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A B S T R A C T   

Crude oil futures prediction plays an important role in ensuring sustainable energy development. 
However, the performance of existing models is not satisfactory, which limits its further appli-
cation. The poor performance mainly results from the lack of data mining of economic models and 
the poor stability of most data analysis models. To solve the above problems, this paper proposes 
a new dynamic model ensemble transformer (DMEformer). The model uses three different 
Transformer variants as base models. It not only ensures the difference of base models but also 
makes the prediction results of base models not to appear disparity. In addition, NSGA-II is 
adopted to ensemble the results of base models, which considers both the modeling stability and 
accuracy in the optimization. Finally, the proposed model adopts a dynamic ensemble scheme, 
which could timely adjust the weight vector according to the fluctuation of energy futures. It 
further improves the reliability of the model. Comparative experiments from the perspective of 
single models and ensemble models are also designed. The following conclusions can be drawn 
from the experimental results: (1) The proposed dynamic ensemble method can improve the 
performance of the base model and traditional static ensemble method by 16% and 5% respec-
tively. (2) DMEformer can achieve better performance than 20 other models, and its accuracy and 
MAPE values were 72.5% and 2.8043%, respectively. (3) The proposed model can accurately 
predict crude oil futures, which provides effective support for energy regulation and sustainable 
development.   

1. Introduction 

1.1. Background 

As countries around the world pay more and more attention to environmental protection, carbon emission control is favored by 
scholars and governments [1]. At present, many countries have put forward different carbon emission control strategies. China has set 
the goal of “peaking carbon” by 2030 and “carbon neutrality” by 2060 [2]. EU puts forward an energy system ensemble strategy. 
However, it would be a positive choice starting from the economy to achieve carbon emission control. The government’s 
macro-regulation of the carbon trading market is an effective means to reduce carbon emissions [3]. 
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To grasp the market trends and analyze the trend of energy prices is the premise of accurate regulation. At present, many scholars 
have put forward a variety of energy price forecasting methods from economic and data analysis perspectives. However, the carbon 
trading market contains many influencing factors, including carbon production, new energy, national policies, social and economic 
conditions, and so on [4]. Complex factors increase the difficulty of energy futures price prediction and the accuracy and stability of 
most energy price prediction methods are not satisfactory. 

Energy futures price forecasting has statistical methods based on economic theory and intelligent algorithms based on data analysis 
[5]. Statistical forecasting methods based on economic theories include the information theory model, Bayesian model, Pooled Mean 
Group (PMG) panel ARDL estimation method [6], and so on. However, this kind of method cannot fully analyze the information from 
the data. Intelligent prediction methods based on data analysis mainly include machine learning, deep learning, ensemble learning, 
and so on [7]. Several models like LSTM [8], MOPSO [9], SRU [10], and so on are proven to be useful. However, there is still room for 
improvement in terms of the efficiency and stability of the models. The recently proposed Transformer-based models have been proven 
to be more effective than traditional deep networks in natural language processing and time series forecasting [11]. Thus, combining 
ensemble strategy, this paper explores a Transformer-based ensemble energy timing forecasting method to provide accurate and 
reliable price forecasting information for carbon trading control. 

1.2. Related literature review and our contribution 

Up to now, many scholars have carried out various research on energy prices, hoping to analyze the internal factors of price changes 
or put forward more accurate price forecasting methods. Most of the methods are statistic models and information-based economic 
models. Atalla et al. analyzed the relationship between economic policies and fossil fuel prices and adopted the Dynamic Stochastic 
General Equilibrium model to simulate its relevant changes [12]. However, the method neglected the other factors which also had a 
great impact on the fuel prices. Drachal et al. adopted various Bayesian models and proposed an information theory method to predict 
the energy price, which has a better effect than ARIMA [13]. But the model was not able to mine deep features in the data. Mensah et al. 
adopted the ARDL method to simulate the relationship among fossil carbon dioxide emissions, fuel energy consumption, and oil price. 
He found that there was a long-term bilateral causal relationship between fossil energy consumption and social and economic growth 
[6]. Liu and Jin used a standard economic method to analyze the relationship between China’s electricity market and carbon trading 
market and found that electricity price was strongly correlated with coal price, but not significantly correlated with other fossil energy 
prices [14]. Many economists have taken a keen interest in the underlying dynamics of energy prices. The relationship between carbon 
trading and macro-economy, electricity, automobile trading, energy conservation, and emission reduction has been studied a lot 
[15–18], but most models could only be adapted to economic forecasting in a certain period or only pay attention to the part of the 
correlation information, which is not comprehensive and stable enough. 

To fully explore the information contained in the data itself, some scholars tried to use intelligent algorithms to realize the time 
series prediction of energy prices. Many intelligent algorithms such as traditional machine learning models [19] and deep networks 
have been evaluated in the field of energy economic prediction [20]. Sadorsky applied traditional machine learning methods to predict 
the stock price of clean energy and verified that support vector machine (SVM), Random Forest (RF), and other models have better 
prediction performance compared with Lasso and Bayes [21]. But the mentioned models failed to get satisfying results when it comes 
to other stock price data. Seçkin and his team proposed a multi-objective feature selection method for oil time series prediction [9], 
which could reasonably seek out the relevant features but it might also lose information in the feature selection process. Li et al. 
combined variational mode decomposition and random sparse Bayesian learning and achieved positive performance in crude oil 
prediction [22]. However, the decomposition results from VMD usually changed a lot when the length of the time series is growing 
which to some extent would affect the prediction accuracy. Sun and his team worked out a secondary 
decomposition-reconstruction-ensemble approach to forecast crude oil prices [23]. The experiments demonstrated that the data in-
formation had been well extracted and the model was effective. Many other models also have been studied for crude oil price fore-
casting, which can be found in Ref. [24]. Although the above model can realize the prediction of energy futures prices to some extent, 
the prediction accuracy is not satisfactory due to the solidification of the model and the defects of the traditional algorithm. 

Many newly proposed deep network models and intelligent algorithms have been shown to work well in other fields. Although most 
of them have not yet been applied to the field of energy price forecasting, many models with excellent performance in temporal 
forecasting have begun to be noticed by economic scholars. Seçkin and Aytac proposed a special LSTM whose parameters were 
optimized by the chaotic Henry gas solubility optimization [8]. It was able to give a precise prediction of crude oil time series but LSTM 
was also restricted for the reason that it cannot model long-term dependences of the series. Sabri designed an ADARNN model for oil 
price forecast and it proved that the model had a favorable performance in a data-rich environment [25]. But the method was also 
restrained because of the data resources and richness, neglecting the information mining of price data itself. Teng et al. proposed a 
hierarchical attention-based LSTM model [26]. The attention mechanism can give different degrees of attention to the data in different 
periods, and realize more accurate prediction of stock market trends. Sinha uses a three-dimensional convolutional neural network 
(CNN) to predict the trend of stock plates, but a convolutional neural network lacks the learning of time sequence information [27]. 
Sadorsky et al. verified the futures price prediction effect of various tree-based models and found that the tree model has a positive 
effect in dealing with short-term prediction [28]. However, the tree-based models are poor in long-term prediction. Jafari and his team 
verified the predictive performance of GCN in terms of stock rise and fall and found that the graph structure has advantages in pro-
cessing diversified information [29]. But the graph design of GCN is controversial. The graph structure designed for the market is not 
universal and the edge structure may not have an exact correlation. In addition, many other intelligent algorithms have also been 
tested for their performance in the economic field, such as long-term memory networks (LSTM), hybrid models, etc. [30–33]. But the 
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performance and universality are still under improvement. Thus, inventing more stable and effective models still appeals to many 
intelligent algorithm researchers. 

Recently, Transformer-based models have been proven to be effective in natural language processing and time series forecasting 
[11]. It mainly relies on the attention mechanism to model the relationship between the input series and output series. Wang and his 
team proposed a deep Transformer model for stock market index prediction [34]. But it was unstable enough when there were steep 
changes in the index data. Kwon and Lee designed a recurrent Transformer model for coil temperature forecasting which had a good 
performance but also resulted in more computing burden [35]. Many other Transformer-based models have also been studied by 
researchers like CL-former [36], OD-former [37], and so on, which can adapt to various time series forecasting issues. All the above 
models have achieved favorable performance in other fields, thus, Transformer-based models are evaluated in the paper to validate the 
performance in crude oil prices forecasting. Besides, most of the models are single models or application models in specific scenarios, 
so the stability is poor when it comes to the complex and changeable situation of the energy futures market. 

To solve the above problems, some scholars adopt an ensemble model or hybrid model to solve the above problems. Toochaei and 
Moeini tested multiple ensemble classifiers including Random Forest, LightGBM, XGBoost, Extra-Trees, AdaBoost, and CatBoost, and 
found that ensemble classifiers were more robust than other models [38]. However, all the mentioned models are ensemble by simple 
tree models, and the prediction accuracy still has room for improvement. Liu et al. proposed a hybrid ensemble deep reinforcement 
learning model to solve the problem of timing prediction [39]. He used three different deep network models as the base model to learn 
time series from different angles, which has good accuracy and robustness. Many other ensemble models or mixed models have also 
been studied [40–42]. But on the one hand, the base models are generally completely different, so the prediction results of base models 
may be quite different from each other. On the other hand, most ensemble methods ignore the impact of the new changes in the time 
series on the model, and cannot adjust the model to adapt to the changes. 

Therefore, this paper takes three Transformer variant models as base models and adopts the dynamic ensemble method to learn 
time series changes, which can ensure the stability and accuracy of energy futures price prediction. The innovation of this model is 
mainly reflected in the following three aspects:  

(a) Autoformer is able to decompose the time series, mining inner information, and has a good performance in long-time series 
prediction. Reformer is an efficient Transformer, which is effective and consumes less computing resources. And Informer can 
not only study the relationship between longer series but also reduce the accumulated error of the model. Taking the three same- 
origin Transformer variant models as base models not only ensures the difference among the base models but also prevents the 
case that the forecast results of the base models are far apart.  

(b) Using a multi-objective genetic algorithm (NSGA-II) to learn the weight of base models, taking the deviation and variance of the 
model in the process of cross-validation as the target, can ensure the generalization performance and prediction accuracy of the 
model.  

(c) The dynamic ensemble method selects the optimal weight of the previous time from the Pareto plane as the weight of base 
models at the prediction time, which can timely adjust the model according to the fluctuation of energy futures, and further 
improves the robustness of the model. 

The paper is organized as follows: In the first two parts, the significance of energy futures prediction and related research are 
expounded. Section 3 introduces the proposed dynamic ensemble Transformers model in detail. Section 4 is the experimental part. The 
paper compares the performance of different advanced models and different ensemble models to verify the effectiveness of the pro-
posed models. Finally, Section 5 summarizes the results of this study and expounds the future research work. 

Fig. 1. The framework of the proposed model.  
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2. Methodology 

2.1. Problem analysis and model framework 

Energy future price change The prediction of energy price change is a typical time series prediction problem. Different from general 
time series, energy futures prices have the characteristics of large manual intervention and small randomness. Usually, it is influenced 
by recent policies or cyclical transactions that produce changes different from the historical sequence. The dynamic ensemble 
diversified Transformer model proposed in the paper can give different perspectives to historical sequences and mine deep features in 
the data. In addition, the dynamic ensemble method allows prediction patterns to change dynamically with sequence changes so that 
the prediction process has a high adaptability to the new changes in energy prices, which further improves the prediction accuracy. 

As shown in Fig. 1, the proposed model mainly includes three base models based on Transformer and a more robust dynamic 
ensemble strategy. The base model includes Autoformer, Reformer, and Informer. Autoformer has remarkable performance in long- 
time sequence and can focus on long-time sequence information. The reformer greatly improves the training efficiency of the trans-
former. Informer is more balanced on the short-and-long-term information of time series, and it solves memory and efficiency chal-
lenges. By taking the optimal weight of the last moment as the ensemble weight of the next moment, the dynamic ensemble strategy 
improves the dynamic adaptability of the model and could predict the change of oil futures more accurately. 

2.2. Base models 

2.2.1. Autoformer 
Autoformer is a long-time series prediction model based on deep decomposition architecture and autocorrelation mechanism, 

which was proposed by Wu and his team [43]. In recent years, Transformer has shown positive performance in the field of time series 
prediction and attracted the attention of scholars all over the world. However, there is still room for improvement in accuracy and 
efficiency. On the one hand, with the prolonging of predictive timeliness, it is difficult to find reliable temporal dependence from 
complex time patterns by direct use of the self-attention mechanism. On the other hand, due to the quadratic complexity of 
self-attention, the sparse version of the model has to be used, which will limit the efficiency of information utilization and affect the 
prediction effect [44]. To solve the above problems, deep decomposition architecture and automatic correlation mechanisms are 
adopted in Autoformer. 

As shown in Fig. 2, Autoformer’s framework consists of an encoder and decoder, but unlike a typical transformer, the encoder, and 
decoder are embedded with a decomposition unit and an AutoCorrelation module. The decomposition unit is mainly based on the idea 
of moving average, which can smooth the time series and separate the period term from the trend term. Since the decomposition 
process is embedded in the encoding and decoding process, the model gradually separates the trend term and the period term from the 
hidden variables in the prediction process, which is a gradual decomposition. In addition, the prediction result optimization and 
sequence decomposition are carried out alternately by the model, which can realize the mutual promotion. The AutoCorrelation 
module mainly includes Period-based dependencies and Time delay aggregation. It can find similar subprocesses of similar phases of 
different cycles, so as to achieve efficient sequence-level joining. Besides, it also has the ability to learn the long-dependent correlation 
in time series. 

2.2.2. Reformer 
The general transformer model tends to have a large memory footprint when dealing with long sequences. To conduct efficient 

Fig. 2. The structure of the Autoformer part.  
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training, Reformer has improved Transformer in three parts [45]. Firstly, locality-sensitive hashing attention (LSH Attention) is used to 
replace the original attention layer, which can improve the parallelization processing speed of the attention layer. Secondly, reversible 
residuals are proposed to reduce the memory footprint caused by the activation function computation. Finally, it blocks the input and 
calculates one module at a time to prevent the hidden layer from being too large. Due to the improvement, Reformer needs less 
computing burden and is obviously more efficient than Transformer. Fig. 3 shows the internal architecture of the Reformer’s encoder 
and decoder. 

The Reformer’s principle of extreme simplification of training and memory is given as follows:  

(1) LSH Attention 

When dealing with the time series prediction problem, the common attention layer mainly adopts the form of a shrinking dot 
product, while the LSH attention layer proposes the method of calculating the points in high dimensional space by the hash function. 
The hash function is used to divide the input feature vector into two different hash buckets, and the sequence is reordered according to 
the hash buckets. The new sequence is then partitioned and the attention network is trained in parallel.  

(2) Reversible residual network 

The residual block of the Transformer consists of an attention layer and a feedforward layer. Therefore, each layer activation 
function needs to save the input to calculate the backpropagation gradient, which takes up a large amount of storage space. The 
reversible residual network can realize the reverse recalculation of the input of the activation function so that the activation function 
can be calculated only once in the first layer.  

(3) Block forward network 

Block the input to reduce the amount of computation per training, thus reducing memory consumption. And they can be obtained 
by Eq (1) and Eq (2). 

Y2 =
[
Y (1)

2 , Y (2)
2 ,⋯,Y (M)

2

]
(1)  

Y(j)
2 =X(j)

2 + FFN
(

Y(j)
1

)
(2)  

where Y represents the output of the activation function, X represents the input of the activation function, and FFN represents the fully 
connected layer. The superscript (j) represents the j-th block. 

2.2.3. Informer 
Informer was proposed by Zhou and his team to improve Transformer from the perspective of solving the computational complexity 

and input characteristics of long time series [46]. On the one hand, ProbSparse self-attention was chosen, which reduced the 
computational complexity and spatial complexity of conventional self-attention. Besides, self-attention distilling was put forward to 
compress the model. By shortening the input sequence length of each layer, the memory usage of J stacked layers can be reduced, and 
the effect of pruning can be achieved. What’s more, this model adds the processing of date, taking the year, month, and day time of date 
as features, and improves the decoder of the generation, which can output the prediction results in one step. The specific principles are 
as follows: 

Fig. 3. The encoder and decoder of Reformer.  
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(1) ProbSparse self-attention 

The main idea of this method is to sample 5*lnL points for dot product calculation. Partial keys were randomly sampled for each 
query, and the sparsity score M of each query was calculated and sorted. The 5*lnL queries with the highest score are selected to 
calculate the dot product, and the average value of the input of the other queries in this layer is taken as the output. Through the above 
methods, the algorithm complexity can be reduced to O(LlnL), which greatly improves the algorithm running efficiency. But it is worth 
noting that this method is only applied to the self-attention layer of the encoder.  

(2) Self-attention Distilling 

The main principle of this mechanism is to add a 1-dimensional convolution layer and maximum pooling layer after each attention 
block, which can reduce the feature dimension. At the same time, each sample sequence has its input length reduced by half at input 
time by 1-dimensional convolution. The above distillation operation further reduces the algorithm complexity.  

(3) Generative decoder 

Informer’s decoder is different from a general Transformer that a generative decoder can generate all the predictive output at once. 
The input of this decoder is a concatenated sequence of the tail of the encoder input and the 0 matrices of the same dimension as the 
target to be predicted, and the tail of the output is the forecast result. 

Autoformer, Reformer, and Informer have their characteristics for long-time series prediction and can analyze and learn the series 
from different perspectives. By integrating the three base models, their respective advantages can be combined to ensure stability and 
improve the accuracy of the oil futures forecast. 

2.3. The dynamic ensemble strategy 

The dynamic ensemble strategy mainly consists of two parts: one is to obtain the optimal weight Pareto surface through multi- 
objective optimization; the other is to realize dynamic weight update by selecting the weight vector corresponding to the optimal 
result at the last moment on the Pareto surface. The multi-objective dynamic ensemble method can not only improve the stability and 
accuracy of the model for long sequence prediction but also adapt to the new sequence changes in time. 

2.3.1. NSGA-II 
NSGA-II is a multi-objective optimization algorithm based on a genetic algorithm, proposed by Deb [47]. It is widely used in 

complex and nonlinear multi-objective optimization problems and has the advantages of uniform solution distribution, many diversity, 
and elite strategy. NSGA-II can find the Pareto solution set of the multi-objective optimization problem and obtain the Pareto optimal 
solution. Compared with the NSGA algorithm, this algorithm uses fast non-dominated sorting, which has a faster running speed and a 
lower complexity. The specific algorithm principle is clarified as below: 

Step 1. Generate the first-generation parent population Q0 with a size of N using random numbers. 
Step 2. Perform fast non-dominated sorting for the parent population. The process of fast non-dominated sorting is as follows: (1) 
Set two parameters, n(i) and S(i), where the former is the number of individuals dominating individual i in the population and the 
latter is the set of individuals dominated by individual i. (2) All the individuals satisfying the condition of n(i) = 0 in the population 
are stored in the set O(1), and the rank of all the individuals in O(1) is set as 1. (3) Traverse the set S(j) of all individuals dominated 
by individual j in O(1), and subtract 1 from n(k) of each k in S(j). If n(k)-1 = 0, then the individual k is placed in the set O(2), and all 
the individuals in O(2) rank 2. (4) Operation (3) is performed on set O(2) until the rank of all individuals has been determined. 
Step 3. Select, cross, and mutate Q0 to generate the first generation of offspring population. 
Step 4. Mix the parent and child populations to produce a new population D0 with a size of 2 N. 
Step 5. Calculate the crowding degree of D0 and conduct fast non-dominated sorting. Select N individuals with the best performance 
to form a new parent group Q1. 
Step 6. If the end condition is met, terminate the cycle and output the optimal solution set; otherwise, go to Step 4. 

2.3.2. Dynamic-NSGA2 strategy  

(1) Multi-objective function 

The reasonable objective function is the key to ensuring the accuracy of the integration model. In this paper, the deviation and 
variance of the 10-fold cross-validation results of the integrated model are taken as the objective function. 

Model deviation: Model deviation can reflect the prediction accuracy of the model, ensuring that the integrated optimization can 
select the weight vector to make the results more accurate. The deviation can be obtained by Eq (3). 
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min f1 =
1
nv

∑nv

i=1

(

Yi −
1
k

∑k

j=1
Ŷ ij

)

(3)  

where Yi represents the true value of the i-th sample in the verification set, Ŷ ij represents the predicted value of the trained model in the 
i-th sample in the verification set by the j-th fold cross-verification, nv represents the number of samples in the verification set, and k 
represents the number of folds in the cross-verification (k = 10). 

Model variance: Model variance represents the fluctuation of the predicted value of 10-fold cross-validation, which reflects the 
stability of the model. By designing this function, integrated optimization tends to select the model with low fluctuation of prediction 
results. And it can be obtained by Eq (4). 

min f2 =
1
nv

∑nv

i=1

(
1
k
∑k

j=1

(

Ŷ ij −
1
k
∑k

j=1
Ŷ ij

)2)

(4)    

(2) Dynamic integration method   

Algorithm 1. The test process of crude oil prices prediction at t moment 
Input: t-5 to t-1 series of crude oil prices: Xt 

t-6 to t-2 series of crude oil prices: Xt-1 
The Perato weight set P = {p1, p2,⋯, pl}, pl = (w1,w2 ,w3) obtained from NSGA-II on the validate set 
Output: 
Final forecasting results at t moment: Ŷt 

Algorithm: 
01: Autoformer ← Xt, Xt-1 

02: Forecasting results from Autoformer at t and t-1 moment ŶAt , ŶAt− 1. 
03: Reformer ← Xt, Xt-1 

04: Forecasting results from Reformer at t and t-1 moment ŶRt , ŶRt− 1. 
05: Informer ← Xt, Xt-1 

06: Forecasting results from Informer at t and t-1 moment ŶIt , ŶIt− 1. 
07: if t is the initial moment do 
08: Randomly select p from P as the weight vector at t moment: pt = p̂ 
09: else do 
10: Calculate Ŷt− 1 on each weight vector p in P 
Ŷt− 1 = w1 ∗ ŶAt− 1 + w2 ∗ ŶRt− 1 + w3 ∗ ŶIt− 1 

11: Compute the error value 
Error = |Yt− 1 − Ŷt− 1|

12: Select out the optimal p with the minimal error at t-1 moment, called poptimal t− 1. pt = poptimal t− 1 

13: end if 
14: Compute the final prediction results at t moment using pt. 
Ŷt = (ŶAt , ŶRt , ŶIt) • pT

t  

As shown in Algorithm 1, dynamic integration aims to adjust the weight of the model slightly to make the model more adaptable to 
the prediction under different conditions. Let P represent the Pareto solution set in the training process of the integrated model, and p 
represents the elements in the solution set, namely the weight vector, then the weight vector selection process of dynamic integration 
can be obtained by Eq (5). 

pt =

{
p̂, t = 0
poptimal t− 1, t > 0 (5)  

where t is the order of prediction point, pt is the weight vector for t moment, poptimal t-1 is the best weight vector for t-1 moment which 
has the minimal prediction error at t-1 moment, p̂ represents randomly selecting a weight vector from P. 

By performing the proposed dynamic ensemble strategy, a stable and accurate crude oil price prediction can be obtained. Besides, 
all of the important model parameters have been given in Appendix A. 

3. Case study 

3.1. Crude oil futures dataset 

Selecting appropriate data sets is the key to evaluating the performance of the model. The data set adopted in this paper is the 
historical data of WTI crude oil futures of the US contract for difference. The dataset source URL is shown below: (https://cn.investing. 
com/commodities/energy). Data from January 1, 2019, to October 3, 2022, were used to conduct modeling and simulation studies. 
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The data set has a total of 1000 sample points. And the time interval between sample points is daily. The fluctuation characteristics of 
the dataset are shown in Fig. 4. The training set, validation set, and test set are divided according to the ratio of 3:1:1. The modeling 
and simulation platform of this paper is Python 3.9.11. In addition, PyTorch 1.11 is used to implement neural network modeling. In 
this paper, the z-score standardized method was used to preprocess the original data. And all hyperparameters of different models were 
obtained by the ten-fold cross-validation and raster search. 

3.2. Performance evaluation indexes 

The time series error evaluation index can effectively analyze the effect of different crude oil futures forecasting models. Three 
classic indexes, including the MAE (Mean Absolute Error), the MAPE (Mean Absolute Percentage Error), and the RMSE (Root Mean 
Square Error), are used to evaluate the performance of the proposed dynamic ensemble learning model and all baselines [48]. These 
time series error evaluation indexes are defined in Eq (6). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAE =

(
∑n

T=1

⃒
⃒
⃒Y(T) − Y

⌢

(T)
⃒
⃒
⃒

)
/

n

MAPE =

(
∑n

T=1

⃒
⃒
⃒

(
Y(T) − Y

⌢

(T)
)/

Y(T)
⃒
⃒
⃒

)
/

n

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑n

T=1

[
Y(T) − Y

⌢

(T)
]2

√
√
√
√

)
/

n

(6)  

where Y (T) represents actual crude oil futures data. Y
⌢
(T) represents the crude oil futures data got by the ensemble prediction model. n 

represents the number of samples. 
In addition to the above evaluation indexes, the directional forecasting (accuracy of prices going up or down) is also an important 

index. This index can assess the model’s ability to correctly judge price trends. And it can be obtained by Eq (7). 

ACC=
TP + TN

TP + FP + TN + FN
(7)  

where TP stands for a true positive example. TN stands for true negative example. FP refers to false positive examples. FN refers to false 
negative examples. 

At the same time, it is important to visually analyze the performance differences between different models. In order to effectively 
compare the performance of different algorithms, the Promoting percentages of the MAE (PMAE), the Promoting percentages of the 
MAPE (PMAPE), and the Promoting percentages of the RMSE (PRMSE) are used [49]. These indexes can be obtained by Eq (8). 

Fig. 4. The raw crude oil futures time series.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
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PMAE =
(MAEa − MAEb)

MAEa

PMAPE =
(MAPEa − MAPEb)

MAPEa

PRMSE =
(RMSEa − RMSEb)

RMSEa

(8)  

3.3. Experimental results and comparative analysis with benchmark algorithms 

3.3.1. Comparative experimental results of different predictors 
To fully compare and select the base predictors with the best performance, this section compares nine existing base predictors, 

including Transformer based frameworks (Autoformer, Reformer, and Informer), deep learning-based frameworks (TCN, GRU, and 
LSTM) and traditional neural network frameworks (MLP, ELM, and RBF). Table 2 fully illustrates the prediction errors of these base 
models. Fig. 5 shows the prediction results of the three models based on the Transformer. From Table 1 and Fig. 5, the following 
conclusions can be drawn:  

(1) Compared with Transformer and deep learning models, the prediction error of traditional neural networks is larger. This proves 
the effectiveness of deep learning and Transformer in oil futures time series modeling. The possible reason is that the structure 
of multiple hidden layers effectively improves the ability of neural networks to mine deep hidden information.  

(2) Compared with the transformer-based models and the deep learning models, the transformer-based models can achieve better 
experimental results. This fully proves the effectiveness of force transformers in the field of time series prediction. The feasible 
reason is that the attention mechanism and time series encoding structure effectively improve the ability to extract original 
temporal features, which ensures the ability of predictive modeling.  

(3) Different types of transformer-based prediction models have different performances. This fully proves that different predictors 
have different adaptability to complex and changeable time series. To fully improve the overall ability of the model to adapt to 
the data, ensemble learning was adopted to improve the performance. 

3.3.2. Comparative experimental results of different ensemble methods 
In this section, to fully prove that the dynamic ensemble learning method proposed in this paper has excellent weight decision 

performance, this paper constructs comparative experiments from the following three perspectives: 

Part I: By comparing the prediction results of ensemble learning and three Transformer based models, it can fully prove that the 
ensemble learning method can effectively improve the comprehensive strength of the model. 
Part II: By comparing NSGA2 with the traditional optimization algorithm, the adequacy and effectiveness of this method to achieve 
model weight ensemble are fully proved. 
Part III: The ablation experiments show that dynamic weight selection can effectively improve the effect of NSGA2 in integrating 
different base models on time series forecasting. 

Fig. 5. The prediction results of multiple models.  
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From Tables 2–4 and Fig. 6, the following conclusions can be drawn:  

(1) Compared with a single predictor, ensemble learning effectively improves the prediction performance of the model. This fully 
demonstrates the powerful predictive ability of ensemble learning. Ensemble learning determines the weight by fully analyzing 
the correlation between the prediction results of the base model and the target, which ensures the accuracy of the prediction.  

(2) Compared with other ensemble learning methods, NSGA2 can achieve the best ensemble results. On the one hand, this method 
uses the idea of the multi-objective ensemble to avoid overfitting. On the other hand, the principle of iterative population search 
is adopted to ensure the comprehensiveness of the weight search.  

(3) Compared with static ensemble learning, dynamic ensemble learning can effectively improve the overall performance of the 
prediction model. Experimental results demonstrate the effectiveness of dynamic ensemble learning. Based on the greedy 
principle, the model can dynamically select the Pareto solution set according to the changes in the time series, which improves 
the ability of the model to adapt to the crude oil futures data. 

3.4. Comparing analysis with baselines 

To prove that the dynamic ensemble learning model adopted in this paper has excellent ensemble analysis and modeling ability of 
crude oil futures, this section compares the performance of four baselines. These six baselines include three advanced time series 
forecasting frameworks (Sun’s model [23], Su’s model [50], and Verma’s model [51]) and three classical forecasting models (LSTNet, 
SVM, and ARIMA). Figs. 7–10 give the MAE, MAPE, RMSE and Accuracy values of all baselines and the proposed dynamic ensemble 
learning model. Fig. 11 shows the predicted results of the proposed dynamic ensemble learning model and other baseline models. 
Table 5 shows the training time of different models. Based on Figs. 7–11 and Table 5, the following conclusions can be drawn: 

(1) Compared with the classical prediction methods, the SOTA method proposed by the researchers has better prediction perfor-
mance. This fully proves that ensemble learning and deep learning can effectively optimize the performance of traditional 
predictors, which fully ensures the application value of the model in the field of crude oil prediction. 

Table 1 
The error evaluation index of different predictors.  

Forecasting models MAE ($) MAPE (%) RMSE ($) ACC (%) 

Autoformer 1.0714 3.3863 1.4563 63.5 
Reformer 1.1251 3.4590 1.4876 64.0 
Informer 1.0678 3.4242 1.5107 63.0 
TCN 1.3731 4.1863 1.8016 61.5 
GRU 1.3680 4.1908 1.7946 60.5 
LSTM 1.3978 4.3200 1.7628 61.0 
MLP 1.4535 4.4242 1.9006 58.5 
ELM 1.4893 4.6356 2.0031 59.0 
RBF 1.5747 4.7860 2.0528 57.5  

Table 2 
The error evaluation index of different ensemble learning models.  

Forecasting models MAE ($) MAPE (%) RMSE ($) ACC (%) 

Dynamic-NSGA2 0.8879 2.8043 1.1588 72.5 
NSGA2 0.9522 2.9648 1.2348 69.0 
MODE 0.9524 3.0005 1.2353 67.5 
BA 0.9658 3.0049 1.2495 66.0 
PSO 0.9741 3.0333 1.2825 67.0 
GA 0.9819 3.0535 1.2833 66.5  

Table 3 
The promoting percentages of the ensemble model by single models.  

Method Indexes Results 

Dynamic-NSGA2 vs. Autoformer PMAE (%) 17.1271 
PMAPE (%) 17.1869 
PRMSE (%) 20.4285 

Dynamic-NSGA2 vs.Reformer PMAE (%) 21.0826 
PMAPE (%) 18.9274 
PRMSE (%) 22.1027 

Dynamic-NSGA2 vs. Informer PMAE (%) 16.8477 
PMAPE (%) 18.1034 
PRMSE (%) 23.2938  
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Table 4 
The promoting percentages of the proposed model by other ensemble models.  

Method Indexes Results 

Dynamic-NSGA2 vs. NSGA2 PMAE (%) 6.7528 
PMAPE (%) 5.4135 
PRMSE (%) 6.1548 

Dynamic-NSGA2 vs. MODE PMAE (%) 6.7724 
PMAPE (%) 6.5389 
PRMSE (%) 6.1928 

Dynamic-NSGA2 vs. BA PMAE (%) 8.0659 
PMAPE (%) 6.6758 
PRMSE (%) 7.2589 

Dynamic-NSGA2 vs. PSO PMAE (%) 8.8492 
PMAPE (%) 7.5495 
PRMSE (%) 9.6452 

Dynamic-NSGA2 vs. GA PMAE (%) 9.5733 
PMAPE (%) 8.1611 
PRMSE (%) 9.7016  

Fig. 6. The prediction results of different ensemble models.  

Fig. 7. The MAE values of all baseline and the proposed dynamic ensemble learning model.  
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(2) The oil prediction framework based on Transformer and dynamic ensemble learning proposed in this paper can achieve the 
most satisfactory results. On the one hand, three predictors based on transformers with different frameworks and features can 
fully analyze the characteristics of oil time series and establish a high-precision forecasting model. On the other hand, the 
dynamic ensemble learning method combining NSGA2 and the greedy principle can fully analyze the correlation between the 
three transformers with the real value and realize effective dynamic weight decisions. Therefore, the dynamic ensemble 
transformer prediction framework proposed in this paper can achieve excellent application prospects in the field of crude oil 
futures prediction. 

3.5. Discussion and analysis 

Based on all the experimental results, the practicability and effectiveness of TFEformer in the field of crude oil futures prediction 
can be proved. All the results are discussed and analyzed in this section.  

(1) Compared with traditional CNN, RNN, and shallow neural network methods, the crude oil futures prediction model based on the 
Transformer can achieve better results. On the one hand, Transformer uses a self-attention mechanism to fully analyze the 
context dependencies of the time series, which enables the model to effectively analyze the overall information of the series. On 

Fig. 8. The MAPE values of all baseline and the proposed dynamic ensemble learning model.  

Fig. 9. The RMSE values of all baseline and the proposed dynamic ensemble learning model.  
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the other hand, the structure of residual connection and multi-layer depth network ensures the ability of the model to mine the 
hidden information in the original data, which further improves the modeling effect.  

(2) Compared with a single model, the ensemble learning model can fully improve the generalization of the model and further 
improve the prediction performance of the model. On the one hand, due to the differences in network structure, different types 
of Transformer variants have different adaptability to time series, which makes it arduous for a single model to fit all cases. On 

Fig. 10. The Accuracy values of all baseline and the proposed dynamic ensemble learning model.  

Fig. 11. The prediction results of the proposed model and different baseline models.  

Table 5 
The training time of different models.  

Models Time (s) 

DMEformer 187.51 
Sun’s model 235.87 
Su’s model 203.18 
Verma’s model 52.75 
LSTNet 20.18 
SVM 10.27 
ARIMA 15.45  
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the other hand, ensemble learning combines the advantages of different base models to make the ensemble model adapt to more 
modeling scenarios. Therefore, the ensemble learning framework proposed in this paper can achieve better results than all the 
base models.  

(3) Compared with the static ensemble learning method, the dynamic ensemble learning method can achieve better prediction 
accuracy. The main reason is that the dynamic ensemble learning framework can dynamically optimize the weights of different 
base models according to the changes in time series, which makes the models better adapt to the changing characteristics of time 
series. Therefore, the dynamic ensemble learning framework can effectively improve the overall prediction effect of the model. 

(4) Compared with other existing models, the DMEformer proposed in this paper effectively combines the advantages of Trans-
formers and dynamic ensemble learning. Specifically, based on the dynamic ensemble learning strategy, DMEformer fully in-
tegrates multiple Transformer variants with different characteristics and fully improves the ability to adapt to the complex and 
changeable time series of crude oil futures. Therefore, the model can significantly improve the prediction accuracy. 

4. Conclusion and future work 

The high-precision prediction method of crude oil futures provides effective technical support to ensure the sustainable devel-
opment of economic energy. To accurately predict the future trend of crude oil futures, this paper proposes a dynamic ensemble 
Transformer forecasting framework. The core contribution and summary of this paper mainly include the following elements:  

(1) In this paper, three kinds of transformers with their characteristics are used as the main base models. Different from the 
traditional algorithms, the transformer utilizes an attention mechanism, multi-layer encoder, and decoder to fully exploit the 
depth features of the time series. Therefore, the time series prediction model based on the transformer can achieve satisfactory 
results.  

(2) Combining NSGA2 and the greedy principle, this paper proposes a new dynamic ensemble learning framework for time series 
prediction. Different from the traditional static ensemble learning, the model can dynamically select the most appropriate 
solution set from the Pareto solution set through the greedy principle and the changes of the crude oil futures series to ensure the 
overall modeling effect.  

(3) The prediction framework of the dynamic ensemble transformer proposed in this paper can achieve better prediction results 
than all alternative models and Baselines. All the experiments fully prove the accuracy of the framework in crude oil futures 
prediction. 

The crude oil futures prediction technology plays an important role in ensuring the sustainable development of the economy and 
energy. In the future, this paper will conduct further research from the following perspectives:  

(1) The effective combination of forecasting results and economic policies can provide effective assistance in decision-making and 
energy development. In the future, it is extremely important to combine economic policy and forecasting models effectively.  

(2) The construction of a complete set of big data analysis systems for crude oil futures is of great significance for realizing the 
implementation of the model and helping decision-makers to analyze the data. In the future, a complete set of energy data 
analysis and economic sustainability analysis systems can be implemented by combining big data analysis platforms. 
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Appendix A. Model hyperparameters 

The hyperparameters of different models are given in Table. A.  

Table. A 
The hyperparameters of different algorithms.  

Name of parameter Selected parameter 

NSGA2 
Maximum iteration 100 
Number of search agents 50 
Number of objective functions 2 
Exponential distribution of crossover and mutation 20 
MODE 
Maximum iteration 100 
Number of search agents 30 
Number of objective functions 2 
Crossover probability f 0.5 
PSO 
Maximum iteration 100 
Inertia weight 0.8 
Accelerated constant 2 
BA 
Maximum iteration 100 
Impluse 0.4 
Maximum frequency 0.5 
Minimum frequency 0.1 
GA 
Maximum iteration 100 
Crossover rate 0.3 
Mutation rate 0.1 
Informer 
Learning rate 0.001 
Optimizer Adam 
History length 5 
Size of hidden units 256 
Training Epochs 100 
Autoformer 
Learning rate 0.001 
Optimizer Adam 
History length 5 
Size of hidden units 128 
Training Epochs 100 
Reformer 
Learning rate 0.001 
Optimizer Adam 
History length 5 
Size of hidden units 512 
Training Epochs 100 
LSTM 
Learning rate 0.001 
Optimizer Adam 
History length 5 
Number of hidden layers 2 
Training Epochs 200 
Number of hidden layer units 64, 32 
Number of output layer units 1 
GRU 
Learning rate 0.001 
Optimizer Adam 
History length 5 
Number of hidden layers 2 
Training Epochs 200 
Number of hidden layer units 128, 64 
Number of output layer units 1 
TCN 
Learning rate 0.001 
History length 3 
Optimizer Adam 
Filter size 2 

(continued on next page) 
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Table. A (continued ) 

Name of parameter Selected parameter 

Dropout 0.05 
Training Epochs 100 
Number of hidden layer units 64 
Number of output layer units 1 
ELM 
History length 5 
Size of hidden units 16 
Transfer Function Sigmoidal function 
Size of output units 1 
MLP 
History length 5 
Training Epochs 200 
Size of hidden units 32 
Learning rate 0.001 
Size of output units 1  
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