44]. Patterson and colleagues went
on to demonstrate that the function was representative of psychophysical auditory filters [45].
A gammatone filter is defined as

at"'cos(2nF t + @)
g(t) = e2nbwt (1)

where t is time, a = 1 is gain, n = 1 is the filter order, F, is the center frequency, ¢ is phase.

The bandwidth (bw) was scaled by 1.019 of the equivalent rectangular bandwidth (ERB: an
approximation to the bandwidths of the filters in human hearing at each point along the
cochlea) defined as

1

s = | (5= )+ o o)

The ERB parameters were based on recommendations for human auditory filters Q,,, =
9.26447;bWmin = 24.7 by Glasberg and Moore [46]. Gammatone stimuli have been used previ-
ously for estimating spectral receptive fields [21, 47].

Our implementation of an auditory filter-bank (Fig 2) was based on a the human cochleoto-
pic map derived by Slaney [48] where each center frequency (Fig 2A) was computed by

FC(”FC) = _Qear bwmin + (Fhigh + Qear bwmin)
Xexp{nFc (log(Flow + Qear bwmin) - 10g<Fhigh + Qear mein))/Nfrequency}

(3)
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Fig 2. Gammatone stimuli. A) Human cochleotopic map of center frequencies from 100 to 11,234 Hz. B) Gammatone signal at 1 kHz center frequency. C)

Gammatone filter bank with 50 channels.

doi:10.1371/journal.pone.0137915.9002

and np, is the Fc index, Ny, is the total number of filters, Fy,,, is the lowest and Fy,,g, is the
highest frequency (Nyquist) in the filter bank.

The STRF can be viewed as a definition of the stimulus-response characteristics of a neuron,
and specifically as a linear filter impulse response that encompasses each frequency channel of
interest. The goal then is to mathematically characterize estimates of the coefficients of a bank
of filter channels. In this case, STRFs were obtained by randomly presenting gammatone blips,
equally spaced on the cochleotopic scale noted above. Here, tone blips for each of Npequency =
50 frequencies were presented according to a Bernoulli process xs~ B(1,p) with p = .02 for each
blip onset (i.e., each 50 ms interval). Given the small p, the process could also be considered
Poisson. The expected value of the number of gammatone blips across all frequencies was a
rate of 20/s. The length of the impulse response for each frequency blip was 2 seconds (T = 40).
The stimulus-state matrix x(t) therefore determined whether a particular gammatone blip was
turned on or off at any given 50 ms interval over a total of 6000 intervals or 5 minutes. The
acoustic stimulus y(f) was generated using Gaussian noise excited gammatone blips in each fre-
quency channel, and then aggregated across channels.

The stimuli were delivered to both ears via insert earphones (ER4B, Etymotic Research, Elk
Grove Village, IL) that were integrated into custom-fit earmolds and presented at a comfort-
able level, about 30-50 dB above hearing threshold. Stimulus delivery and data acquisition
were controlled by a TDT RP2.1 and RX5 or RZ2 real-time processor (Tucker-Davis Technolo-
gies, Alachua, FL).

ECoG Processing

Prior to offline processing, ECoG data was pre-processed to remove large-amplitude time-tran-
sients, followed by removal of line noise according to an adaptive-filter procedure. Time-tran-
sients were identified by iteratively applying the z-score transform to raw data, at each step
discarding values exceeding 10 until no further values were discarded. The discarded signal at
removed transients was smoothed with a hamming window. Line noise suppression applied a
threshold to the coefficients of a time-frequency decomposition, discarding those above the
threshold and calculating the noise-filtered signal through the inverse transform. The time-fre-
quency decomposition employed a frequency-domain implementation of complex demodula-
tion [49], chosen for its efficiency and minimal susceptibility to spectral leakage artifacts as
compared to alternative decompositions that rely on moving time windows (details to be pro-
vided in Kovach, submitted). In brief, line noise peaks in the spectrum were identified using
overlapping 0.25Hz bands and time averaging. The average was log transformed and fitted
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with an 8" order polynomial, giving a baseline power at each frequency. Line-noise contami-
nated baseline values were discarded after normalization amplitude and kurtosis thresholding.

Sorting single and multi-unit activity. Action potentials (spikes) for single neurons
(units) or multi-units were identified using the continuous high band-width, high-impedance
recordings from microwire contacts sampled at 12,207 Samples/sec. The impedance of micro-
wire electrode sites was obtained in only one subject, because University of Iowa hospital medi-
cal engineering only permitted that measurement in this single case. The in-vivo impedance
for the 14 contacts in this single subject ranged from 100 to 900 Kohm.

Candidate spikes were selected by amplitude thresholding, decomposed using wavelet anal-
ysis, and clustered using the algorithm developed by Quiroga et al. [40, 41]. Detailed descrip-
tions of the methods used in his algorithm were presented in these and earlier manuscripts
[50]. Briefly, an empirical voltage threshold was employed initially to identify potential candi-
date spikes, followed subsequently by a clustering of similar waveforms that depended on a sin-
gle GUI controlled parameter (so-called paramagnetic temperature). At low temperatures, all
candidate spikes will be considered as a single cluster, alternatively at high temperatures, the
data are partitioned into several clusters with only similar candidate spikes in each. In this
unsupervised clustering step, a wavelet analysis based on a Haar wavelet was employed to
decompose candidate spikes into a nine-dimensional feature space. In our implementation,
spikes were initially clustered with similar shapes to the same cluster using this unsupervised
stochastic nonparametric superparamagnetic approach [50]. This automatic procedure was
followed by an iterative manual adjustment of the threshold and temperature in order to
empirically maximize the peak-to-peak amplitude of a single cluster that was used for further
analyses. Generally, these single clusters with the largest peak-to-peak amplitude often exhib-
ited a focused STRF where the discharge rate outside the focal area was minimal or zero. In
other clusters, however, this was not the case as evidenced by substantial spontaneous dis-
charges and/or the presence of foci where the relative discharge rate was suppressed. Rarely, a
2" cluster was identified by a substantially larger peak-peak amplitude and shape. Our iterative
manual procedure resulted in 139 multi-unit clusters together with only 14 cases of a 2" sin-
gle-unit cluster. Examples are shown in Fig 3. Spike-counts were obtained by binning spike
times into 25 ms intervals.

High-y band extraction from local field potential. The sample of ECoG recorded from a
single electrode contact is often termed the local field potential (LFP) since the neural sources
contributing to the potential have a restricted spatial extent [51]. LFP power in the High-y
range of frequencies has been hypothesized to represent the average firing of neurons near the
recording site but weighted according to their distance from the electrode [28-31]. To extract a
High-y band signal from the LFP, the latter was down-sampled to 400 Samples/sec, and then
filtered using a finite-impulse-response filter, band-passed between 70 and 150 Hz, and applied
in the forward and reverse directions. A power signal (High-y power) is then obtained from the
squared magnitude of the Hilbert-transform of the High-y band waveform, and then down-
sample to 40 Hz to be in time sync with the binning of spike-counts The High-y power signal is
used for STRF estimation as detailed below.

STRF estimation

Spike Triggered Average (STA). A traditional STA or reverse correlation was performed
on all stimulus x/(f) and response data (t). The formal mathematical foundation for the STA
used here is based on work by Krausz (1975), who extended the necessary and sufficient statis-
tics of the input space from being Gaussian to it being Poisson. In the present case the input
stimulus-state matrix x((t) is effectively Poisson given the small p in the Bernoulli process.
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Fig 3. Generalized Linear Model (GLM) schematic. Stimulus-state matrix (A) is convolved with the Poisson estimated STRF, and exponentially
transformed to generate a Poisson counting process. The corresponding stimulus Log-Spectrogram shown in lower panel (B). Alternatively, the stimulus-
state matrix is convolved with the Log-normal estimated STRF and generates an exponential transformed High-y process. Either model can include feedback
of the spike-count history. Representative sorted multi-unit clusters from the same LFP recording are shown in the bottom right insets.

doi:10.1371/journal.pone.0137915.9003
Formally, the linear kernel defines the STRF

STRF,(t) = E[r(t)x,(t — 7)] (4)

where E[-] is the expectation operator at each frequency and 7 is delay with respect to the cur-
rent value of time (t).

STRFs based on Generalized Linear Models (GLM). GLM:s have generated significant
interest and progress in the study of neural encoding and decoding of perceptual and decision-
making information [24, 52-56]. These advancements include the use of GLMs to estimate
STRFs [23, 25, 57] based on regularized likelihood functions. STRFs computed from single or
multi-unit recordings have historically been estimated using some variant of spike-triggered
averaging such as reverse correlation or normalized-reverse correlation. However, these esti-
mates tend to be noisy, and suboptimal in terms of using Gaussian assumptions rather than
point or counting processes.

We considered two GLM formulations to estimate the STRF coefficients (841)) The first
assumes that the spike counting process is an inhomogeneous Poisson process characterized by
its conditional intensity function (CIF)

Nfrequency T—1 H

Ao (t{H,) = expq By + Z Zﬁf('c)xf(t -1)+ Z“h"(t —h) (5)
=1 =0 h

=1

where x(t) corresponds to the gammatone-state convolution matrix. The spike count history r
(t—h) was added to the GLM in order to factor in the contribution of past spiking activity to the
expected spike-count, and H; denotes the conditioning on spike history.

The second formulation used to estimate the STRF coefficients was based on the High-y
band response signal. The High-y power signal is positive and skewed, consequently a log
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transformation was used to obtain a more symmetric response distribution

Nirequency T—1 H
EllogHighy(t)|H,) = B, + > Y _ B(0)x(t — 1)+ > oyr(t —h). (6)
f=1 =0 h=0

Again, x((t) corresponds to the gammatone-state convolution matrix. The spike count history r
(t—h) was added to the GLM to account for the contribution of current and past spiking activity
to the high-gamma signal. This serves two goals. First, it partitions out the intrinsic extracellu-
lar changes in High-y when a spike is observed and may include other changes in the local
ensemble that might be related to spiking activity. Second, inferential statistics of the spike his-
tory contribution can be performed using standard hypothesis testing relative to the reduced
models (i.e. Eqs 7 & 8)

Nirequency T—1

Acwe(t) = eXp{ﬁo + D> Blox (- f)} (7)

f=1 =0

and

Nfrequency T—1

Ellog Highy(1)] = B, + > > B (0)x(t — 7). (8)

f=1

We compared the fit of the full spike counting process model (Eq 5) and corresponding
reduced model (Eq 7) using the difference of deviances statistic AD = Dgrrp—DsTRE+spike history»
which has a sampling distribution that is well approximated by a * distribution with the
degrees of freedom equal to the number of spike history covariates. An F-statistic was also
computed to test the hypothesis that the full High-y process model, including the spike-counts
(Eq 6), differs from the corresponding reduced model without spike-count history (Eq 8), with
the sampling distribution F(Nypike history> Nobservations~Ncovariates) [58]-

Sparse Regression with GLM. The now classic LASSO [59] method for regression models

. . n . . . .
using an L1 norm regularizer || X||, = E ., |x;| for covariate selection and coefficient shrink-
i

age has generated a great deal of research and variations [26, 27, 59-64].

The L1 norm, as well as other variants, can be applied as a regularizer or penalty to both
general (Gaussian) and generalized linear models. As the weighted regularizer A increases, the
number of zero-valued coefficients increases monotonically [60], leading to possibly only few
nonzero-valued coefficients depending on the sparsity of the solution. The LASSO estimator is
defined as

p; = argmin (=I(f) + A[|5]],) ©)

PERP

where I(-) is the Poisson log-likelihood function of the responses () and is equivalent to least-
squares in the Gaussian case. The p-dimensional of estimated coefficients for a given value of 1
is denoted f3,.

The problem in all of these cases is how to best select the weighting parameter (1) of the reg-
ularizer. In most cases A is chosen by criteria aimed at maximizing prediction accuracy under
constraints. These are generally either Akaike or Bayesian information criteria based, or
through some form of cross-validation. We are primarily interested in selecting STRF coeffi-
cients based on null hypothesis rejection, rather than optimizing its prediction accuracy. One
alternative approach to criteria-based or cross-validation based selection of A is a so-called dis-
covery-based selection using multiple permutations of the response variable [65-68]. The idea
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is to select a conservative model that would tend to include no covariates in the model under
permutation of the response; that is, when the association between covariates and responses
have been destroyed by the random permutation process.

The permutation process was performed as follows. The electrophysiological responses

were shuffled and the covariates /3, are estimated using Eqs 5 and 6 for a range of regularizer

weights 4 that insures that at some point along this interval all i , s zero out. The number of
degrees-of-freedom corresponds to the number of non-zero coefficients in the GLM solution
[62]. So, zeroing out all coefficients represents zero degrees-of-freedom. In cases when an inter-
cept is included in the model it is spared any shrinkage, and would therefore always have 1
degrees-of-freedom. The value representing the smallest regularizer that zeros out all of the
free covariates is then recorded. This process is repeated with a large number of repetitions to
generate an empirical null distribution of minimum A. Fig 4 shows an example of 200 repeti-
tions of the GLM solution, degrees-of-freedom as a function of A values. The degrees-of-free-
dom always declined monotonically as A increases until the minimum A (0 or 1) degrees-of-
freedom is reached. The distribution of minimum A s is shown above the repetition matrix
with the median value indicating a A value of approximately 80. This so-called optimal value of
A would then be selected for estimating the betas for the true electrophysiological response. In
contrast to the cross-validation method, the discovery-based method is rooted in bootstrapped
inferential statistics with advantages that preserve family-wise error rates. The intuition is that
the selected lambda reflects the expectation of the null distribution for a chance only STRF
structure. Observed structure having non-zero coefficients would be unexpected under the null
permuted distribution.

Group Lasso GLM. Although the GLM is constructed assuming independence between
frequency channels, this in fact is not the case given how frequency is mapped onto the mam-
malian cochlea. Dependencies exist across both cochleotopic mapped frequencies as well as
time. To address this condition, frequency-time local neighborhoods or groups were con-
structed to inform the regularized GLM to treat frequency-time groups as possibly sparse while
preserving the internal structure of regions of the STRF. We constructed a 50 (frequencies) by
40 (time-bins) element grid with 4 x 4 element labeled groups for a total of 130 groups, as well
as a single group assignment of the spike-count history. A 4x4 patch would represent about a 4
mm linear interval on a 35 mm human cochlea and 100 ms interval of time. The solution for
the regularized GLM with spike count history included one additional group label for these
covariates.

We used a variant of sparse regression methods known as the Group Lasso[27]. The estima-
tor is defined as

B, = argmin (—l(ﬁ) iy |Iﬁg|2> (10)

BERP

where again I(-)is the Poisson log-likelihood function and is related to least-squares in the

Gaussian case. The group-wise L2 norm || X||, = (Z; x2|)"*

. in Eq 10 is a form intermediate
between and L1 and L2 norm. It encourages that either all of the group members of 3, are
equal to 0 or none are. The L2 norm encourages some shrinkage within the group S,, but they
will not shrink to 0.

The Group Lasso solutions were obtained using interative shrinkage-thresholding algo-
rithms (ISTA). The estimates of the STRF f3; was based on the implementation of proximal
(ISTA) methods in a Matlab toolbox SPAMS: SPArse Modeling Software [69]. These methods

solve linear inverse problems, which are an extension to the classical gradient algorithm [70].
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Rsesponse Permutation #
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(number of nonzero coefficients)

Fig 4. Discovery-based selection of lambda (A). Discovery-selection by permutation of the response r(t) to
identify the minimum lambda necessary to reduce the degrees of freedom to zero. Empirical distribution
shows the histogram of minimum A over 200 repeated permutations and serves as the null distribution. The
red arrow denotes the median of the distribution that we designate as the optimal A.

doi:10.1371/journal.pone.0137915.9g004

They can solve a large class of sparse approximation problems with different combinations of
loss and regularizations, and therefore represent unified methods for solving L1, Group L1/L2
penalized GLMs, both Poisson and Log-Normal.

Results and Discussion

Spike-count STRF from STA and GLM with Independent (L1) and Group
(L1/L2) penalties

A traditional STA (reverse correlation) was applied to the input gammatone stimulus-state
matrix and output spike counts from Heschl’s gyrus recordings to estimate STRFs. The Poisson
discrete stimulus-matrix sidesteps the need for STA normalization [71]. A representative
example of an STRF derived from reverse-correlation is shown in Fig 5. for one representative
electrode contact. The STREF structure is well-defined in frequency-time with evidence of sup-
pression that precedes an increase in discharge rate.

We examined the effects of titrating the penalizing weight A from low values to high values
on Spike-count STRFs. As the sparsity inducing norm was weighted more heavily, a greater
number of covariates are zeroed out(i.e. removed) from the solution. This occurred universally
regardless of the type of norm, L1 or L1/L2, on the spike-count response variable. This can be
observed in Fig 5B and 5C as a progressively less noisy STRF emerges as 4 increases the effect
of the penalties. At high values of A the coefficients are completely zeroed out. The right panel
shows the STRF at the optimal 1 selected by the permutation method.
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Fig 5. STRF estimated from STA and from GLM. (A) STRF from STA. Stimulus center frequencies ranged from 97 to 11,234 Hz. Spike-times were binned
at 1 ms resolution. (B) Evolution of Spike-count STRF from GLM as a function of increasing A for L1 norm LASSO: (a) very low values of A lead to noisy
estimates, (c) at very high values of A all covariates are zero valued, (d) at optimal value of A chosen from discovery-based selection. (C) Evolution of Spike-
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consistently improved the prediction of validation data over non-regularized GLM prediction of expected spike-counts. Correlation coefficients are 0.133 with
regularization (red) and 0.066 without regularization (gray). Neural responses from S178, electrode contact #4.

doi:10.1371/journal.pone.0137915.9005

The L1 norm assumes that every cell in the STRF is independent and therefore targeted uni-
formly for deletion. By comparison, the L1/L2 norm targets local group structure for deletion
or retention. In either case, the permutation method of A selection identifies an STRF structure
that appears as a less noisy representation compared to that of the reverse correlation STRF
shown in Fig 5A.

The predicted spike-count was computed on validation data following estimation of the
STREF using the Poisson-GLM (Eq 5) on a training data set (Fig 5D). The recorded spike-counts
were smoothed forward and backwards using a second-order lowpass Butterworth filter with a
cutoff of 6 Hz. Predicted spike-counts were generated with (4 = 132) and without (4 = 0)
sparse-group regularization, demonstrating the predictive advantage of the sparse-group GLM
approach over classical GLM regression.

Independent (L1) and Group (L1/L2) penalties on High-y power STRF. High-y power
(70 to 150 Hz) has been observed in intracranial LFPs and ECoGs in the human brain under a
number of experimental conditions. The relationship between High-y power and spiking neu-
ral activity is complex, and represents an active area of study[28, 32, 72, 73]. A wide range of
spike-gamma coupling has been observed in human auditory cortex, primarily reflecting the
degree of correlation between adjacent neurons [74]. A number of recent studies have shown a
tight coupling of High-y power and spiking activity, suggesting that High-y may reflect a neural
correlate of population firing rate [30, 72, 75, 76].

In primary auditory cortex of the non-human primate, there is good correspondence
between the pure-tone spectral sensitivity of multiunit activity from middle cortical layers and
higher gamma frequency band activity in more superficial laminae [72]. In contrast, lower fre-
quency bands of the LFP had the poorest correlation with multiunit pure-tone tuning. Whether
this organizational scheme is applicable to non-core auditory fields, like those on the lateral
surfaces of non-human primates and humans, is largely unknown and yet to be determined. In
our present studies, it has not been possible to obtain either multiunit or cluster data from loca-
tions on the lateral surfaces and, therefore, we cannot directly address this issue. High-y and
spiking activity have been shown to be highly correlated in area V1 of the macaque when pre-
sented with a movie with both signals tuned to visual features. High-y and spiking activity have
been shown to be highly correlated in area V1 of the macaque when presented with a movie
with both signals tuned to visual features. High-y power signal also carried the maximal visual
information about the movie [77]. These results are consistent with the view that High-y and
spiking activity might arise within the same localized cortical ensemble, with feedback of spik-
ing pyramidal neurons providing one source of the High-y power. This would be consistent
with the idea that spiking activity reflects the output of large pyramidal neurons, and LFPs rep-
resenting area input, such as synaptic potentials, and slower local cooperative activity [78]. We
have previously shown that event-related High-y power reflects a functional organization of
latencies in human auditory cortex [33] and spectral organization [34].

STRFs derived from low frequency band (2 to 40 Hz) LFPs are much more broadly tuned
than spike based auditory cortex STRFs in the anesthetized cat [47], and similarly in primary
auditory cortex of the guinea pig [79]. However we observed STRFs based on High-y power to
be comparable in both frequency and temporal tuning to STRFs based on spiking activity.
STRFs based on spike responses and High-y power are shown for 3 electrode contacts recorded
in Heschl’s gyrus of 3 subjects. STRF differences between the 3 rows correspond to the L1
norm spike-count STRF, the L1/L2 group spike-count STRF, and the L1/L2 group High-y
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power STRE. The strength of applying the grouped penalized GLM (Fig 6B) compared to the
individual covariate removal by the L1 regularizer (Fig 6A) is evident in the preservation of
structure internal to the STRF. High-y power STRFs based on a grouped regularizer are shown
in Fig 6C. Although some differences between spike based and High-y emerge, such as a lack of
the identified early suppressed area evident in the spike-count STRFs for contact #4, they are
remarkably similar in terms of their locations and tuning in frequency and time. Contact #14
was striking in that, although the tuning bandwidth is similar between spike-count and High-y
power, a complex pattern of enhancement and suppression was revealed; suggestive of a spec-
tral motion detector for the STRF based on High-y power.

Contributions of spike-count history to spike-count and High-y power STRF estima-
tion. Given the strong evidence that High-y power covaries with spiking activity [28-31], we
investigated the degree to which spiking activity covaries with High-y power when driven by
our gammatone stimuli. The STRFs based on these two different signals are similar in structure
and extent, suggesting a similar underlying mechanism. The GLM provides a method for parti-
tioning out the covariance of the extrinsic input stimulus from that of the intrinsic contribu-
tions of the spiking activity, and it’s history.

The group sparse STRFs derived from spike-count alone is shown in Fig 7A and 7B. The
overall structure, latency and center frequency are again similar to one another. Notably, the
internal structure of the High-y power STRF is graded and somewhat more sustained com-
pared to the spike-count STRF. We were interested in the contribution of the simultaneous
spike-count, recorded from the same electrode, as well the contribution of the spike-count his-
tory. We used the group sparse GLM with added covariates for the spike-count history, which
were treated as a single, unique group. The covariate coefficients are shown in Fig 7B and 7E,
where the index corresponds to time bins advanced back in time (350 ms). The permuted spike
counts included in the GLM were replicated 100 times, and the 95% central range of the empir-
ical null distribution are shown with an overlaid red ribbon.

The contribution of past spike-counts to both the driven spike-counts and High-ypower sig-
nal were reliable back to about 200 ms. As expected, the spike-count covariate weights trended
downward back in time. The difference in deviance statistic AD and F-statistic were computed
to test the hypothesis that the full models, including the spike-counts (Eqs 5 and 6), differs
from the reduced models without spike-count history (Eqs 7 and 8); AD (15) = 93.06, p(false
discovery rate) < 0.0001 for the driven spike-counts and F(15, 10280) = 28.58, p(false discovery
rate) < 0.0001 for the High-y power signal [58]. In 60 percent of the 132 spike-count record-
ings and in 85 percent of the 134 High-y power recordings, introducing the spike-count history
significantly improved the model (Fig 7C and 7D). This feedback of spiking activity built into
the GLM could reflect the local spiking ensemble behavior influencing the LFP dynamics [31].
Notably, both STRFs become somewhat more localized in time when the spike-count history is
regressed out. The time lag was also consistent with LFP and spike observations in non-human
primate primary visual cortex in response to semi-natural movies [28].

Relevance to human HG frequency tuning. We are aware of only two published studies
that examined single- or multi-unit frequency tuning in human auditory cortex [12, 13].
Coupling between intracranial LFP and spiking activity in human auditory cortex has been
reported in response to an audio-visual movie [74]. The selectivity to naturalistic stimuli was
described as complex with both broad and narrow tuning, however a detailed analysis of fre-
quency tuning was not performed. Our analysis of Heschl’s gyrus electrophysiology also sup-
ports similar complexity in spectrotemporal tuning. Rather than random tones or naturalistic
sounds, we used gammatones that were uniformly mapped onto the human cochlea. Using
advanced statistical modeling with sparse constraints we have revealed STRFs that are less
noisy than that which could be estimated from traditional reverse-correlation. Furthermore,
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doi:10.1371/journal.pone.0137915.9006

PLOS ONE | DOI:10.1371/journal.pone.0137915 September 14,2015 15/283



el e
@ : PLOS ‘ ONE Human Auditory Cortex Spectro-Temporal Receptive Fields

B
Spike sparse GLM with Spike-count History
A Spike-Rate STRF: L1/L2 norm: 4x4 groups £ o1 =93.06, p <0.0001
8 0
Without Spike-count History ig With Spike-count History High :E% 0.1
11234 = 005 ] ]
S 111
6725 2
é,foos
) 3952 = o
5 0 2 4 6 8 10 12 14
? 2086 o History (bins)
[0} Spike history p-values (N = 138)
g I : :
£ 1282 5 .
2 oot {10 Y .
679 3 osf{ | S
g . .
317 307
2 re : :
97 LY U T SR SRR
100 200 300 400 500 Low 100 200 300 400 500 Low N : :
Post-Stimulus Time (msec) Post-Stimulus Time (msec) O os X .
0 0.2 0.4 0.6 0.8 1
p-values
E High-y power sparse GLM with Spike-count History
0.2
D High-y power STRF: L1/L2 norm: 4x4 groups g F(15, 10280) = 28.58, p < 0.0001
S o015
. . . =
Without Spike-count History ig With Spike-count History High g
11234 s o
: [ I
8 005
ULl
o te11]
— 3952
i -0.05
- 0 2 4 6 8 10 12 14
& 2286 History (bins)
% 1 Spike history p-values (N = 134)
£ 1282 gt
679 e
317 [
% d B S
97 L
100 200 300 400 500 Low 100 200 300 400 500 Low 0.6 e
Post-Stimulus Time (msec) Post-Stimulus Time (msec) D S
05 0 02 04 06 08 1

p-values

Fig 7. Spike-Count History contribution to spike-count and High-y band power STRFs. Neural responses from S178, electrode contact #11.
Anatomical location shown in Fig 1. (A) Spike-count STRF estimated with L1/L2 sparsity-inducing norm and group structure GLM with Poisson distribution to
link responses to predictors, without and with 350 ms spike-count history. (B) Magnitude of GLM spike-count history coefficients decreases with increasing
history (i.e. time elapsed since current spike-count prediction). Shading represents 95% central range of null distribution estimated from permuted random
shuffling of responses. (C) Cumulative distribution of p-values testing the contribution of spike-count history to current spike-count activity driven by
gammatone stimuli. All p-values were adjusted for false discovery rate. (D) High-y power STRF estimated with L1/L2 sparsity-inducing norm and group
structure GLM with Poisson distribution to link responses to predictors, without and with 350 ms spike-count history. (E) Magnitude of GLM coefficients
decreases with increasing spike-count history (i.e. time elapsed since current High-y band power prediction). (F) Cumulative distribution of p-values testing
the contribution of spike-count history to current High-y power activity driven by gammatone stimuli. All p-values were adjusted for false discovery rate.

doi:10.1371/journal.pone.0137915.9007

the GLM formulation allows a natural introduction of both intrinsic (spiking activity) and
extrinsic (auditory) stimulation.

Unlike Bitterman et al. [12] we generally observed both broad and relatively narrowly tuned
STRFs based on a similar uniformly tiled spectrotemporal stimuli. Our stimuli were presented
as a random Bernoulli sequence, which by chance in any 50 ms interval in time, could contain
between zero and six simultaneous gammatones. It is perhaps the case that our acoustic
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stimulus had characteristics that resembled natural acoustics to a greater degree than that of
the Bitterman at al. synthetic stimuli. Complex patterns were observed in both spike-count and
High-y power based STRFs (Fig 6). Contact #14 (Fig 6C, right panel) was localized to the ante-
rolateral Heschl’s gyrus, and can be interpreted as a non-core region of human auditory cortex
[33]. High-y power in this area may provide a window into higher-order network activity,
which was not captured by spike-counts.

Although their sample size was small (47 measurements), Bitterman and colleagues
reported that about 87% of their units exhibited narrow, well-circumscribed response areas,
and that fully 60% responded reliably to only a single frequency out of the 6 or 18 tested tones.
The average bandwidth was a remarkable 0.08 octave with best frequencies ranging from 250
to 2 kHz. Their results argue for a view of human cortical frequency tuning that is substantially
narrower than that typically reported for the human periphery (0.16 octave) and auditory cor-
tex in animal models. By contrast, our estimates of octave bandwidth (minimum = 0.21, maxi-
mum = 2.26, median = 0.25) from clusters is more in-line with those from human periphery
(0.27 octave) and non-human mammals (0.3 to 1 octave). Our sample size in comparable
to that of Bitterman, however, estimated best frequencies in Hz (minimum = 154, maxi-
mum = 9770, median = 2576) do indicate that different populations were sampled in the two
studies.

Relationship of temporal processing derived auditory fields to STRF frequency tun-
ing. This study analyzed the responses from Heschl’s gyrus localized electrode sites obtained
from 5 subjects. A single hybrid depth electrode containing 14 microwire contacts was
implanted in each subject from which recordings could yield spikes and local field potentials.
Here we illustrate the locations of recording sites along the length of a depth electrode within
Heschl’s gyrus, and provide estimates of best-frequencies and spectral bandwidth that were
obtained from their corresponding STRF. A previous report [8] from our laboratory focused
attention on the temporal processing of repetitive acoustic transients by auditory core and
non-core fields of Heschl’s gyrus. In that study, the amplitude of the average evoked potential
(AEP) elicited by click-trains declined from a maximum value at sites located in posteromedial
Heschl gyrus to a minimum value for sites located successively more anterolaterally. Together
with a correlated decrease in the frequency-following component of the AEP, this spatial
response pattern was used as evidence for a transition from core to lateral belt (i.e. non-core)
auditory fields. We employed the method of Brugge and colleagues [8] to locate this laterally
located transition region. The mapping for 3 of these cases (L140, L145, R153) are also reported
in their previous study (see their Fig 3). One subject’s mapping (R151) is excluded from both
reports since many of the recording sites in that case were localized outside of Heschl’s gyrus.
Fig 8 illustrates the resulting transition location (solid red line) for these 4 subjects as depicted
within the posteromedial-to-anterolateral recording locations along the long axis of the
Heschl’s gyrus. The trajectory of the electrode and locations of microwire contacts in each sub-
ject are shown (1st column) projected to the surface of the supratemporal plane. This spatial
mapping layout was also used to examine the distribution of best-frequency (BF) and spectral
band-width (BW) as estimated from the STRF obtained at that location using both spike clus-
ters (2 column) or High-y (3" column) response metrics. A Pearson product-moment corre-
lation coefficient was computed to assess the relationship between BF as estimated from the
STREF obtained using spike clusters and High-y response metrics. In each of these 4 subjects
there was a positive correlation between the two variables (L140: r = 0.88, n = 8, p = 0.003;
L145:r=0.79,n =15, p = 0.0003; R153: r = 0.84,n =9, p=0.004; L178:r = 0.84,n = 11,

p = 0.0002).

For all subjects, the highest BFs occupied locations in the posteromedial half of the sampled

area. Furthermore, BF and BW typically demonstrated a change in values at or near the lateral
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doi:10.1371/journal.pone.0137915.g008
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transition region (solid red line) derived from click-rates. The lateral transition region changes
in BF were often marked by an abrupt decrease in value and/or evidence of two separate BW
spectral ranges where the additional range occupies the lower value. Brugge and colleagues [8]
found no evidence from temporal processing to support a 2nd transition region located at an
extreme posteromedial position in Heschl’s gyrus. In 3 of the current subjects (L140, R153,
L178), BF values from recordings at this extreme (e.g. contacts, 1, 2, or 3) are seen to be lower
than those at the next more anterolateral contacts. One interpretation of this pattern is that the
tonotopic gradient reverses at the location of highest BF.

In reviewing results from non-human primates and other animals, Schonwiesner and col-
leagues [80] pointed out that borders between core fields are often marked by such reversals,
whereas borders between core and belt fields are often not associated with a reversal in the
tonotopic gradient. In this regard, the abrupt change in BF demonstrated here near the lateral
transition region may reflect the latter situation and signal a transition to a non-core field. A
recent synthesis of findings from human fMRI, myeloarchitectonic [80], and other functional
criteria suggest that a single best-frequency gradient within a relatively small, circumscribed
region around the middle part of Heschl's gyrus represents the only coherent tonotopic gradi-
ent; presumably that of the primary auditory cortex [80]. Together with our findings from the
temporal processing of acoustic transients, these results provide support for the interpretation
of one core field with a low-to-high progression of BF that corresponds to a posteromedial to
anterolateral progression of recording sites.

There are several limitations of the group sparse GLM approach. First, the use of non-over-
lapping all-or-none groups generates STRF patterns that can appear truncated. The first step
towards addressing this limitation is the construction of over-lapping groups, that could better
incorporate biological properties [5, 8, 9]. This would have the effect of reducing the grouped
edges, while preserving the emergent complex and multi-modal structure of the STRF. Second,
would be to apply the group sparse STRF method to natural auditory stimuli, such as speech.
The filtering of continuous speech with the derived bank of gammatone impulse responses
may provide important new insights into cortical processing not revealed with less naturalistic
stimulus sets. This would come at the cost of abandoning the known, structured randomness
of the stimulus, but unlike traditional reverse-correlation is not necessary when using the GLM
approach [23, 81].
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